Improving Infant Hydrocephalus Outcomes in Uganda: A Longitudinal Prospective Study Protocol for Predicting Developmental Outcomes and Identifying Patients at Risk for Early Treatment Failure after ETV/CPC

Taylor A Vadset, Ajay Rajaram, Chuan-Heng Hsiao, Miriah Kemigisha Katungi, Joshua Magombe, Marvin Seruwu, Brian Kaaya Nsubuga, Rutvi Vyas, Julia Tatz, Katharine Playter, Esther Nalule, Davis Natukwatsa, Moses Wabukoma, Luis E Neri Perez, Ronald Mulondo, Jennifer T Queally, Aaron Fenster, Abhaya V Kulkarni, Steven J Schiff, Patricia Ellen Grant, Edith Mbabazi Kabachelor, Benjamin C Warf, Jason D B Sutin, Pei-Yi Lin, Taylor A Vadset, Ajay Rajaram, Chuan-Heng Hsiao, Miriah Kemigisha Katungi, Joshua Magombe, Marvin Seruwu, Brian Kaaya Nsubuga, Rutvi Vyas, Julia Tatz, Katharine Playter, Esther Nalule, Davis Natukwatsa, Moses Wabukoma, Luis E Neri Perez, Ronald Mulondo, Jennifer T Queally, Aaron Fenster, Abhaya V Kulkarni, Steven J Schiff, Patricia Ellen Grant, Edith Mbabazi Kabachelor, Benjamin C Warf, Jason D B Sutin, Pei-Yi Lin

Abstract

Infant hydrocephalus poses a severe global health burden; 80% of cases occur in the developing world where patients have limited access to neurosurgical care. Surgical treatment combining endoscopic third ventriculostomy and choroid plexus cauterization (ETV/CPC), first practiced at CURE Children's Hospital of Uganda (CCHU), is as effective as standard ventriculoperitoneal shunt (VPS) placement while requiring fewer resources and less post-operative care. Although treatment focuses on controlling ventricle size, this has little association with treatment failure or long-term outcome. This study aims to monitor the progression of hydrocephalus and treatment response, and investigate the association between cerebral physiology, brain growth, and neurodevelopmental outcomes following surgery. We will enroll 300 infants admitted to CCHU for treatment. All patients will receive pre/post-operative measurements of cerebral tissue oxygenation (SO2), cerebral blood flow (CBF), and cerebral metabolic rate of oxygen consumption (CMRO2) using frequency-domain near-infrared combined with diffuse correlation spectroscopies (FDNIRS-DCS). Infants will also receive brain imaging, to monitor tissue/ventricle volume, and neurodevelopmental assessments until two years of age. This study will provide a foundation for implementing cerebral physiological monitoring to establish evidence-based guidelines for hydrocephalus treatment. This paper outlines the protocol, clinical workflow, data management, and analysis plan of this international, multi-center trial.

Keywords: brain growth; cerebral blood flow; cerebral oxygen metabolism; diffuse correlation spectroscopy; endoscopic third ventriculostomy combined with choroid plexus cauterization; frequency-domain near-infrared spectroscopy; hydrocephalus; neurodevelopmental outcome; tissue saturation.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
(a) Clinical and research workflow, (b) Scheduled patient research follow-ups.
Figure 2
Figure 2
Example of (A) an FDNIRS-DCS study measurement and (B) a baseline neurodevelopmental outcome assessment with a patient.

References

    1. Warf B.C. Educate One to Save a Few. Educate a Few to Save Many. World Neurosurg. 2013;79:S15.e15–S15.e18. doi: 10.1016/j.wneu.2010.09.021.
    1. Warf B.C., Collaboration E.A.N.R. Pediatric Hydrocephalus in East Africa: Prevalence, Causes, Treatments, and Strategies for the Future. World Neurosurg. 2010;73:296–300. doi: 10.1016/j.wneu.2010.02.009.
    1. Warf B.C. Hydrocephalus in Uganda: The Predominance of Infectious Origin and Primary Management with Endoscopic Third Ventriculostomy. J. Neurosurg. Pediatr. 2005;102:1–15. doi: 10.3171/ped.2005.102.1.0001.
    1. Warf B.C., Alkire B.C., Bhai S., Hughes C., Schiff S.J., Vincent J.R., Meara J.G. Costs and Benefits of Neurosurgical Intervention for Infant Hydrocephalus in Sub-Saharan Africa. J. Neurosurg. Pediatr. 2011;8:509–521. doi: 10.3171/2011.8.PEDS11163.
    1. Warf B.C. Comparison of 1-Year Outcomes for the Chhabra and Codman-Hakim Micro Precision Shunt Systems in Uganda: A Prospective Study in 195 Children. J. Neurosurg. 2005;102:358–362. doi: 10.3171/ped.2005.102.4.0358.
    1. Limbrick D.D., Mathur A., Johnston J.M., Munro R., Sagar J., Inder T., Park T.S., Leonard J.L., Smyth M.D. Neurosurgical Treatment of Progressive Posthemorrhagic Ventricular Dilation in Preterm Infants: A 10-Year Single-Institution Study. J. Neurosurg. Pediatr. 2010;6:224–230. doi: 10.3171/2010.5.PEDS1010.
    1. Robinson S. Neonatal Posthemorrhagic Hydrocephalus from Prematurity: Pathophysiology and Current Treatment Concepts. J. Neurosurg. Pediatr. 2012;9:242–258. doi: 10.3171/2011.12.PEDS11136.
    1. Kulkarni A.V., Riva-Cambrin J., Butler J., Browd S.R., Drake J.M., Holubkov R., Kestle J.R.W., Limbrick D.D., Simon T.D., Tamber M.S., et al. Outcomes of CSF Shunting in Children: Comparison of Hydrocephalus Clinical Research Network Cohort with Historical Controls: Clinical Article. J. Neurosurg. Pediatr. 2013;12:334–338. doi: 10.3171/2013.7.PEDS12637.
    1. Warf B.C., Campbell J.W. Combined Endoscopic Third Ventriculostomy and Choroid Plexus Cauterization as Primary Treatment of Hydrocephalus for Infants with Myelomeningocele: Long-Term Results of a Prospective Intent-to-Treat Study in 115 East African Infants. J. Neurosurg. Pediatr. 2008;2:310–316. doi: 10.3171/PED.2008.2.11.310.
    1. Warf B.C., Mugamba J., Kulkarni A.V. Endoscopic Third Ventriculostomy in the Treatment of Childhood Hydrocephalus in Uganda: Report of a Scoring System That Predicts Success. J. Neurosurg. Pediatr. 2010;5:143–148. doi: 10.3171/2009.9.PEDS09196.
    1. Warf B.C., Kulkarni A.V. Intraoperative Assessment of Cerebral Aqueduct Patency and Cisternal Scarring: Impact on Success of Endoscopic Third Ventriculostomy in 403 African Children. J. Neurosurg. Pediatr. 2010;5:204–209. doi: 10.3171/2009.9.PEDS09304.
    1. Muir R.T., Wang S., Warf B.C. Global Surgery for Pediatric Hydrocephalus in the Developing World: A Review of the History, Challenges, and Future Directions. Neurosurg. Focus. 2016;41:E11. doi: 10.3171/2016.7.FOCUS16273.
    1. Warf B.C. Congenital Idiopathic Hydrocephalus of Infancy: The Results of Treatment by Endoscopic Third Ventriculostomy with or without Choroid Plexus Cauterization and Suggestions for How It Works. Child’s Nerv. Syst. 2013;29:935–940. doi: 10.1007/s00381-013-2072-1.
    1. Warf B.C. The Impact of Combined Endoscopic Third Ventriculostomy and Choroid Plexus Cauterization on the Management of Pediatric Hydrocephalus in Developing Countries. World Neurosurg. 2013;79:S23.e13–S23.e15. doi: 10.1016/j.wneu.2011.02.012.
    1. Warf B.C. Comparison of Endoscopic Third Ventriculostomy Alone and Combined with Choroid Plexus Cauterization in Infants Younger than 1 Year of Age: A Prospective Study in 550 African Children. J. Neurosurg. 2005;103:475–481. doi: 10.3171/ped.2005.103.6.0475.
    1. Kulkarni A.V., Schiff S.J., Mbabazi-Kabachelor E., Mugamba J., Ssenyonga P., Donnelly R., Levenbach J., Monga V., Peterson M., MacDonald M., et al. Endoscopic Treatment versus Shunting for Infant Hydrocephalus in Uganda. N. Engl. J. Med. 2017;377:2456–2464. doi: 10.1056/NEJMoa1707568.
    1. Schiff S.J., Kulkarni A.V., Mbabazi-Kabachelor E., Mugamba J., Ssenyonga P., Donnelly R., Levenbach J., Monga V., Peterson M., Cherukuri V., et al. Brain Growth after Surgical Treatment for Infant Postinfectious Hydrocephalus in Sub-Saharan Africa: 2-Year Results of a Randomized Trial. J. Neurosurg. Pediatr. 2021;28:326–334. doi: 10.3171/2021.2.PEDS20949.
    1. Warf B.C., Dagi A.R., Kaaya B.N., Schiff S.J. Five-Year Survival and Outcome of Treatment for Postinfectious Hydrocephalus in Ugandan Infants. J. Neurosurg. Pediatr. 2011;8:502–508. doi: 10.3171/2011.8.PEDS11221.
    1. Marano P.J., Stone S.S.D., Mugamba J., Ssenyonga P., Warf E.B., Warf B.C. Reopening of an Obstructed Third Ventriculostomy: Long-Term Success and Factors Affecting Outcome in 215 Infants. J. Neurosurg. Pediatr. 2015;15:399–405. doi: 10.3171/2014.10.PEDS14250.
    1. Grant P.E., Roche-Labarbe N., Surova A., Themelis G., Selb J., Warren E.K., Krishnamoorthy K.S., Boas D.A., Franceschini M.A. Increased Cerebral Blood Volume and Oxygen Consumption in Neonatal Brain Injury. J. Cereb. Blood Flow Metab. 2009;29:1704–1713. doi: 10.1038/jcbfm.2009.90.
    1. Whittemore B.A., Swift D.M., Thomas J.M., Chalak L.F. A Neonatal NeuroNICU Collaborative Approach to Neuromonitoring of Posthemorrhagic Ventricular Dilation in Preterm Infants. Pediatr. Res. 2021:1–8. doi: 10.1038/s41390-021-01406-9.
    1. Lin P.-Y., Roche-Labarbe N., Dehaes M., Carp S., Fenoglio A., Barbieri B., Hagan K., Grant P.E., Franceschini M.A. Non-Invasive Optical Measurement of Cerebral Metabolism and Hemodynamics in Infants. J. Vis. Exp. 2013;73:4379. doi: 10.3791/4379.
    1. Rajaram A., Yip L.C.M., Milej D., Suwalski M., Kewin M., Lo M., Carson J.J.L., Han V., Bhattacharya S., Diop M., et al. Perfusion and Metabolic Neuromonitoring during Ventricular Taps in Infants with Post-Hemorrhagic Ventricular Dilatation. Brain Sci. 2020;10:452. doi: 10.3390/brainsci10070452.
    1. Lin P.-Y., Hagan K., Fenoglio A., Grant P.E., Franceschini M.A. Reduced Cerebral Blood Flow and Oxygen Metabolism in Extremely Preterm Neonates with Low-Grade Germinal Matrix- Intraventricular Hemorrhage. Sci. Rep. 2016;6:25903. doi: 10.1038/srep25903.
    1. Dehaes M., Aggarwal A., Lin P.-Y., Fortuno C.R., Fenoglio A., Roche-Labarbe N., Soul J.S., Franceschini M.A., Grant P.E. Cerebral Oxygen Metabolism in Neonatal Hypoxic Ischemic Encephalopathy during and after Therapeutic Hypothermia. J. Cereb. Blood Flow Metab. 2013;34:87–94. doi: 10.1038/jcbfm.2013.165.
    1. Weil A.G., Westwick H., Wang S., Alotaibi N.M., Elkaim L., Ibrahim G.M., Wang A.C., Ariani R.T., Crevier L., Myers B., et al. Efficacy and Safety of Endoscopic Third Ventriculostomy and Choroid Plexus Cauterization for Infantile Hydrocephalus: A Systematic Review and Meta-Analysis. Child’s Nerv. Syst. 2016;32:2119–2131. doi: 10.1007/s00381-016-3236-6.
    1. Lo M., Kishimoto J., Eagleson R., Bhattacharya S., De Ribaupierre S. Does Ventricular Volume Affect the Neurodevelopmental Outcome in Infants with Intraventricular Hemorrhage? Child’s Nerv. Syst. 2020;36:569–575. doi: 10.1007/s00381-019-04355-1.
    1. Carp S.A., Farzam P., Redes N., Hueber D.M., Franceschini M.A. Combined Multi-Distance Frequency Domain and Diffuse Correlation Spectroscopy System with Simultaneous Data Acquisition and Real-Time Analysis. Biomed. Opt. Express. 2017;8:3993–4006. doi: 10.1364/BOE.8.003993.
    1. Yiallourou S.R., Witcombe N.B., Sands S.A., Walker A.M., Horne R.S.C. The Development of Autonomic Cardiovascular Control Is Altered by Preterm Birth. Early Hum. Dev. 2013;89:145–152. doi: 10.1016/j.earlhumdev.2012.09.009.
    1. Yiallourou S.R., Wallace E.M., Whatley C., Odoi A., Hollis S., Weichard A.J., Muthusamy J.S., Varma S., Cameron J., Narayan O., et al. Sleep: A Window Into Autonomic Control in Children Born Preterm and Growth Restricted. Sleep. 2017;40:zsx048. doi: 10.1093/sleep/zsx048.
    1. Yiallourou S.R., Walker A.M., Horne R.S.C. Effects of Sleeping Position on Development of Infant Cardiovascular Control. Arch. Dis. Child. 2008;93:868–872. doi: 10.1136/adc.2007.132860.
    1. Pepperdine C.R., McCrimmon A.W. Test Review: Vineland Adaptive Behavior Scales, Third Edition (Vineland-3) by Sparrow, S.S., Cicchetti, D.V., & Saulnier, C.A. Can. J. Sch. Psychol. 2018;33:157–163. doi: 10.1177/0829573517733845.
    1. Warf B., Ondoma S., Kulkarni A., Donnelly R., Ampeire M., Akona J., Kabachelor C.R., Mulondo R., Nsubuga B.K. Neurocognitive Outcome and Ventricular Volume in Children with Myelomeningocele Treated for Hydrocephalus in Uganda. J. Neurosurg. Pediatr. 2009;4:564–570. doi: 10.3171/2009.7.PEDS09136.
    1. Drotar D., Olness K., Wiznitzer M., Guay L., Marum L., Svilar G., Hom D., Fagan J.F., Ndugwa C., Kiziri-Mayengo R. Neurodevelopmental Outcomes of Ugandan Infants With Human Immunodeficiency Virus Type 1 Infection. Pediatrics. 1997;100:e5. doi: 10.1542/peds.100.1.e5.
    1. Wray S., Cope M., Delpy D.T., Wyatt J.S., Reynolds E.O.R. Characterization of the near Infrared Absorption Spectra of Cytochrome Aa3 and Haemoglobin for the Non-Invasive Monitoring of Cerebral Oxygenation. Biochim. Biophys. Acta Bioenerg. 1988;933:184–192. doi: 10.1016/0005-2728(88)90069-2.
    1. Boas D.A., Campbell L.E., Yodh A.G. Scattering and Imaging with Diffusing Temporal Field Correlations. Phys. Rev. Lett. 1995;75:1855–1858. doi: 10.1103/PhysRevLett.75.1855.
    1. Boas D.A., Yodh A.G. Spatially Varying Dynamical Properties of Turbid Media Probed with Diffusing Temporal Light Correlation. J. Opt. Soc. Am. 1997;14:192. doi: 10.1364/JOSAA.14.000192.
    1. Shang Y., Li T., Yu G. Clinical Applications of Near-Infrared Diffuse Correlation Spectroscopy and Tomography for Tissue Blood Flow Monitoring and Imaging. Physiol. Meas. 2017;38:R1–R26. doi: 10.1088/1361-6579/aa60b7.
    1. Diop M., Verdecchia K., Lee T.-Y., Lawrence K.S. Calibration of Diffuse Correlation Spectroscopy with a Time-Resolved near-Infrared Technique to Yield Absolute Cerebral Blood Flow Measurements: Errata. Biomed. Opt. Express. 2012;3:1476–1477. doi: 10.1364/BOE.3.001476.
    1. Jain V., Buckley E.M., Licht D.J., Lynch J.M., Schwab P.J., Naim M.Y., Lavin N.A., Nicolson S.C., Montenegro L.M., Yodh A.G., et al. Cerebral Oxygen Metabolism in Neonates with Congenital Heart Disease Quantified by MRI and Optics. J. Cereb. Blood Flow Metab. 2013;34:380–388. doi: 10.1038/jcbfm.2013.214.
    1. Roche-Labarbe N., Fenoglio A., Aggarwal A., Dehaes M., Carp S.A., Franceschini M.A., Grant P.E. Near-Infrared Spectroscopy Assessment of Cerebral Oxygen Metabolism in the Developing Premature Brain. J. Cereb. Blood Flow Metab. 2012;32:481–488. doi: 10.1038/jcbfm.2011.145.
    1. Mandell J.G., Langelaan J.W., Webb A.G., Schiff S.J. Volumetric Brain Analysis in Neurosurgery: Part 1. Particle Filter Segmentation of Brain and Cerebrospinal Fluid Growth Dynamics from MRI and CT Images. J. Neurosurg. Pediatr. 2015;15:113–124. doi: 10.3171/2014.9.PEDS12426.
    1. Peterson M.R., Cherukuri V., Paulson J.N., Ssentongo P., Kulkarni A.V., Warf B.C., Monga V., Schiff S.J. Normal Childhood Brain Growth and a Universal Sex and Anthropomorphic Relationship to Cerebrospinal Fluid. J. Neurosurg. Pediatr. 2021;28:458–468. doi: 10.3171/2021.2.PEDS201006.
    1. Fenster A., Downey D.B., Cardinal H.N. Three-Dimensional Ultrasound Imaging. Phys. Med. Biol. 2001;46:R67. doi: 10.1088/0031-9155/46/5/201.
    1. Roy P., Lo M., Bhattacharya S., Eagleson R., Fenster A., de Ribaupierre S. Does the Head Position Affect Neonatal Lateral Ventricular Volume? Am. J. Perinatol. 2020;29 doi: 10.1055/s-0040-1721850.
    1. Kulkarni A.V., Drake J.M., Mallucci C.L., Sgouros S., Roth J., Constantini S., Group C.P.N.S. Endoscopic Third Ventriculostomy in the Treatment of Childhood Hydrocephalus. J. Pediatr. 2009;155:254–259.e1. doi: 10.1016/j.jpeds.2009.02.048.

Source: PubMed

3
Abonnere