Pediatric Inflammatory Multisystem Syndrome and Rheumatic Diseases During SARS-CoV-2 Pandemic

Adrien Schvartz, Alexandre Belot, Isabelle Kone-Paut, Adrien Schvartz, Alexandre Belot, Isabelle Kone-Paut

Abstract

Globally, the coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), appeared to have a milder clinical course in children compared to adults. As severe forms of COVID-19 in adults included an aberrant systemic immune response, children with chronic systemic inflammatory diseases were cautiously followed. No evidence for a specific susceptibility was identified in this pediatric population. European and US Pediatricians started to notice cases of myocarditis, sharing some features with toxic shock syndrome, Kawasaki disease, and macrophage activation syndrome in otherwise healthy patients. Multisystem Inflammatory Syndrome in Children (MIS-C) and Pediatric Inflammatory Multisystem Syndrome (PIMS) have designated this new entity in the US and Europe, respectively. The spectrum of severity ranged from standard hospitalization to pediatric intensive care unit management. Most patients had a clinical history of exposure to COVID-19 patients and/or SARS-COV2 biological diagnosis. Clinical presentations include fever, cardiac involvement, gastro-intestinal symptoms, mucocutaneous manifestations, hematological features, or other organ dysfunctions. The temporal association between the pandemic peaks and outbreaks of PIMS seems to be in favor of a post-infectious, immune-mediated mechanism. Thus, SARS-CoV2 can rarely be associated with severe systemic inflammatory manifestations in previously healthy children differently from adults highlighting the specific need for COVID-19 research in the pediatric population.

Keywords: COVID - 19; Multisystem Inflammatory Syndrome in Children (MIS-C); SARS – CoV – 2; children; pediatric inflammatory multisystem syndrome; pediatric rheumatic disease.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Schvartz, Belot and Kone-Paut.

References

    1. COVID-19 Map Johns Hopkins Coronavirus Resource Center. Available online at: (accessed September 12, 2020).
    1. Cai J, Xu J, Lin D, Yang Z, Xu L, Qu Z, et al. . A case series of children with 2019 novel coronavirus infection: clinical and epidemiological features. Clin Infect Dis. (2020) 71:1547–51. 10.1093/cid/ciaa198
    1. Xia W, Shao J, Guo Y, Peng X, Li Z, Hu D. Clinical and CT features in pediatric patients with COVID-19 infection: different points from adults. Pediatr Pulmonol. (2020) 55:1169–74. 10.1002/ppul.24718
    1. Wei M, Yuan J, Liu Y, Fu T, Yu X, Zhang Z-J. Novel coronavirus infection in hospitalized infants under 1 year of age in China. JAMA. (2020) 323:1313–4. 10.1001/jama.2020.2131
    1. Lu X, Zhang L, Du H, Zhang J, Li YY, Qu J, et al. SARS-CoV-2 infection in children. N Engl J Med. (2020) 382:1663–5. 10.1056/NEJMc2005073
    1. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in china: summary of a report of 72, 314 cases from the chinese center for disease control and prevention. JAMA. (2020). 323:1239–42. 10.1001/jama.2020.2648
    1. COVID-19 Available online at: (accessed August 21, 2020).
    1. Canada PHA of Epidemiological summary of COVID-19 cases in Canada (2020). Available online at: (accessed August 21, 2020).
    1. Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Control and Prevention . [The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China]. Zhonghua Liu Xing Bing Xue Za Zhi. (2020) 41:145–51. 10.3760/cma.j.issn.0254-6450.2020.02.003
    1. Gianfrancesco M, Yazdany J, Robinson PC. Epidemiology and outcomes of novel coronavirus 2019 in patients with immune-mediated inflammatory diseases. Curr Opin Rheumatol. (2020) 32:434–40. 10.1097/BOR.0000000000000725
    1. Gianfrancesco M, Hyrich KL, Al-Adely S, Carmona L, Danila MI, Gossec L, et al. . Characteristics associated with hospitalisation for COVID-19 in people with rheumatic disease: data from the COVID-19 global rheumatology alliance physician-reported registry. Ann Rheum Dis. (2020) 79:859–66. 10.1136/annrheumdis-2020-217871
    1. Kilian A, Chock YP, Huang IJ, Graef ER, Upton LA, Khilnani A, et al. . Acute respiratory viral adverse events during use of antirheumatic disease therapies: a scoping review. Semin Arthritis Rheum. (2020) 50:1191–201. 10.1016/j.semarthrit.2020.07.007
    1. Riphagen S, Gomez X, Gonzalez-Martinez C, Wilkinson N, Theocharis P. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet. (2020) 395:1607–8. 10.1016/S0140-6736(20)31094-1
    1. Whittaker E, Bamford A, Kenny J, Kaforou M, Jones CE, Shah P, et al. . Clinical characteristics of 58 children with a pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2. JAMA. (2020) 324:259–69. 10.1001/jama.2020.10369
    1. Belot A, Antona D, Renolleau S, Javouhey E, Hentgen V, Angoulvant F, et al. . SARS-CoV-2-related paediatric inflammatory multisystem syndrome, an epidemiological study, France, 1 March to 17 May 2020. Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull. (2020) 25:2001010. 10.2807/1560-7917.ES.2020.25.22.2001010
    1. Pouletty M, Borocco C, Ouldali N, Caseris M, Basmaci R, Lachaume N, et al. . Paediatric multisystem inflammatory syndrome temporally associated with SARS-CoV-2 mimicking Kawasaki disease (Kawa-COVID-19): a multicentre cohort. Ann Rheum Dis. (2020) 79:999–1006. 10.1136/annrheumdis-2020-217960
    1. Dufort EM, Koumans EH, Chow EJ, Rosenthal EM, Muse A, Rowlands J, et al. . Multisystem inflammatory syndrome in children in New York State. N Engl J Med. (2020) 383:347–58. 10.1056/NEJMoa2021756
    1. Perez-Toledo M, Faustini SE, Jossi SE, Shields AM, Kanthimathinathan HK, Allen JD, et al. . Serology confirms SARS-CoV-2 infection in PCR-negative children presenting with paediatric inflammatory multi-system syndrome. MedRxiv [Preprint]. (2020). 10.1101/2020.06.05.20123117
    1. Belhadjer Z, Méot M, Bajolle F, Khraiche D, Legendre A, Abakka S, et al. . Acute heart failure in multisystem inflammatory syndrome in children (MIS-C) in the context of global SARS-CoV-2 pandemic. Circulation. (2020) 142:429–36. 10.1161/CIRCULATIONAHA.120.048360
    1. Verdoni L, Mazza A, Gervasoni A, Martelli L, Ruggeri M, Ciuffreda M, et al. . An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. Lancet. (2020) 395:1771–8. 10.1016/S0140-6736(20)31103-X
    1. Grimaud M, Starck J, Levy M, Marais C, Chareyre J, Khraiche D, et al. . Acute myocarditis and multisystem inflammatory emerging disease following SARS-CoV-2 infection in critically ill children. Ann Intensive Care. (2020) 10:69. 10.1186/s13613-020-00690-8
    1. Ng KF, Kothari T, Bandi S, Bird PW, Goyal K, Zoha M, et al. . COVID-19 multisystem inflammatory syndrome in three teenagers with confirmed SARS-CoV-2 infection. J Med Virol. (2020). 10.1002/jmv.26206
    1. Blondiaux E, Parisot P, Redheuil A, Tzaroukian L, Levy Y, Sileo C, et al. Cardiac MRI of children with Multisystem Inflammatory Syndrome (MIS-C) associated with COVID-19: case series. Radiology. (2020) 297:E283–8. 10.1148/radiol.2020202288
    1. Capone CA, Subramony A, Sweberg T, Schneider J, Shah S, Rubin L, et al. . Characteristics, cardiac involvement, and outcomes of multisystem inflammatory syndrome of childhood associated with severe acute respiratory syndrome coronavirus 2 infection. J Pediatr. (2020) 224:141–5. 10.1016/j.jpeds.2020.06.044
    1. Jones VG, Mills M, Suarez D, Hogan CA, Yeh D, Segal JB, et al. . COVID-19 and Kawasaki disease: novel virus and novel case. Hosp Pediatr. (2020) 10:537–40. 10.1542/hpeds.2020-0123
    1. Ouldali N, Pouletty M, Mariani P, Beyler C, Blachier A, Bonacorsi S, et al. . Emergence of Kawasaki disease related to SARS-CoV-2 infection in an epicentre of the French COVID-19 epidemic: a time-series analysis. Lancet Child Adolesc Health. (2020) 4:662–8. 10.1016/S2352-4642(20)30175-9
    1. Waltuch T, Gill P, Zinns LE, Whitney R, Tokarski J, Tsung JW, et al. . Features of COVID-19 post-infectious cytokine release syndrome in children presenting to the emergency department. Am J Emerg Med. (2020). 10.1016/j.ajem.2020.05.058. [Epub ahead of print].
    1. Miller J, Cantor A, Zachariah P, Ahn D, Martinez M, Margolis K. Gastrointestinal symptoms as a major presentation component of a novel multisystem inflammatory syndrome in children (MIS-C) that is related to COVID-19: a single center experience of 44 cases. Gastroenterology. (2020) 159:1571–4.e2. 10.1053/j.gastro.2020.05.079
    1. Balasubramanian S, Nagendran TM, Ramachandran B, Ramanan AV. Hyper-inflammatory syndrome in a child with COVID-19 treated successfully with intravenous immunoglobulin and tocilizumab. Indian Pediatr. (2020) 57:681–3. 10.1007/s13312-020-1901-z
    1. Rivera-Figueroa EI, Santos R, Simpson S, Garg P. Incomplete kawasaki disease in a child with Covid-19. Indian Pediatr. (2020) 57:680–1. 10.1007/s13312-020-1900-0
    1. Riollano-Cruz M, Akkoyun E, Briceno-Brito E, Kowalsky S, Reed J, Posada R, et al. . Multisystem inflammatory syndrome in children related to COVID-19: a New York City experience. J Med Virol. (2020). 10.1002/jmv.26224. [Epub ahead of print].
    1. Kaushik S, Aydin SI, Derespina KR, Bansal PB, Kowalsky S, Trachtman R, et al. . Multisystem inflammatory syndrome in children associated with severe acute respiratory syndrome coronavirus 2 infection (MIS-C): a multi-institutional study from New York City. J Pediatr. (2020) 224:24–9. 10.1016/j.jpeds.2020.06.045
    1. Chiotos K, Bassiri H, Behrens EM, Blatz AM, Chang J, Diorio C, et al. . Multisystem inflammatory syndrome in children during the coronavirus 2019 Pandemic: a case series. J Pediatr Infect Dis Soc. (2020) 9:393–8. 10.1093/jpids/piaa069
    1. Cheung EW, Zachariah P, Gorelik M, Boneparth A, Kernie SG, Orange JS, et al. . Multisystem inflammatory syndrome related to COVID-19 in previously healthy children and adolescents in New York City. JAMA. (2020) 324:294–6. 10.1001/jama.2020.10374
    1. Schupper AJ, Yaeger KA, Morgenstern PF. Neurological manifestations of pediatric multi-system inflammatory syndrome potentially associated with COVID-19. Childs Nerv Syst. (2020) 36:1579–80. 10.1007/s00381-020-04755-8
    1. Licciardi F, Pruccoli G, Denina M, Parodi E, Taglietto M, Rosati S, et al. . SARS-CoV-2-Induced Kawasaki-like hyperinflammatory syndrome: a novel COVID phenotype in children. Pediatrics. (2020) 146:e20201711. 10.1542/peds.2020-1711
    1. Hameed S, Elbaaly H, Reid CEL, Santos RMF, Shivamurthy V, Wong J, et al. . Spectrum of imaging findings on chest radiographs, US, CT, and MRI images in Multisystem Inflammatory Syndrome in Children (MIS-C) associated with COVID-19. Radiology. (2020). 10.1148/radiol.2020202543. [Epub ahead of print].
    1. Greene AG, Saleh M, Roseman E, Sinert R. Toxic shock-like syndrome and COVID-19: a case report of multisystem inflammatory syndrome in children (MIS-C). Am J Emerg Med. (2020). 10.1016/j.ajem.2020.05.117. [Epub ahead of print].
    1. Sadiq M, Aziz OA, Kazmi U, Hyder N, Sarwar M, Sultana N, et al. . Multisystem inflammatory syndrome associated with COVID-19 in children in Pakistan. Lancet Child Adolesc Health. (2020) 4:e36–7. 10.1016/S2352-4642(20)30256-X
    1. Multisystem inflammatory syndrome in children and adolescents with COVID-19 Available online at: (accessed August 21, 2020).
    1. Guidance- Paediatric multisystem inflammatory syndrome temporally associated with COVID-19 (PIMS) RCPCH. Available online at: (accessed August 21, 2020).
    1. HAN Archive - 00432 | Health Alert Network (HAN). (2020). Available online at: (accessed August 21, 2020).
    1. Feldstein LR, Rose EB, Horwitz SM, Collins JP, Newhams MM, Son MBF, et al. . Multisystem inflammatory syndrome in U.S. children and adolescents. N Engl J Med. (2020) 383:334–46. 10.1056/NEJMoa2021680
    1. Godfred-Cato S, Bryant B, Leung J, Oster ME, Conklin L, Abrams J, et al. . COVID-19-associated multisystem inflammatory syndrome in children - United States, March-July 2020. MMWR Morb Mortal Wkly Rep. (2020) 69:1074–80. 10.15585/mmwr.mm6932e2
    1. Toubiana J, Poirault C, Corsia A, Bajolle F, Fourgeaud J, Angoulvant F, et al. . Kawasaki-like multisystem inflammatory syndrome in children during the covid-19 pandemic in Paris, France: prospective observational study. BMJ. (2020) 369:m2094. 10.1136/bmj.m2094
    1. Webb K, Abraham DR, Faleye A, McCulloch M, Rabie H, Scott C. Multisystem inflammatory syndrome in children in South Africa. Lancet Child Adolesc Health. (2020) 4:e38. 10.1016/S2352-4642(20)30272-8
    1. Laing AG, Lorenc A, del Molino del Barrio I, Das A, Fish M, Monin L, et al. A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat Med. (2020) 26:1623–35. 10.1038/s41591-020-1038-6
    1. Zhao J, Yuan Q, Wang H, Liu W, Liao X, Su Y, et al. . Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin Infect Dis. (2020) 71:2027–34. 10.1093/cid/ciaa344
    1. Guo L, Ren L, Yang S, Xiao M, Chang D, Yang F, et al. . Profiling early humoral response to diagnose novel coronavirus disease (COVID-19). Clin Infect Dis. (2020) 71:778–85. 10.1093/cid/ciaa310
    1. Grzelak L, Temmam S, Planchais C, Demeret C, Tondeur L, Huon C, et al. . A comparison of four serological assays for detecting anti-SARS-CoV-2 antibodies in human serum samples from different populations. Sci Transl Med. (2020) 12:eabc3101. 10.1126/scitranslmed.abc3103
    1. Tuaillon E, Bolloré K, Pisoni A, Debiesse S, Renault C, Marie S, et al. . Detection of SARS-CoV-2 antibodies using commercial assays and seroconversion patterns in hospitalized patients. J Infect. (2020) 81:e39–45. 10.1016/j.jinf.2020.05.077
    1. Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, et al. . Virological assessment of hospitalized patients with COVID-2019. Nature. (2020) 581:465–9. 10.1038/s41586-020-2196-x
    1. To KK-W, Tsang OT-Y, Leung W-S, Tam AR, Wu T-C, Lung DC, et al. . Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis. (2020) 20:565–74. 10.1016/S1473-3099(20)30196-1
    1. Amanat F, Stadlbauer D, Strohmeier S, Nguyen THO, Chromikova V, McMahon M, et al. . A serological assay to detect SARS-CoV-2 seroconversion in humans. Nat Med. (2020) 26:1033–6. 10.1038/s41591-020-0913-5
    1. Schwab I, Nimmerjahn F. Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nat Rev Immunol. (2013) 13:176–89. 10.1038/nri3401
    1. Research C for BE and Information About Immune Globulin (Human) Product Shortage FDA. (2019). Available online at: (accessed November 1, 2020).
    1. de Graeff N, Groot N, Ozen S, Eleftheriou D, Avcin T, Bader-Meunier B, et al. . European consensus-based recommendations for the diagnosis and treatment of Kawasaki disease - the SHARE initiative. Rheumatol Oxf Engl. (2019) 58:672–82. 10.1093/rheumatology/key344
    1. Hashkes PJ, Laxer RM, Simon A. Textbook of Autoinflammation. Springer International Publishing; (2019). 10.1007/978-3-319-98605-0
    1. Sedwick C. Wanted: a new model for glucocorticoid receptor transactivation and transrepression. PLoS Biol. (2014) 12:e1001814 10.1371/journal.pbio.1001814
    1. Annane D, Pastores SM, Rochwerg B, Arlt W, Balk RA, Beishuizen A, et al. . Guidelines for the diagnosis and management of critical illness-related corticosteroid insufficiency (CIRCI) in critically ill patients (Part I): Society of Critical Care Medicine (SCCM) and European Society of Intensive Care Medicine (ESICM) 2017. Intensive Care Med. (2017) 43:1751–63. 10.1007/s00134-017-4919-5
    1. Crosby JC, Heimann MA, Burleson SL, Anzalone BC, Swanson JF, Wallace DW, et al. . COVID-19: a review of therapeutics under investigation. J Am Coll Emerg Physicians Open. (2020) 1:231–7. 10.1002/emp2.12081
    1. Henderson LA, Canna SW, Schulert GS, Volpi S, Lee PY, Kernan KF, et al. . On the alert for cytokine storm: immunopathology in COVID-19. Arthritis Rheumatol. (2020) 72:1059–63. 10.1002/art.41285
    1. Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev. (2018) 281:8–27. 10.1111/imr.12621
    1. Eloseily EM, Weiser P, Crayne CB, Haines H, Mannion ML, Stoll ML, et al. . Benefit of anakinra in treating pediatric secondary hemophagocytic lymphohistiocytosis. Arthritis Rheumatol Hoboken NJ. (2020) 72:326–34. 10.1002/art.41103
    1. Shakoory B, Carcillo JA, Chatham WW, Amdur RL, Zhao H, Dinarello CA, et al. . Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of macrophage activation syndrome: reanalysis of a prior phase III trial. Crit Care Med. (2016) 44:275–81. 10.1097/CCM.0000000000001402
    1. Kuemmerle-Deschner JB, Gautam R, George AT, Raza S, Lomax KG, Hur P. Systematic literature review of efficacy/effectiveness and safety of current therapies for the treatment of cryopyrin-associated periodic syndrome, hyperimmunoglobulin D syndrome and tumour necrosis factor receptor-associated periodic syndrome. RMD Open. (2020) 6:e001227. 10.1136/rmdopen-2020-001227
    1. Kone-Paut I, Tellier S, Belot A, Brochard K, Guitton C, Marie I, et al. . Open label, phase II study with anakinra in intravenous immunoglobulin-resistant kawasaki disease. Arthritis Rheumatol. (2020). 10.1002/art.41481. [Epub ahead of print].
    1. Barone P, Pignataro R, Garozzo MT, Leonardi S. IL-6 blockers in systemic onset juvenile idiopathic arthritis. Immunotherapy. (2016) 8:79–87. 10.2217/imt.15.104
    1. Machado SH, Xavier RM. Safety of tocilizumab in the treatment of juvenile idiopathic arthritis. Expert Opin Drug Saf. (2017) 16:493–500. 10.1080/14740338.2017.1303479
    1. Katsicas MM, Russo R. Biologic agents in juvenile spondyloarthropathies. Pediatr Rheumatol Online J. (2016) 14:17. 10.1186/s12969-016-0076-6
    1. Guaraldi G, Meschiari M, Cozzi-Lepri A, Milic J, Tonelli R, Menozzi M, et al. . Tocilizumab in patients with severe COVID-19: a retrospective cohort study. Lancet Rheumatol. (2020) 2:e474–84. 10.1016/S2665-9913(20)30285-X
    1. Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N, et al. . Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. (2020) 369:718–24. 10.1126/science.abc6027
    1. Trouillet-Assant S, Viel S, Gaymard A, Pons S, Richard J-C, Perret M, et al. . Type I IFN immunoprofiling in COVID-19 patients. J Allergy Clin Immunol. (2020) 146:206–8.e2. 10.1016/j.jaci.2020.04.029
    1. Piccolo V, Neri I, Filippeschi C, Oranges T, Argenziano G, Battarra VC, et al. . Chilblain-like lesions during COVID-19 epidemic: a preliminary study on 63 patients. J Eur Acad Dermatol Venereol. (2020) 34:e291–3. 10.1111/jdv.16526
    1. Papa R, Volpi S, Gattorno M. Type I interferonopathies: cutaneous vasculopathy, chilblains, panniculitis-induced lipodystrophyand others skin manifestations. G Ital Dermatol E Venereol. (2020). 10.23736/S0392-0488.20.06709-7. [Epub ahead of print].
    1. Park A, Iwasaki A. Type I and type III interferons - induction, signaling, evasion, and application to combat COVID-19. Cell Host Microbe. (2020) 27:870–8. 10.1016/j.chom.2020.05.008
    1. Rowley AH. Understanding SARS-CoV-2-related multisystem inflammatory syndrome in children. Nat Rev Immunol. (2020) 20:453–4. 10.1038/s41577-020-0367-5
    1. Bronte V, Ugel S, Tinazzi E, Vella A, De Sanctis F, Canè S, et al. . Baricitinib restrains the immune dysregulation in patients with severe COVID-19. J Clin Invest. (2020) 141772. 10.1101/2020.06.26.20135319. [Epub ahead of print].
    1. Diorio C, Henrickson SE, Vella LA, McNerney KO, Chase JM, Burudpakdee C, et al. . Multisystem inflammatory syndrome in children and COVID-19 are distinct presentations of SARS-CoV-2. J Clin Invest. (2020) 130:5967–75. 10.1172/JCI140970
    1. Antonelli A, Ferrari SM, Giuggioli D, Ferrannini E, Ferri C, Fallahi P. Chemokine (C-X-C motif) ligand (CXCL)10 in autoimmune diseases. Autoimmun Rev. (2014) 13:272–80. 10.1016/j.autrev.2013.10.010
    1. Yang Y, Shen C, Li J, Yuan J, Yang M, Wang F, et al. Exuberant elevation of IP-10, MCP-3 and IL-1ra during SARS-CoV-2 infection is associated with disease severity and fatal outcome. medRxiv [Preprint]. (2020). 10.1101/2020.03.02.20029975
    1. Lee PY, Platt CD, Weeks S, Grace RF, Maher G, Gauthier K, et al. . Immune dysregulation and Multisystem Inflammatory Syndrome in Children (MIS-C) in individuals with haploinsufficiency of SOCS1. J Allergy Clin Immunol. (2020) 146:1194–200.e1. 10.1016/j.jaci.2020.07.033
    1. Woo PCY, Huang Y, Lau SKP, Yuen K-Y. Coronavirus genomics and bioinformatics analysis. Viruses. (2010) 2:1804–20. 10.3390/v2081803
    1. Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis GJ, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. (2004) 203:631–7. 10.1002/path.1570
    1. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. . Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. (2020) 395:565–74. 10.1016/S0140-6736(20)30251-8
    1. Chen J, Jiang Q, Xia X, Liu K, Yu Z, Tao W, et al. . Individual variation of the SARS-CoV-2 receptor ACE2 gene expression and regulation. Aging Cell. (2020) 19:e13168. 10.1111/acel.13168
    1. Simões e Silva AC, Silveira KD, Ferreira AJ, Teixeira MM. ACE2, angiotensin-(1-7) and Mas receptor axis in inflammation and fibrosis. Br J Pharmacol. (2013) 169:477–92. 10.1111/bph.12159
    1. Felsenstein S, Herbert JA, McNamara PS, Hedrich CM. COVID-19: immunology and treatment options. Clin Immunol Orlando Fla. (2020) 215:108448. 10.1016/j.clim.2020.108448
    1. Gao X, Zhou H, Wu C, Xiao Y, Ren L, Paranhos-Baccalà G, et al. . Antibody against nucleocapsid protein predicts susceptibility to human coronavirus infection. J Infect. (2015) 71:599–602. 10.1016/j.jinf.2015.07.002
    1. Che X-Y, Qiu L-W, Liao Z-Y, Wang Y, Wen K, Pan Y-X, et al. . Antigenic cross-reactivity between severe acute respiratory syndrome-associated coronavirus and human coronaviruses 229E and OC43. J Infect Dis. (2005) 191:2033–7. 10.1086/430355
    1. Chen KYH, Cheung M, Burgner DP, Curtis N. Toxic shock syndrome in Australian children. Arch Dis Child. (2016) 101:736–40. 10.1136/archdischild-2015-310121
    1. Streptococcal Toxic Shock Syndrome | 2010 Case Definition. Available online at: (accessed August 31, 2020).
    1. Toxic Shock Syndrome (Other Than Streptococcal) | 2011. Case Definition. Available online at: (accessed August 31, 2020).
    1. Cook A, Janse S, Watson JR, Erdem G. Manifestations of toxic shock syndrome in children, Columbus, Ohio, USA, 2010–20171. Emerg Infect Dis. (2020) 26:1077–83. 10.3201/eid2606.190783
    1. Krakauer T. Staphylococcal superantigens: pyrogenic toxins induce toxic shock. Toxins. (2019) 11:178. 10.3390/toxins11030178
    1. Cheng MH, Zhang S, Porritt RA, Arditi M, Bahar I. An insertion unique to SARS-CoV-2 exhibits superantigenic character strengthened by recent mutations. bioRxiv [Preprint]. (2020). 10.1101/2020.05.21.109272
    1. Beukelman T, Xie F, Chen L, Baddley JW, Delzell E, Grijalva CG, et al. . Rates of hospitalized bacterial infection associated with juvenile idiopathic arthritis and its treatment. Arthritis Rheum. (2012) 64:2773–80. 10.1002/art.34458
    1. Horneff G. Paediatric rheumatic disease: biologic therapy and risk of infection in children with JIA. Nat Rev Rheumatol. (2012) 8:504–5. 10.1038/nrrheum.2012.114
    1. Ibrahim A, Ahmed M, Conway R, Carey JJ. Risk of infection with methotrexate therapy in inflammatory diseases: a systematic review and meta-analysis. J Clin Med. (2018) 8:15. 10.3390/jcm8010015
    1. Nimmrich S, Horneff G. Incidence of herpes zoster infections in juvenile idiopathic arthritis patients. Rheumatol Int. (2015) 35:465–70. 10.1007/s00296-014-3197-6
    1. Emmi G, Bettiol A, Mattioli I, Silvestri E, Di Scala G, Urban ML, et al. . SARS-CoV-2 infection among patients with systemic autoimmune diseases. Autoimmun Rev. (2020) 19:102575. 10.1016/j.autrev.2020.102575
    1. Fredi M, Cavazzana I, Moschetti L, Andreoli L, Franceschini F, Airò P, et al. . COVID-19 in patients with rheumatic diseases in northern Italy: a single-centre observational and case–control study. Lancet Rheumatol. (2020) 2:e549–56. 10.1016/S2665-9913(20)30169-7
    1. Haslak F, Yildiz M, Adrovic A, Sahin S, Koker O, Aliyeva A, et al. . Management of childhood-onset autoinflammatory diseases during the COVID-19 pandemic. Rheumatol Int. (2020) 40:1423–31. 10.1007/s00296-020-04645-x
    1. Götzinger F, Santiago-García B, Noguera-Julián A, Lanaspa M, Lancella L, Carducci FIC, et al. . COVID-19 in children and adolescents in Europe: a multinational, multicentre cohort study. Lancet Child Adolesc Health. (2020) 4:653–61. 10.1016/S2352-4642(20)30177-2

Source: PubMed

3
Abonnere