Takotsubo Syndrome: Translational Implications and Pathomechanisms

Xuehui Fan, Guoqiang Yang, Jacqueline Kowitz, Ibrahim Akin, Xiaobo Zhou, Ibrahim El-Battrawy, Xuehui Fan, Guoqiang Yang, Jacqueline Kowitz, Ibrahim Akin, Xiaobo Zhou, Ibrahim El-Battrawy

Abstract

Takotsubo syndrome (TTS) is identified as an acute severe ventricular systolic dysfunction, which is usually characterized by reversible and transient akinesia of walls of the ventricle in the absence of a significant obstructive coronary artery disease (CAD). Patients present with chest pain, ST-segment elevation or ischemia signs on ECG and increased troponin, similar to myocardial infarction. Currently, the known mechanisms associated with the development of TTS include elevated levels of circulating plasma catecholamines and their metabolites, coronary microvascular dysfunction, sympathetic hyperexcitability, inflammation, estrogen deficiency, spasm of the epicardial coronary vessels, genetic predisposition and thyroidal dysfunction. However, the real etiologic link remains unclear and seems to be multifactorial. Currently, the elusive pathogenesis of TTS and the lack of optimal treatment leads to the necessity of the application of experimental models or platforms for studying TTS. Excessive catecholamines can cause weakened ventricular wall motion at the apex and increased basal motion due to the apicobasal adrenoceptor gradient. The use of beta-blockers does not seem to impact the outcome of TTS patients, suggesting that signaling other than the beta-adrenoceptor-associated pathway is also involved and that the pathogenesis may be more complex than it was expected. Herein, we review the pathophysiological mechanisms related to TTS; preclinical TTS models and platforms such as animal models, human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) models and their usefulness for TTS studies, including exploring and improving the understanding of the pathomechanism of the disease. This might be helpful to provide novel insights on the exact pathophysiological mechanisms and may offer more information for experimental and clinical research on TTS.

Keywords: Takotsubo syndrome; catecholamines; human-induced pluripotent stem cell-derived cardiomyocytes; pathophysiological mechanism; precision medicine.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The possible mechanisms related to TTS. AR: adrenergic receptor; NE: norepinephrine; Epi: epinephrine. The red arrows mean increase, and the blue ones indicate decrease.
Figure 2
Figure 2
Overview of human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) model.

References

    1. Cramer M.J., De Boeck B., Melman P.G., Sieswerda G.J. The ‘broken heart’ syndrome: What can be learned from the tears and distress? Neth. Heart J. 2007;15:283–285. doi: 10.1007/BF03086000.
    1. Sharkey S.W., Windenburg D.C., Lesser J.R., Maron M.S., Hauser R.G., Lesser J.N., Haas T.S., Hodges J.S., Maron B.J. Natural history and expansive clinical profile of stress (tako-tsubo) cardiomyopathy. J. Am. Coll. Cardiol. 2010;55:333–341. doi: 10.1016/j.jacc.2009.08.057.
    1. Topal Y., Topal H., Dogan C., Tiryaki S.B., Biteker M. Takotsubo (stress) cardiomyopathy in childhood. Eur. J. Pediatr. 2020;179:619–625. doi: 10.1007/s00431-019-03536-z.
    1. Dote K., Sato H., Tateishi H., Uchida T., Ishihara M. Myocardial stunning due to simultaneous multivessel coronary spasms: A review of 5 cases. J. Cardiol. 1991;21:203–214.
    1. Lyon A.R., Bossone E., Schneider B., Sechtem U., Citro R., Underwood S.R., Sheppard M.N., Figtree G.A., Parodi G., Akashi Y.J., et al. Current state of knowledge on Takotsubo syndrome: A Position Statement from the Taskforce on Takotsubo Syndrome of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2016;18:8–27. doi: 10.1002/ejhf.424.
    1. Prasad A., Lerman A., Rihal C.S. Apical ballooning syndrome (Tako-Tsubo or stress cardiomyopathy): A mimic of acute myocardial infarction. Am. Heart J. 2008;155:408–417. doi: 10.1016/j.ahj.2007.11.008.
    1. Ancona F., Bertoldi L.F., Ruggieri F., Cerri M., Magnoni M., Beretta L., Cianflone D., Camici P.G. Takotsubo cardiomyopathy and neurogenic stunned myocardium: Similar albeit different. Eur. Heart J. 2016;37:2830–2832. doi: 10.1093/eurheartj/ehw035.
    1. Madias J.E. “Neurogenic stress cardiomyopathy in heart donors” is a form of Takotsubo syndrome. Int. J. Cardiol. 2015;184:612–613. doi: 10.1016/j.ijcard.2015.03.039.
    1. Mohamedali B., Bhat G., Zelinger A. Frequency and pattern of left ventricular dysfunction in potential heart donors: Implications regarding use of dysfunctional hearts for successful transplantation. J. Am. Coll. Cardiol. 2012;60:235–236. doi: 10.1016/j.jacc.2012.04.016.
    1. Moussouttas M., Mearns E., Walters A., DeCaro M. Plasma Catecholamine Profile of Subarachnoid Hemorrhage Patients with Neurogenic Cardiomyopathy. Cerebrovasc. Dis. Extra. 2015;5:57–67. doi: 10.1159/000431155.
    1. Tavazzi G., Zanierato M., Via G., Iotti G.A., Procaccio F. Are Neurogenic Stress Cardiomyopathy and Takotsubo Different Syndromes With Common Pathways?: Etiopathological Insights on Dysfunctional Hearts. JACC Heart Fail. 2017;5:940–942. doi: 10.1016/j.jchf.2017.09.006.
    1. Aweimer A., El-Battrawy I., Akin I., Borggrefe M., Mugge A., Patsalis P.C., Urban A., Kummer M., Vasileva S., Stachon A., et al. Abnormal thyroid function is common in takotsubo syndrome and depends on two distinct mechanisms: Results of a multicentre observational study. J. Intern. Med. 2021;289:675–687. doi: 10.1111/joim.13189.
    1. Naegele M., Flammer A.J., Enseleit F., Roas S., Frank M., Hirt A., Kaiser P., Cantatore S., Templin C., Frohlich G., et al. Endothelial function and sympathetic nervous system activity in patients with Takotsubo syndrome. Int. J. Cardiol. 2016;224:226–230. doi: 10.1016/j.ijcard.2016.09.008.
    1. El-Battrawy I., Zhao Z., Lan H., Schunemann J.D., Sattler K., Buljubasic F., Patocskai B., Li X., Yucel G., Lang S., et al. Estradiol protection against toxic effects of catecholamine on electrical properties in human-induced pluripotent stem cell derived cardiomyocytes. Int. J. Cardiol. 2018;254:195–202. doi: 10.1016/j.ijcard.2017.11.007.
    1. Scally C., Abbas H., Ahearn T., Srinivasan J., Mezincescu A., Rudd A., Spath N., Yucel-Finn A., Yuecel R., Oldroyd K., et al. Myocardial and Systemic Inflammation in Acute Stress-Induced (Takotsubo) Cardiomyopathy. Circulation. 2019;139:1581–1592. doi: 10.1161/CIRCULATIONAHA.118.037975.
    1. Paur H., Wright P.T., Sikkel M.B., Tranter M.H., Mansfield C., O’Gara P., Stuckey D.J., Nikolaev V.O., Diakonov I., Pannell L., et al. High levels of circulating epinephrine trigger apical cardiodepression in a beta2-adrenergic receptor/Gi-dependent manner: A new model of Takotsubo cardiomyopathy. Circulation. 2012;126:697–706. doi: 10.1161/CIRCULATIONAHA.112.111591.
    1. Orphanou N., Eftychiou C., Papasavvas E., Ioannides M., Avraamides P. Syncope in a hypertrophic heart at a wedding party: Can happiness break a thick heart? Takotsubo cardiomyopathy complicated with left ventricular outflow tract obstruction in a hypertrophic heart. Oxf Med. Case Rep. 2020;2020:omaa036. doi: 10.1093/omcr/omaa036.
    1. Bonacchi M., Vannini A., Harmelin G., Batacchi S., Bugetti M., Sani G., Peris A. Inverted-Takotsubo cardiomyopathy: Severe refractory heart failure in poly-trauma patients saved by emergency extracorporeal life support. Interact. Cardiovasc. Thorac. Surg. 2015;20:365–371. doi: 10.1093/icvts/ivu421.
    1. Kow K., Watson T.J., Foo D., Ho H.H. Clinical characteristics and outcomes of South-East Asian patients with Takotsubo (stress-induced) cardiomyopathy. Int. J. Cardiol. Heart Vasc. 2018;21:29–31. doi: 10.1016/j.ijcha.2018.09.007.
    1. Templin C., Ghadri J.R., Diekmann J., Napp L.C., Bataiosu D.R., Jaguszewski M., Cammann V.L., Sarcon A., Geyer V., Neumann C.A., et al. Clinical Features and Outcomes of Takotsubo (Stress) Cardiomyopathy. N. Engl. J. Med. 2015;373:929–938. doi: 10.1056/NEJMoa1406761.
    1. Doyen D., Moschietto S., Squara F., Moceri P., Hyvernat H., Ferrari E., Dellamonica J., Bernardin G. Incidence, clinical features and outcome of Takotsubo syndrome in the intensive care unit. Arch. Cardiovasc. Dis. 2020;113:176–188. doi: 10.1016/j.acvd.2019.11.005.
    1. Minhas A.S., Hughey A.B., Kolias T.J. Nationwide Trends in Reported Incidence of Takotsubo Cardiomyopathy from 2006 to 2012. Am. J. Cardiol. 2015;116:1128–1131. doi: 10.1016/j.amjcard.2015.06.042.
    1. Ghadri J.R., Wittstein I.S., Prasad A., Sharkey S., Dote K., Akashi Y.J., Cammann V.L., Crea F., Galiuto L., Desmet W., et al. International Expert Consensus Document on Takotsubo Syndrome (Part I): Clinical Characteristics, Diagnostic Criteria, and Pathophysiology. Eur. Heart J. 2018;39:2032–2046. doi: 10.1093/eurheartj/ehy076.
    1. Budnik M., Nowak R., Fijalkowski M., Kochanowski J., Nargiello E., Piatkowski R., Peller M., Kucharz J., Jaguszewski M., Gruchala M., et al. Sex-dependent differences in clinical characteristics and in-hospital outcomes in patients with takotsubo syndrome. Pol. Arch. Intern. Med. 2020;130:25–30. doi: 10.20452/pamw.14970.
    1. Lach R., Schön J., Krolopp T., Arndt S., Langer B., Grellmann W. Depth-Sensing Macroindentation Test and Stepped Isothermal Method–Accelerated Assessment of the Local Retardation Behaviour of Thermoplastic Polymers. Macromol. Symp. 2016;366:60–65. doi: 10.1002/masy.201650047.
    1. Park J.H., Kang S.J., Song J.K., Kim H.K., Lim C.M., Kang D.H., Koh Y. Left ventricular apical ballooning due to severe physical stress in patients admitted to the medical ICU. Chest. 2005;128:296–302. doi: 10.1378/chest.128.1.296.
    1. Rozema T., Klein L.R. Takotsubo cardiomyopathy: A case report and literature review. Cardiol. Young. 2016;26:406–409. doi: 10.1017/S1047951115001249.
    1. Chinali M., Formigari R., Grutter G. Takotsubo cardiomyopathy in a young adult with transplanted heart: What happened to denervation? ESC Heart Fail. 2018;5:197–200. doi: 10.1002/ehf2.12242.
    1. Cammann V.L., Szawan K.A., Stahli B.E., Kato K., Budnik M., Wischnewsky M., Dreiding S., Levinson R.A., Di Vece D., Gili S., et al. Age-Related Variations in Takotsubo Syndrome. J. Am. Coll. Cardiol. 2020;75:1869–1877. doi: 10.1016/j.jacc.2020.02.057.
    1. Deshmukh A., Kumar G., Pant S., Rihal C., Murugiah K., Mehta J.L. Prevalence of Takotsubo cardiomyopathy in the United States. Am. Heart J. 2012;164:66–71.e61. doi: 10.1016/j.ahj.2012.03.020.
    1. Desai A., Noor A., Joshi S., Kim A.S. Takotsubo cardiomyopathy in cancer patients. Cardiooncology. 2019;5:7. doi: 10.1186/s40959-019-0042-9.
    1. Giza D.E., Lopez-Mattei J., Vejpongsa P., Munoz E., Iliescu G., Kitkungvan D., Hassan S.A., Kim P., Ewer M.S., Iliescu C. Stress-Induced Cardiomyopathy in Cancer Patients. Am. J. Cardiol. 2017;120:2284–2288. doi: 10.1016/j.amjcard.2017.09.009.
    1. Cammann V.L., Sarcon A., Ding K.J., Seifert B., Kato K., Di Vece D., Szawan K.A., Gili S., Jurisic S., Bacchi B., et al. Clinical Features and Outcomes of Patients With Malignancy and Takotsubo Syndrome: Observations From the International Takotsubo Registry. J. Am. Heart Assoc. 2019;8:e010881. doi: 10.1161/JAHA.118.010881.
    1. Joy P.S., Guddati A.K., Shapira I. Outcomes of Takotsubo cardiomyopathy in hospitalized cancer patients. J. Cancer Res. Clin. Oncol. 2018;144:1539–1545. doi: 10.1007/s00432-018-2661-1.
    1. Sattler K., El-Battrawy I., Lang S., Zhou X., Schramm K., Tulumen E., Kronbach F., Roger S., Behnes M., Kuschyk J., et al. Prevalence of cancer in Takotsubo cardiomyopathy: Short and long-term outcome. Int. J. Cardiol. 2017;238:159–165. doi: 10.1016/j.ijcard.2017.02.093.
    1. Moller C., Stiermaier T., Graf T., Eitel C., Thiele H., Burgdorf C., Eitel I. Prevalence and long-term prognostic impact of malignancy in patients with Takotsubo syndrome. Eur. J. Heart Fail. 2018;20:816–818. doi: 10.1002/ejhf.868.
    1. El-Battrawy I., Santoro F., Stiermaier T., Moller C., Guastafierro F., Novo G., Novo S., Santangelo A., Mariano E., Romeo F., et al. Prevalence, management, and outcome of adverse rhythm disorders in takotsubo syndrome: Insights from the international multicenter GEIST registry. Heart Fail. Rev. 2020;25:505–511. doi: 10.1007/s10741-019-09856-4.
    1. Di Vece D., Silverio A., Bellino M., Galasso G., Vecchione C., La Canna G., Citro R. Dynamic Left Intraventricular Obstruction Phenotype in Takotsubo Syndrome. J. Clin. Med. 2021;10:3235. doi: 10.3390/jcm10153235.
    1. Conradi P.M., van Loon R.B., Handoko M.L. Dynamic left ventricular outflow tract obstruction in Takotsubo cardiomyopathy resulting in cardiogenic shock. BMJ Case Rep. 2021;14:e240010. doi: 10.1136/bcr-2020-240010.
    1. Ortuno S., Jozwiak M., Mira J.P., Nguyen L.S. Case Report: Takotsubo Syndrome Associated With Novel Coronavirus Disease 2019. Front. Cardiovasc. Med. 2021;8:614562. doi: 10.3389/fcvm.2021.614562.
    1. Cau R., Bassareo P., Deidda M., Caredda G., Suri J.S., Pontone G., Saba L. Could CMR Tissue-Tracking and Parametric Mapping Distinguish Between Takotsubo Syndrome and Acute Myocarditis? A Pilot Study. Acad. Radiol. 2021 doi: 10.1016/j.acra.2021.01.009.
    1. Eitel I., von Knobelsdorff-Brenkenhoff F., Bernhardt P., Carbone I., Muellerleile K., Aldrovandi A., Francone M., Desch S., Gutberlet M., Strohm O., et al. Clinical characteristics and cardiovascular magnetic resonance findings in stress (takotsubo) cardiomyopathy. JAMA. 2011;306:277–286. doi: 10.1001/jama.2011.992.
    1. Taghavi S., Chenaghlou M., Mirtajaddini M., Naderi N., Amin A. Takotsubo syndrome without major stress mimicking myocarditis. Anatol. J. Cardiol. 2020;23:349–350. doi: 10.14744/AnatolJCardiol.2020.45773.
    1. Scantlebury D.C., Prasad A. Diagnosis of Takotsubo cardiomyopathy. Circ. J. 2014;78:2129–2139. doi: 10.1253/circj.CJ-14-0859.
    1. Redfors B., Jha S., Thorleifsson S., Jernberg T., Angeras O., Frobert O., Petursson P., Tornvall P., Sarno G., Ekenback C., et al. Short- and Long-Term Clinical Outcomes for Patients With Takotsubo Syndrome and Patients With Myocardial Infarction: A Report From the Swedish Coronary Angiography and Angioplasty Registry. J. Am. Heart Assoc. 2021;10:e017290. doi: 10.1161/JAHA.119.017290.
    1. Van Vliet P.D., Burchell H.B., Titus J.L. Focal myocarditis associated with pheochromocytoma. N. Engl. J. Med. 1966;274:1102–1108. doi: 10.1056/NEJM196605192742002.
    1. Szakacs J.E., Cannon A. L-Norepinephrine myocarditis. Am. J. Clin. Pathol. 1958;30:425–434. doi: 10.1093/ajcp/30.5.425.
    1. Samuels M.A. The brain-heart connection. Circulation. 2007;116:77–84. doi: 10.1161/CIRCULATIONAHA.106.678995.
    1. Ghadri J.R., Sarcon A., Diekmann J., Bataiosu D.R., Cammann V.L., Jurisic S., Napp L.C., Jaguszewski M., Scherff F., Brugger P., et al. Happy heart syndrome: Role of positive emotional stress in takotsubo syndrome. Eur. Heart J. 2016;37:2823–2829. doi: 10.1093/eurheartj/ehv757.
    1. Hiestand T., Hanggi J., Klein C., Topka M.S., Jaguszewski M., Ghadri J.R., Luscher T.F., Jancke L., Templin C. Takotsubo Syndrome Associated With Structural Brain Alterations of the Limbic System. J. Am. Coll. Cardiol. 2018;71:809–811. doi: 10.1016/j.jacc.2017.12.022.
    1. Scheitz J.F., Ghadri J.R., Templin C. Brain-heart interaction revisited: Takotsubo syndrome secondary to seizures. Int. J. Cardiol. 2020;299:71–72. doi: 10.1016/j.ijcard.2019.08.036.
    1. Templin C., Hanggi J., Klein C., Topka M.S., Hiestand T., Levinson R.A., Jurisic S., Luscher T.F., Ghadri J.R., Jancke L. Altered limbic and autonomic processing supports brain-heart axis in Takotsubo syndrome. Eur. Heart J. 2019;40:1183–1187. doi: 10.1093/eurheartj/ehz068.
    1. Tawakol A., Ishai A., Takx R.A., Figueroa A.L., Ali A., Kaiser Y., Truong Q.A., Solomon C.J., Calcagno C., Mani V., et al. Relation between resting amygdalar activity and cardiovascular events: A longitudinal and cohort study. Lancet. 2017;389:834–845. doi: 10.1016/S0140-6736(16)31714-7.
    1. De Bosscher K., Van Craenenbroeck K., Meijer O.C., Haegeman G. Selective transrepression versus transactivation mechanisms by glucocorticoid receptor modulators in stress and immune systems. Eur. J. Pharmacol. 2008;583:290–302. doi: 10.1016/j.ejphar.2007.11.076.
    1. Nikkheslat N., Zunszain P.A., Horowitz M.A., Barbosa I.G., Parker J.A., Myint A.M., Schwarz M.J., Tylee A.T., Carvalho L.A., Pariante C.M. Insufficient glucocorticoid signaling and elevated inflammation in coronary heart disease patients with comorbid depression. Brain Behav. Immun. 2015;48:8–18. doi: 10.1016/j.bbi.2015.02.002.
    1. Harrison N.A., Cooper E., Voon V., Miles K., Critchley H.D. Central autonomic network mediates cardiovascular responses to acute inflammation: Relevance to increased cardiovascular risk in depression? Brain Behav Immun. 2013;31:189–196. doi: 10.1016/j.bbi.2013.02.001.
    1. Miller A.H., Pariante C.M., Pearce B.D. Effects of cytokines on glucocorticoid receptor expression and function. Glucocorticoid resistance and relevance to depression. Adv. Exp. Med. Biol. 1999;461:107–116. doi: 10.1007/978-0-585-37970-8_7.
    1. D’Aloia A., Caretta G., Vizzardi E., Zanini G., Bugatti S., Bonadei I., Dei Cas L. Heart failure syndrome due to dobutamine stress echocardiography: Tako-Tsubo induced-cardiomiopathy. Panminerva Med. 2012;54:53–55.
    1. Abraham J., Mudd J.O., Kapur N.K., Klein K., Champion H.C., Wittstein I.S. Stress cardiomyopathy after intravenous administration of catecholamines and beta-receptor agonists. J. Am. Coll. Cardiol. 2009;53:1320–1325. doi: 10.1016/j.jacc.2009.02.020.
    1. Kido K., Guglin M. Drug-Induced Takotsubo Cardiomyopathy. J. Cardiovasc. Pharmacol. Ther. 2017;22:552–563. doi: 10.1177/1074248417708618.
    1. Wittstein I.S., Thiemann D.R., Lima J.A., Baughman K.L., Schulman S.P., Gerstenblith G., Wu K.C., Rade J.J., Bivalacqua T.J., Champion H.C. Neurohumoral features of myocardial stunning due to sudden emotional stress. N. Engl. J. Med. 2005;352:539–548. doi: 10.1056/NEJMoa043046.
    1. Mori H., Ishikawa S., Kojima S., Hayashi J., Watanabe Y., Hoffman J.I., Okino H. Increased responsiveness of left ventricular apical myocardium to adrenergic stimuli. Cardiovasc. Res. 1993;27:192–198. doi: 10.1093/cvr/27.2.192.
    1. Redfors B., Ali A., Shao Y., Lundgren J., Gan L.M., Omerovic E. Different catecholamines induce different patterns of takotsubo-like cardiac dysfunction in an apparently afterload dependent manner. Int. J. Cardiol. 2014;174:330–336. doi: 10.1016/j.ijcard.2014.04.103.
    1. Moftaquir-Handaj A., Barbe F., Barbarino-Monnier P., Aunis D., Boutroy M.J. Circulating chromogranin A and catecholamines in human fetuses at uneventful birth. Pediatr. Res. 1995;37:101–105. doi: 10.1203/00006450-199501000-00019.
    1. Tarantino N., Santoro F., Di Biase L., Di Terlizzi V., Vitale E., Barone R., Della Rocca D.G., De Leon De La Cruz N.S., Di Biase M., Brunetti N.D. Chromogranin-A serum levels in patients with takotsubo syndrome and ST elevation acute myocardial infarction. Int. J. Cardiol. 2020;320:12–17. doi: 10.1016/j.ijcard.2020.07.040.
    1. D’Amico M A., Ghinassi B., Izzicupo P., Manzoli L., Di Baldassarre A. Biological function and clinical relevance of chromogranin A and derived peptides. Endocr. Connect. 2014;3:R45–R54. doi: 10.1530/EC-14-0027.
    1. Pieroni M., Corti A., Tota B., Curnis F., Angelone T., Colombo B., Cerra M.C., Bellocci F., Crea F., Maseri A. Myocardial production of chromogranin A in human heart: A new regulatory peptide of cardiac function. Eur. Heart J. 2007;28:1117–1127. doi: 10.1093/eurheartj/ehm022.
    1. Angelone T., Mazza R., Cerra M.C. Chromogranin-A: A multifaceted cardiovascular role in health and disease. Curr. Med. Chem. 2012;19:4042–4050. doi: 10.2174/092986712802430009.
    1. Kume T., Kawamoto T., Okura H., Toyota E., Neishi Y., Watanabe N., Hayashida A., Okahashi N., Yoshimura Y., Saito K., et al. Local release of catecholamines from the hearts of patients with tako-tsubo-like left ventricular dysfunction. Circ. J. 2008;72:106–108. doi: 10.1253/circj.72.106.
    1. Boland T.A., Lee V.H., Bleck T.P. Stress-induced cardiomyopathy. Crit. Care Med. 2015;43:686–693. doi: 10.1097/CCM.0000000000000851.
    1. Enache I., Radu R.A., Terecoasa E.O., Dorobat B., Tiu C. Stress cardiomyopathy misinterpreted as ST-segment elevation myocardial infarction in a patient with aneurysmal subarachnoid hemorrhage: A case report. Rom. J. Intern. Med. 2020;58:173–177. doi: 10.2478/rjim-2020-0010.
    1. Heubach J.F., Ravens U., Kaumann A.J. Epinephrine activates both Gs and Gi pathways, but norepinephrine activates only the Gs pathway through human beta2-adrenoceptors overexpressed in mouse heart. Mol. Pharmacol. 2004;65:1313–1322. doi: 10.1124/mol.65.5.1313.
    1. Di Lisa F., Kaludercic N., Paolocci N. beta(2)-Adrenoceptors, NADPH oxidase, ROS and p38 MAPK: Another ‘radical’ road to heart failure? Br. J. Pharmacol. 2011;162:1009–1011. doi: 10.1111/j.1476-5381.2010.01130.x.
    1. Harding S.E., Gong H. Beta-adrenoceptor blockers as agonists: Coupling of beta2-adrenoceptors to multiple G-proteins in the failing human heart. Congest. Heart Fail. 2004;10:181–185; quiz 186–187. doi: 10.1111/j.1527-5299.2004.02052.x.
    1. Evans B.A., Sato M., Sarwar M., Hutchinson D.S., Summers R.J. Ligand-directed signalling at beta-adrenoceptors. Br. J. Pharmacol. 2010;159:1022–1038. doi: 10.1111/j.1476-5381.2009.00602.x.
    1. Chilmonczyk Z., Bojarski A.J., Sylte I. Ligand-directed trafficking of receptor stimulus. Pharmacol. Rep. 2014;66:1011–1021. doi: 10.1016/j.pharep.2014.06.006.
    1. Kenakin T., Christopoulos A. Signalling bias in new drug discovery: Detection, quantification and therapeutic impact. Nat. Rev. Drug Discov. 2013;12:205–216. doi: 10.1038/nrd3954.
    1. Sattler S., Couch L.S., Harding S.E. Takotsubo Syndrome: Latest Addition to the Expanding Family of Immune-Mediated Diseases? JACC Basic Transl. Sci. 2018;3:779–781. doi: 10.1016/j.jacbts.2018.11.003.
    1. Chesley A., Lundberg M.S., Asai T., Xiao R.P., Ohtani S., Lakatta E.G., Crow M.T. The beta(2)-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through G(i)-dependent coupling to phosphatidylinositol 3′-kinase. Circ. Res. 2000;87:1172–1179. doi: 10.1161/01.RES.87.12.1172.
    1. Gong H., Adamson D.L., Ranu H.K., Koch W.J., Heubach J.F., Ravens U., Zolk O., Harding S.E. The effect of Gi-protein inactivation on basal, and beta(1)- and beta(2)AR-stimulated contraction of myocytes from transgenic mice overexpressing the beta(2)-adrenoceptor. Br. J. Pharmacol. 2000;131:594–600. doi: 10.1038/sj.bjp.0703591.
    1. Heubach J.F., Blaschke M., Harding S.E., Ravens U., Kaumann A.J. Cardiostimulant and cardiodepressant effects through overexpressed human beta2-adrenoceptors in murine heart: Regional differences and functional role of beta1-adrenoceptors. Naunyn Schmiedebergs Arch. Pharmacol. 2003;367:380–390. doi: 10.1007/s00210-002-0681-4.
    1. Foerster K., Groner F., Matthes J., Koch W.J., Birnbaumer L., Herzig S. Cardioprotection specific for the G protein Gi2 in chronic adrenergic signaling through beta 2-adrenoceptors. Proc. Natl. Acad. Sci. USA. 2003;100:14475–14480. doi: 10.1073/pnas.1936026100.
    1. Zhu W.Z., Zheng M., Koch W.J., Lefkowitz R.J., Kobilka B.K., Xiao R.P. Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes. Proc. Natl. Acad. Sci. USA. 2001;98:1607–1612. doi: 10.1073/pnas.98.4.1607.
    1. Communal C., Colucci W.S., Singh K. p38 mitogen-activated protein kinase pathway protects adult rat ventricular myocytes against beta -adrenergic receptor-stimulated apoptosis. Evidence for Gi-dependent activation. J. Biol. Chem. 2000;275:19395–19400. doi: 10.1074/jbc.M910471199.
    1. Nef H.M., Mollmann H., Hilpert P., Troidl C., Voss S., Rolf A., Behrens C.B., Weber M., Hamm C.W., Elsasser A. Activated cell survival cascade protects cardiomyocytes from cell death in Tako-Tsubo cardiomyopathy. Eur. J. Heart Fail. 2009;11:758–764. doi: 10.1093/eurjhf/hfp076.
    1. Ali A., Redfors B., Lundgren J., Alkhoury J., Oras J., Gan L.M., Omerovic E. Effects of pretreatment with cardiostimulants and beta-blockers on isoprenaline-induced takotsubo-like cardiac dysfunction in rats. Int. J. Cardiol. 2019;281:99–104. doi: 10.1016/j.ijcard.2018.12.045.
    1. Akashi Y.J., Goldstein D.S., Barbaro G., Ueyama T. Takotsubo cardiomyopathy: A new form of acute, reversible heart failure. Circulation. 2008;118:2754–2762. doi: 10.1161/CIRCULATIONAHA.108.767012.
    1. Yoshikawa T. Takotsubo cardiomyopathy, a new concept of cardiomyopathy: Clinical features and pathophysiology. Int. J. Cardiol. 2015;182:297–303. doi: 10.1016/j.ijcard.2014.12.116.
    1. Isogai T., Matsui H., Tanaka H., Fushimi K., Yasunaga H. Early beta-blocker use and in-hospital mortality in patients with Takotsubo cardiomyopathy. Heart. 2016;102:1029–1035. doi: 10.1136/heartjnl-2015-308712.
    1. Evison I., Watson G., Chan C., Bridgman P. The effects of beta-blockers in patients with stress cardiomyopathy. Intern. Med. J. 2021;51:411–413. doi: 10.1111/imj.15233.
    1. Kurisu S., Kihara Y. Clinical management of takotsubo cardiomyopathy. Circ. J. 2014;78:1559–1566. doi: 10.1253/circj.CJ-14-0382.
    1. Singh K., Carson K., Usmani Z., Sawhney G., Shah R., Horowitz J. Systematic review and meta-analysis of incidence and correlates of recurrence of takotsubo cardiomyopathy. Int. J. Cardiol. 2014;174:696–701. doi: 10.1016/j.ijcard.2014.04.221.
    1. Brunetti N.D., Santoro F., De Gennaro L., Correale M., Gaglione A., Di Biase M. Drug treatment rates with beta-blockers and ACE-inhibitors/angiotensin receptor blockers and recurrences in takotsubo cardiomyopathy: A meta-regression analysis. Int. J. Cardiol. 2016;214:340–342. doi: 10.1016/j.ijcard.2016.03.196.
    1. Brunetti N.D., Santoro F., De Gennaro L., Correale M., Gaglione A., Di Biase M., Madias J.E. Combined therapy with beta-blockers and ACE-inhibitors/angiotensin receptor blockers and recurrence of Takotsubo (stress) cardiomyopathy: A meta-regression study. Int. J. Cardiol. 2017;230:281–283. doi: 10.1016/j.ijcard.2016.12.124.
    1. Huang M., Fan X., Yang Z., Cyganek L., Li X., Yuecel G., Lan H., Li Y., Wendel A., Lang S., et al. Alpha 1-adrenoceptor signalling contributes to toxic effects of catecholamine on electrical properties in cardiomyocytes. Europace. 2021;23:1137–1148. doi: 10.1093/europace/euab008.
    1. Singh S., Desai R., Gandhi Z., Fong H.K., Doreswamy S., Desai V., Chockalingam A., Mehta P.K., Sachdeva R., Kumar G. Takotsubo Syndrome in Patients with COVID-19: A Systematic Review of Published Cases. SN Compr. Clin. Med. 2020:1–7. doi: 10.1007/s42399-020-00557-w.
    1. Fu Y.C., Chi C.S., Yin S.C., Hwang B., Chiu Y.T., Hsu S.L. Norepinephrine induces apoptosis in neonatal rat endothelial cells via down-regulation of Bcl-2 and activation of beta-adrenergic and caspase-2 pathways. Cardiovasc. Res. 2004;61:143–151. doi: 10.1016/j.cardiores.2003.10.014.
    1. Romeo F., Li D., Shi M., Mehta J.L. Carvedilol prevents epinephrine-induced apoptosis in human coronary artery endothelial cells: Modulation of Fas/Fas ligand and caspase-3 pathway. Cardiovasc. Res. 2000;45:788–794. doi: 10.1016/S0008-6363(99)00369-7.
    1. Sato K., Takahashi J., Amano K., Shimokawa H. A case of recurrent takotsubo-like cardiomyopathy associated with pheochromocytoma exhibiting different patterns of left ventricular wall motion abnormality and coronary vasospasm: A case report. Eur. Heart J. Case Rep. 2020;4:1–5. doi: 10.1093/ehjcr/ytaa138.
    1. Uchida Y., Egami H., Uchida Y., Sakurai T., Kanai M., Shirai S., Nakagawa O., Oshima T. Possible participation of endothelial cell apoptosis of coronary microvessels in the genesis of Takotsubo cardiomyopathy. Clin. Cardiol. 2010;33:371–377. doi: 10.1002/clc.20777.
    1. Grani C., Grunwald C., Windecker S., Siontis G.C.M. Coronary Artery Anomaly in Takotsubo Cardiomyopathy: Cause or Innocent Bystander? Tex. Heart Inst. J. 2020;47:44–46. doi: 10.14503/THIJ-18-6809.
    1. Tsuchihashi K., Ueshima K., Uchida T., Oh-mura N., Kimura K., Owa M., Yoshiyama M., Miyazaki S., Haze K., Ogawa H., et al. Transient left ventricular apical ballooning without coronary artery stenosis: A novel heart syndrome mimicking acute myocardial infarction. Angina Pectoris-Myocardial Infarction Investigations in Japan. J. Am. Coll. Cardiol. 2001;38:11–18. doi: 10.1016/S0735-1097(01)01316-X.
    1. Jin Y., Li Q., Guo X. Alternate recurrent coronary artery spasm and stress cardiomyopathy: A case report. BMC Cardiovasc. Disord. 2020;20:476. doi: 10.1186/s12872-020-01760-2.
    1. Lombardi M., Vergallo R., Liuzzo G., Crea F. A case report of coronary artery spasm and takotsubo syndrome: Exploring the hidden side of the moon. Eur. Heart J. Case Rep. 2021;5:ytaa477. doi: 10.1093/ehjcr/ytaa477.
    1. Montone R.A., Niccoli G., Fracassi F., Russo M., Gurgoglione F., Camma G., Lanza G.A., Crea F. Patients with acute myocardial infarction and non-obstructive coronary arteries: Safety and prognostic relevance of invasive coronary provocative tests. Eur. Heart J. 2018;39:91–98. doi: 10.1093/eurheartj/ehx667.
    1. Patel S.M., Lerman A., Lennon R.J., Prasad A. Impaired coronary microvascular reactivity in women with apical ballooning syndrome (Takotsubo/stress cardiomyopathy) Eur. Heart J. Acute Cardiovasc. Care. 2013;2:147–152. doi: 10.1177/2048872613475891.
    1. Verna E., Provasoli S., Ghiringhelli S., Morandi F., Salerno-Uriarte J. Abnormal coronary vasoreactivity in transient left ventricular apical ballooning (tako-tsubo) syndrome. Int. J. Cardiol. 2018;250:4–10. doi: 10.1016/j.ijcard.2017.07.032.
    1. Khalid N., Iqbal I., Coram R., Raza T., Fahsah I., Ikram S. Thrombolysis In Myocardial Infarction Frame Count in Takotsubo Cardiomyopathy. Int. J. Cardiol. 2015;191:107–108. doi: 10.1016/j.ijcard.2015.04.192.
    1. Khalid N., Chhabra L. Takotsubo cardiomyopathy and microcirculatory dysfunction. Nat. Rev. Cardiol. 2015;12:497. doi: 10.1038/nrcardio.2015.88.
    1. Flammer A.J., Luscher T.F. Human endothelial dysfunction: EDRFs. Pflugers Arch. 2010;459:1005–1013. doi: 10.1007/s00424-010-0822-4.
    1. Munzel T., Gori T., Bruno R.M., Taddei S. Is oxidative stress a therapeutic target in cardiovascular disease? Eur. Heart J. 2010;31:2741–2748. doi: 10.1093/eurheartj/ehq396.
    1. Gori T., Munzel T. Oxidative stress and endothelial dysfunction: Therapeutic implications. Ann. Med. 2011;43:259–272. doi: 10.3109/07853890.2010.543920.
    1. Martin E.A., Prasad A., Rihal C.S., Lerman L.O., Lerman A. Endothelial function and vascular response to mental stress are impaired in patients with apical ballooning syndrome. J. Am. Coll. Cardiol. 2010;56:1840–1846. doi: 10.1016/j.jacc.2010.03.107.
    1. Spieker L.E., Hurlimann D., Ruschitzka F., Corti R., Enseleit F., Shaw S., Hayoz D., Deanfield J.E., Luscher T.F., Noll G. Mental stress induces prolonged endothelial dysfunction via endothelin-A receptors. Circulation. 2002;105:2817–2820. doi: 10.1161/01.CIR.0000021598.15895.34.
    1. Yaribeygi H., Atkin S.L., Sahebkar A. A review of the molecular mechanisms of hyperglycemia-induced free radical generation leading to oxidative stress. J. Cell Physiol. 2019;234:1300–1312. doi: 10.1002/jcp.27164.
    1. Munzel T., Templin C., Cammann V.L., Hahad O. Takotsubo Syndrome: Impact of endothelial dysfunction and oxidative stress. Free Radic. Biol. Med. 2021;169:216–223. doi: 10.1016/j.freeradbiomed.2021.03.033.
    1. Jaguszewski M., Osipova J., Ghadri J.R., Napp L.C., Widera C., Franke J., Fijalkowski M., Nowak R., Fijalkowska M., Volkmann I., et al. A signature of circulating microRNAs differentiates takotsubo cardiomyopathy from acute myocardial infarction. Eur Heart J. 2014;35:999–1006. doi: 10.1093/eurheartj/eht392.
    1. Amadio P., Porro B., Cavalca V., Barbieri S.S., Eligini S., Fiorelli S., Di Minno A., Gorini A., Giuliani M., Werba J.P., et al. Persistent long-term platelet activation and endothelial perturbation in women with Takotsubo syndrome. Biomed. Pharmacother. 2021;136:111259. doi: 10.1016/j.biopha.2021.111259.
    1. Ueyama T., Hano T., Kasamatsu K., Yamamoto K., Tsuruo Y., Nishio I. Estrogen attenuates the emotional stress-induced cardiac responses in the animal model of Tako-tsubo (Ampulla) cardiomyopathy. J. Cardiovasc. Pharmacol. 2003;42((Suppl. S1)):S117–S119. doi: 10.1097/00005344-200312001-00024.
    1. Moller C., Stiermaier T., Brabant G., Graf T., Thiele H., Eitel I. Comprehensive assessment of sex hormones in Takotsubo syndrome. Int. J. Cardiol. 2018;250:11–15. doi: 10.1016/j.ijcard.2017.10.047.
    1. Celano C.M., Torri A., Seiner S. Takotsubo cardiomyopathy after electroconvulsive therapy: A case report and review. J. ECT. 2011;27:221–223. doi: 10.1097/YCT.0b013e31821537c0.
    1. Satterthwaite T.D., Cristancho M.A., Alici Y., Weiss D., O’Reardon J.P. Electroconvulsive therapy in a 72-year-old woman with a history of Takotsubo cardiomyopathy: A case report and review of the literature. Brain Stimul. 2009;2:238–240. doi: 10.1016/j.brs.2009.02.003.
    1. Binhas M., Liger C., Sedaghati A., Gilton A., Dhonneur G. When retrial of ECT is possible after ECT-induced Takotsubo cardiomyopathy? Ann. Fr. Anesth. Reanim. 2013;32:723–724. doi: 10.1016/j.annfar.2013.07.810.
    1. Kumar G., Holmes D.R., Jr., Prasad A. “Familial” apical ballooning syndrome (Takotsubo cardiomyopathy) Int. J. Cardiol. 2010;144:444–445. doi: 10.1016/j.ijcard.2009.03.078.
    1. Pison L., De Vusser P., Mullens W. Apical ballooning in relatives. Heart. 2004;90:e67. doi: 10.1136/hrt.2004.046813.
    1. Ferradini V., Vacca D., Belmonte B., Mango R., Scola L., Novelli G., Balistreri C.R., Sangiuolo F. Genetic and Epigenetic Factors of Takotsubo Syndrome: A Systematic Review. Int. J. Mol. Sci. 2021;22:9875. doi: 10.3390/ijms22189875.
    1. Elesber A.A., Prasad A., Lennon R.J., Wright R.S., Lerman A., Rihal C.S. Four-year recurrence rate and prognosis of the apical ballooning syndrome. J. Am. Coll. Cardiol. 2007;50:448–452. doi: 10.1016/j.jacc.2007.03.050.
    1. Spinelli L., Trimarco V., Di Marino S., Marino M., Iaccarino G., Trimarco B. L41Q polymorphism of the G protein coupled receptor kinase 5 is associated with left ventricular apical ballooning syndrome. Eur. J. Heart Fail. 2010;12:13–16. doi: 10.1093/eurjhf/hfp173.
    1. Cherian J., Angelis D., Filiberti A., Saperia G. Can takotsubo cardiomyopathy be familial? Int. J. Cardiol. 2007;121:74–75. doi: 10.1016/j.ijcard.2006.08.018.
    1. Ueyama T., Yoshida K., Senba E. Emotional stress induces immediate-early gene expression in rat heart via activation of alpha- and beta-adrenoceptors. Am. J. Physiol. 1999;277:H1553–H1561. doi: 10.1152/ajpheart.1999.277.4.H1553.
    1. Eitel I., Moeller C., Munz M., Stiermaier T., Meitinger T., Thiele H., Erdmann J. Genome-wide association study in takotsubo syndrome—Preliminary results and future directions. Int. J. Cardiol. 2017;236:335–339. doi: 10.1016/j.ijcard.2017.01.093.
    1. Borchert T., Hubscher D., Guessoum C.I., Lam T.D., Ghadri J.R., Schellinger I.N., Tiburcy M., Liaw N.Y., Li Y., Haas J., et al. Catecholamine-Dependent beta-Adrenergic Signaling in a Pluripotent Stem Cell Model of Takotsubo Cardiomyopathy. J. Am. Coll. Cardiol. 2017;70:975–991. doi: 10.1016/j.jacc.2017.06.061.
    1. Eckey K., Strutz-Seebohm N., Katz G., Fuhrmann G., Henrion U., Pott L., Linke W.A., Arad M., Lang F., Seebohm G. Modulation of human ether a gogo related channels by CASQ2 contributes to etiology of catecholaminergic polymorphic ventricular tachycardia (CPVT) Cell Physiol. Biochem. 2010;26:503–512. doi: 10.1159/000322318.
    1. Eitel I., Lucke C., Grothoff M., Sareban M., Schuler G., Thiele H., Gutberlet M. Inflammation in takotsubo cardiomyopathy: Insights from cardiovascular magnetic resonance imaging. Eur. Radiol. 2010;20:422–431. doi: 10.1007/s00330-009-1549-5.
    1. Oras J., Redfors B., Ali A., Lundgren J., Sihlbom C., Thorsell A., Seeman-Lodding H., Omerovic E., Ricksten S.E. Anaesthetic-induced cardioprotection in an experimental model of the Takotsubo syndrome - isoflurane vs. propofol. Acta Anaesthesiol. Scand. 2017;61:309–321. doi: 10.1111/aas.12857.
    1. Santoro F., Tarantino N., Ferraretti A., Ieva R., Musaico F., Guastafierro F., Di Martino L., Di Biase M., Brunetti N.D. Serum interleukin 6 and 10 levels in Takotsubo cardiomyopathy: Increased admission levels may predict adverse events at follow-up. Atherosclerosis. 2016;254:28–34. doi: 10.1016/j.atherosclerosis.2016.09.012.
    1. Pirzer R., Elmas E., Haghi D., Lippert C., Kralev S., Lang S., Borggrefe M., Kalsch T. Platelet and monocyte activity markers and mediators of inflammation in Takotsubo cardiomyopathy. Heart Vessel. 2012;27:186–192. doi: 10.1007/s00380-011-0132-6.
    1. Raymond R.J., Dehmer G.J., Theoharides T.C., Deliargyris E.N. Elevated interleukin-6 levels in patients with asymptomatic left ventricular systolic dysfunction. Am. Heart J. 2001;141:435–438. doi: 10.1067/mhj.2001.113078.
    1. Tsutamoto T., Hisanaga T., Wada A., Maeda K., Ohnishi M., Fukai D., Mabuchi N., Sawaki M., Kinoshita M. Interleukin-6 spillover in the peripheral circulation increases with the severity of heart failure, and the high plasma level of interleukin-6 is an important prognostic predictor in patients with congestive heart failure. J. Am. Coll. Cardiol. 1998;31:391–398. doi: 10.1016/S0735-1097(97)00494-4.
    1. Santoro F., Costantino M.D., Guastafierro F., Triggiani G., Ferraretti A., Tarantino N., Saguner A., Di Biase M., Brunetti N.D. Inflammatory patterns in Takotsubo cardiomyopathy and acute coronary syndrome: A propensity score matched analysis. Atherosclerosis. 2018;274:157–161. doi: 10.1016/j.atherosclerosis.2018.05.017.
    1. Wilson H.M., Cheyne L., Brown P.A.J., Kerr K., Hannah A., Srinivasan J., Duniak N., Horgan G., Dawson D.K. Characterization of the Myocardial Inflammatory Response in Acute Stress-Induced (Takotsubo) Cardiomyopathy. JACC Basic. Transl. Sci. 2018;3:766–778. doi: 10.1016/j.jacbts.2018.08.006.
    1. Radfar A., Abohashem S., Osborne M.T., Wang Y., Dar T., Hassan M.Z.O., Ghoneem A., Naddaf N., Patrich T., Abbasi T., et al. Stress-associated neurobiological activity associates with the risk for and timing of subsequent Takotsubo syndrome. Eur. Heart J. 2021;42:1898–1908. doi: 10.1093/eurheartj/ehab029.
    1. Nguyen T.H., Neil C.J., Sverdlov A.L., Ngo D.T., Chan W.P., Heresztyn T., Chirkov Y.Y., Tsikas D., Frenneaux M.P., Horowitz J.D. Enhanced NO signaling in patients with Takotsubo cardiomyopathy: Short-term pain, long-term gain? Cardiovasc. Drugs Ther. 2013;27:541–547. doi: 10.1007/s10557-013-6481-x.
    1. Ferro A., Coash M., Yamamoto T., Rob J., Ji Y., Queen L. Nitric oxide-dependent beta2-adrenergic dilatation of rat aorta is mediated through activation of both protein kinase A and Akt. Br. J. Pharmacol. 2004;143:397–403. doi: 10.1038/sj.bjp.0705933.
    1. Liang Y., Liu D., Ochs T., Tang C., Chen S., Zhang S., Geng B., Jin H., Du J. Endogenous sulfur dioxide protects against isoproterenol-induced myocardial injury and increases myocardial antioxidant capacity in rats. Lab. Invest. 2011;91:12–23. doi: 10.1038/labinvest.2010.156.
    1. Mukhopadhyay P., Rajesh M., Batkai S., Kashiwaya Y., Hasko G., Liaudet L., Szabo C., Pacher P. Role of superoxide, nitric oxide, and peroxynitrite in doxorubicin-induced cell death in vivo and in vitro. Am. J. Physiol. Heart Circ. Physiol. 2009;296:H1466–H1483. doi: 10.1152/ajpheart.00795.2008.
    1. Luo X., Kraus W.L. On PAR with PARP: Cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev. 2012;26:417–432. doi: 10.1101/gad.183509.111.
    1. Virag L., Szabo C. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol. Rev. 2002;54:375–429. doi: 10.1124/pr.54.3.375.
    1. Ying W., Chen Y., Alano C.C., Swanson R.A. Tricarboxylic acid cycle substrates prevent PARP-mediated death of neurons and astrocytes. J. Cereb. Blood Flow Metab. 2002;22:774–779. doi: 10.1097/00004647-200207000-00002.
    1. Surikow S.Y., Nguyen T.H., Stafford I., Chapman M., Chacko S., Singh K., Licari G., Raman B., Kelly D.J., Zhang Y., et al. Nitrosative Stress as a Modulator of Inflammatory Change in a Model of Takotsubo Syndrome. JACC Basic Transl. Sci. 2018;3:213–226. doi: 10.1016/j.jacbts.2017.10.002.
    1. Andrabi S.A., Umanah G.K., Chang C., Stevens D.A., Karuppagounder S.S., Gagne J.P., Poirier G.G., Dawson V.L., Dawson T.M. Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis. Proc. Natl. Acad. Sci. USA. 2014;111:10209–10214. doi: 10.1073/pnas.1405158111.
    1. Ueyama T., Kawabe T., Hano T., Tsuruo Y., Ueda K., Ichinose M., Kimura H., Yoshida K. Upregulation of heme oxygenase-1 in an animal model of Takotsubo cardiomyopathy. Circ. J. 2009;73:1141–1146. doi: 10.1253/circj.CJ-08-0988.
    1. Ishikura F., Takano Y., Ueyama T. Amlodipine has a preventive effect on temporal left ventricular hypokinesia after emotional stress compared with an angiotensin II receptor blocker. J. Med. Ultrason. (2001) 2013;40:3–7. doi: 10.1007/s10396-012-0392-5.
    1. Ueyama T., Ishikura F., Matsuda A., Asanuma T., Ueda K., Ichinose M., Kasamatsu K., Hano T., Akasaka T., Tsuruo Y., et al. Chronic estrogen supplementation following ovariectomy improves the emotional stress-induced cardiovascular responses by indirect action on the nervous system and by direct action on the heart. Circ. J. 2007;71:565–573. doi: 10.1253/circj.71.565.
    1. Nef H.M., Mollmann H., Troidl C., Kostin S., Voss S., Hilpert P., Behrens C.B., Rolf A., Rixe J., Weber M., et al. Abnormalities in intracellular Ca2+ regulation contribute to the pathomechanism of Tako-Tsubo cardiomyopathy. Eur. Heart J. 2009;30:2155–2164. doi: 10.1093/eurheartj/ehp240.
    1. Nef H.M., Mollmann H., Kostin S., Troidl C., Voss S., Weber M., Dill T., Rolf A., Brandt R., Hamm C.W., et al. Tako-Tsubo cardiomyopathy: Intraindividual structural analysis in the acute phase and after functional recovery. Eur. Heart J. 2007;28:2456–2464. doi: 10.1093/eurheartj/ehl570.
    1. Nunez-Gil I.J., Andres M., Benito B., Bernardo E., Vedia O., Ferreira-Gonzalez I., Barba I. Serum Metabolomic Analysis Suggests Impairment of Myocardial Energy Production in Takotsubo Syndrome. Metabolites. 2021;11:439. doi: 10.3390/metabo11070439.
    1. Matsuo S., Nakajima K., Kinuya S., Yamagishi M. Diagnostic utility of 123I-BMIPP imaging in patients with Takotsubo cardiomyopathy. J. Cardiol. 2014;64:49–56. doi: 10.1016/j.jjcc.2013.10.019.
    1. Nguyen T.H., Neil C.J., Sverdlov A.L., Mahadavan G., Chirkov Y.Y., Kucia A.M., Stansborough J., Beltrame J.F., Selvanayagam J.B., Zeitz C.J., et al. N-terminal pro-brain natriuretic protein levels in takotsubo cardiomyopathy. Am. J. Cardiol. 2011;108:1316–1321. doi: 10.1016/j.amjcard.2011.06.047.
    1. El-Sayed A.M., Brinjikji W., Salka S. Demographic and co-morbid predictors of stress (takotsubo) cardiomyopathy. Am. J. Cardiol. 2012;110:1368–1372. doi: 10.1016/j.amjcard.2012.06.041.
    1. Brunetti N.D., Tarantino N., Guastafierro F., De Gennaro L., Correale M., Stiermaier T., Moller C., Di Biase M., Eitel I., Santoro F. Malignancies and outcome in Takotsubo syndrome: A meta-analysis study on cancer and stress cardiomyopathy. Heart Fail. Rev. 2019;24:481–488. doi: 10.1007/s10741-019-09773-6.
    1. Desai R., Abbas S.A., Goyal H., Durairaj A., Fong H.K., Hung O., Sachdeva R., Barac A., Yusuf S.W., Kumar G. Frequency of Takotsubo Cardiomyopathy in Adult Patients Receiving Chemotherapy (from a 5-Year Nationwide Inpatient Study) Am. J. Cardiol. 2019;123:667–673. doi: 10.1016/j.amjcard.2018.11.006.
    1. Tornvall P., Collste O., Ehrenborg E., Jarnbert-Petterson H. A Case-Control Study of Risk Markers and Mortality in Takotsubo Stress Cardiomyopathy. J. Am. Coll. Cardiol. 2016;67:1931–1936. doi: 10.1016/j.jacc.2016.02.029.
    1. Guo S., Xie B., Tse G., Roever L., Xia Y., Li G., Wang Y., Liu T. Malignancy predicts outcome of Takotsubo syndrome: A systematic review and meta-analysis. Heart Fail. Rev. 2020;25:513–522. doi: 10.1007/s10741-020-09917-z.
    1. Nunez-Gil I.J., Vedia O., Almendro-Delia M., Raposeiras-Roubin S., Sionis A., Martin-Garcia A.C., Martin-Garcia A., Andres M., Blanco E., Martin-de-Miguel I., et al. Takotsubo syndrome and cancer, clinical and prognostic implications, insights of RETAKO. Med. Clin. 2020;155:521–528. doi: 10.1016/j.medcle.2020.01.017.
    1. Burgdorf C., Kurowski V., Bonnemeier H., Schunkert H., Radke P.W. Long-term prognosis of the transient left ventricular dysfunction syndrome (Tako-Tsubo cardiomyopathy): Focus on malignancies. Eur. J. Heart Fail. 2008;10:1015–1019. doi: 10.1016/j.ejheart.2008.07.008.
    1. Budnik M., Kucharz J., Wiechno P., Demkow T., Kochanowski J., Gorska E., Opolski G. Chemotherapy-Induced Takotsubo Syndrome. Adv. Exp. Med. Biol. 2018;1114:19–29. doi: 10.1007/5584_2018_222.
    1. Finsterer J., Stollberger C., Pulgram T. Paraneoplastic takotsubo syndrome with ventricular thrombus and stroke. Herz. 2015;40:632–634. doi: 10.1007/s00059-013-3956-2.
    1. Singh S.B., Harle I.A. Takotsubo cardiomyopathy secondary in part to cancer-related pain crisis: A case report. J. Pain Symptom Manag. 2014;48:137–142. doi: 10.1016/j.jpainsymman.2013.09.002.
    1. Burgy M., Brossat H., Barthelemy P., Imperiale A., Trinh A., Hazam C.A., Bergerat J.P., Mathelin C. First report of trastuzumab treatment after postoperative Takotsubo cardiomyopathy. Anticancer Res. 2014;34:3579–3582.
    1. Malley T., Watson E. A case of Takotsubo cardiomyopathy after chemotherapy. Oxf. Med. Case Rep. 2016;2016:55–58. doi: 10.1093/omcr/omw014.
    1. Santoro F., Ferraretti A., Musaico F., Di Martino L., Tarantino N., Ieva R., Di Biase M., Brunetti N.D. Carbohydrate-antigen-125 levels predict hospital stay duration and adverse events at long-term follow-up in Takotsubo cardiomyopathy. Intern. Emerg. Med. 2016;11:687–694. doi: 10.1007/s11739-016-1393-y.
    1. Santoro F., Zimotti T., Mallardi A., Leopizzi A., Vitale E., Tarantino N., Ferraretti A., Solimando A.G., Racanelli V., Iacoviello M., et al. Prognostic role of neoplastic markers in Takotsubo syndrome. Sci. Rep. 2021;11:16548. doi: 10.1038/s41598-021-95990-9.
    1. Coen M., Rigamonti F., Roth A., Koessler T. Chemotherapy-induced Takotsubo cardiomyopathy, a case report and review of the literature. BMC Cancer. 2017;17:394. doi: 10.1186/s12885-017-3384-4.
    1. Desai R., Desai A., Abbas S.A., Patel U., Bansod S., Damarlapally N., Doshi R., Savani S., Gangani K., Sachdeva R., et al. National prevalence, trends and outcomes of takotsubo syndrome in hospitalizations with prior history of mediastinal/intrathoracic cancer and radiation therapy. Int. J. Cardiol. 2020;309:14–18. doi: 10.1016/j.ijcard.2020.02.036.
    1. Y-Hassan S., Tornvall P., Tornerud M., Henareh L. Capecitabine caused cardiogenic shock through induction of global Takotsubo syndrome. Cardiovasc. Revasc. Med. 2013;14:57–61. doi: 10.1016/j.carrev.2012.10.001.
    1. Goel S., Sharma A., Garg A., Chandra A., Shetty V. Chemotherapy induced Takotsubo cardiomyopathy. World J. Clin. Cases. 2014;2:565–568. doi: 10.12998/wjcc.v2.i10.565.
    1. Pai V.B., Nahata M.C. Cardiotoxicity of chemotherapeutic agents: Incidence, treatment and prevention. Drug Saf. 2000;22:263–302. doi: 10.2165/00002018-200022040-00002.
    1. Smith S.A., Auseon A.J. Chemotherapy-induced takotsubo cardiomyopathy. Heart Fail. Clin. 2013;9:233–242. doi: 10.1016/j.hfc.2012.12.009.
    1. Grunwald M.R., Howie L., Diaz L.A., Jr. Takotsubo cardiomyopathy and Fluorouracil: Case report and review of the literature. J. Clin. Oncol. 2012;30:e11-14. doi: 10.1200/JCO.2011.38.5278.
    1. Stewart T., Pavlakis N., Ward M. Cardiotoxicity with 5-fluorouracil and capecitabine: More than just vasospastic angina. Intern. Med. J. 2010;40:303–307. doi: 10.1111/j.1445-5994.2009.02144.x.
    1. Kuroda R., Shintani-Ishida K., Unuma K., Yoshida K. Immobilization Stress With alpha2-Adrenergic Stimulation Induces Regional and Transient Reduction of Cardiac Contraction Through Gi Coupling in Rats. Int. Heart J. 2015;56:537–543. doi: 10.1536/ihj.15-034.
    1. Ueyama T., Yamamoto Y., Ueda K., Kawabe T., Hano T., Ito T., Tsuruo Y., Ichinose M., Yoshida K. Cardiac and vascular gene profiles in an animal model of takotsubo cardiomyopathy. Heart Vessel. 2011;26:321–337. doi: 10.1007/s00380-010-0070-8.
    1. Ueyama T. Emotional stress-induced Tako-tsubo cardiomyopathy: Animal model and molecular mechanism. Ann. N. Y. Acad. Sci. 2004;1018:437–444. doi: 10.1196/annals.1296.054.
    1. Zhang H., Sun Y., Liu X., Yang Y., Sun T., Krittanawong C., El-Am E.A., Liu G., Yang J., Ma N. Speckle tracking echocardiography in early detection of myocardial injury in a rat model with stress cardiomyopathy. Med. Ultrason. 2019;21:441–448. doi: 10.11152/mu-1988.
    1. Takano Y., Ueyama T., Ishikura F. Azelnidipine, unique calcium channel blocker could prevent stress-induced cardiac dysfunction like alpha.beta blocker. J. Cardiol. 2012;60:18–22. doi: 10.1016/j.jjcc.2012.01.017.
    1. Ueyama T., Kasamatsu K., Hano T., Tsuruo Y., Ishikura F. Catecholamines and estrogen are involved in the pathogenesis of emotional stress-induced acute heart attack. Ann. N. Y. Acad. Sci. 2008;1148:479–485. doi: 10.1196/annals.1410.079.
    1. Ueyama T., Kasamatsu K., Hano T., Yamamoto K., Tsuruo Y., Nishio I. Emotional stress induces transient left ventricular hypocontraction in the rat via activation of cardiac adrenoceptors: A possible animal model of ‘tako-tsubo’ cardiomyopathy. Circ. J. 2002;66:712–713. doi: 10.1253/circj.66.712.
    1. Kvetnansky R., Pacak K., Fukuhara K., Viskupic E., Hiremagalur B., Nankova B., Goldstein D.S., Sabban E.L., Kopin I.J. Sympathoadrenal system in stress. Interaction with the hypothalamic-pituitary-adrenocortical system. Ann. N. Y. Acad. Sci. 1995;771:131–158. doi: 10.1111/j.1749-6632.1995.tb44676.x.
    1. Kolodzinska A., Czarzasta K., Szczepankiewicz B., Budnik M., Glowczynska R., Fojt A., Ilczuk T., Krasuski K., Borodzicz S., Cudnoch-Jedrzejewska A., et al. Isoprenaline induced Takotsubo syndrome: Histopathological analyses of female rat hearts. Cardiol. J. 2020 doi: 10.5603/CJ.a2020.0057.
    1. Wright P.T., Bhogal N.K., Diakonov I., Pannell L.M.K., Perera R.K., Bork N.I., Schobesberger S., Lucarelli C., Faggian G., Alvarez-Laviada A., et al. Cardiomyocyte Membrane Structure and cAMP Compartmentation Produce Anatomical Variation in beta2AR-cAMP Responsiveness in Murine Hearts. Cell Rep. 2018;23:459–469. doi: 10.1016/j.celrep.2018.03.053.
    1. Izumi Y., Okatani H., Shiota M., Nakao T., Ise R., Kito G., Miura K., Iwao H. Effects of metoprolol on epinephrine-induced takotsubo-like left ventricular dysfunction in non-human primates. Hypertens. Res. 2009;32:339–346. doi: 10.1038/hr.2009.28.
    1. Takato T., Ashida T., Seko Y., Fujii J., Kawai S. Ventricular tachyarrhythmia-related basal cardiomyopathy in rabbits with vagal stimulation--a novel experimental model for inverted Takotsubo-like cardiomyopathy. J. Cardiol. 2010;56:85–90. doi: 10.1016/j.jjcc.2010.03.002.
    1. Sachdeva J., Dai W., Kloner R.A. Functional and histological assessment of an experimental model of Takotsubo’s cardiomyopathy. J. Am. Heart Assoc. 2014;3:e000921. doi: 10.1161/JAHA.114.000921.
    1. Shao Y., Redfors B., Stahlman M., Tang M.S., Miljanovic A., Mollmann H., Troidl C., Szardien S., Hamm C., Nef H., et al. A mouse model reveals an important role for catecholamine-induced lipotoxicity in the pathogenesis of stress-induced cardiomyopathy. Eur. J. Heart Fail. 2013;15:9–22. doi: 10.1093/eurjhf/hfs161.
    1. Kolodzinska A., Czarzasta K., Szczepankiewicz B., Glowczynska R., Fojt A., Ilczuk T., Budnik M., Krasuski K., Folta M., Cudnoch-Jedrzejewska A., et al. Toll-like receptor expression and apoptosis morphological patterns in female rat hearts with takotsubo syndrome induced by isoprenaline. Life Sci. 2018;199:112–121. doi: 10.1016/j.lfs.2018.02.042.
    1. Godsman N., Kohlhaas M., Nickel A., Cheyne L., Mingarelli M., Schweiger L., Hepburn C., Munts C., Welch A., Delibegovic M., et al. Metabolic alterations in a rat model of Takotsubo syndrome. Cardiovasc. Res. 2021 doi: 10.1093/cvr/cvab081.
    1. Qi C., Shao Y., Liu X., Wang D., Li X. The cardioprotective effects of icariin on the isoprenaline-induced takotsubo-like rat model: Involvement of reactive oxygen species and the TLR4/NF-kappaB signaling pathway. Int. Immunopharmacol. 2019;74:105733. doi: 10.1016/j.intimp.2019.105733.
    1. Mao S., Luo X., Li Y., He C., Huang F., Su C. Role of PI3K/AKT/mTOR Pathway Associated Oxidative Stress and Cardiac Dysfunction in Takotsubo Syndrome. Curr. Neurovasc. Res. 2020;17:35–43. doi: 10.2174/1567202617666191223144715.
    1. Perez-Trevino P., Sepulveda-Leal J., Altamirano J. Simultaneous assessment of calcium handling and contractility dynamics in isolated ventricular myocytes of a rat model of post-acute isoproterenol-induced cardiomyopathy. Cell Calcium. 2020;86:102138. doi: 10.1016/j.ceca.2019.102138.
    1. Willis B.C., Salazar-Cantu A., Silva-Platas C., Fernandez-Sada E., Villegas C.A., Rios-Argaiz E., Gonzalez-Serrano P., Sanchez L.A., Guerrero-Beltran C.E., Garcia N., et al. Impaired oxidative metabolism and calcium mishandling underlie cardiac dysfunction in a rat model of post-acute isoproterenol-induced cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 2015;308:H467–H477. doi: 10.1152/ajpheart.00734.2013.
    1. Oras J., Redfors B., Ali A., Alkhoury J., Seeman-Lodding H., Omerovic E., Ricksten S.E. Early treatment with isoflurane attenuates left ventricular dysfunction and improves survival in experimental Takotsubo. Acta Anaesthesiol. Scand. 2017;61:399–407. doi: 10.1111/aas.12861.
    1. Zhang Z., Jin S., Teng X., Duan X., Chen Y., Wu Y. Hydrogen sulfide attenuates cardiac injury in takotsubo cardiomyopathy by alleviating oxidative stress. Nitric Oxide. 2017;67:10–25. doi: 10.1016/j.niox.2017.04.010.
    1. Fu L., Zhang H., Ong’achwa Machuki J., Zhang T., Han L., Sang L., Wu L., Zhao Z., James Turley M., Hu X., et al. GPER mediates estrogen cardioprotection against epinephrine-induced stress. J. Endocrinol. 2021;249:209–222. doi: 10.1530/JOE-20-0451.
    1. Qi C., Liu X., Xiong T., Wang D. Tempol prevents isoprenaline-induced takotsubo syndrome via the reactive oxygen species/mitochondrial/anti-apoptosis /p38 MAPK pathway. Eur. J. Pharmacol. 2020;886:173439. doi: 10.1016/j.ejphar.2020.173439.
    1. Walsh-Wilkinson E., Arsenault M., Couet J. Segmental analysis by speckle-tracking echocardiography of the left ventricle response to isoproterenol in male and female mice. PeerJ. 2021;9:e11085. doi: 10.7717/peerj.11085.
    1. Herraez P., Espinosa de los Monteros A., Fernandez A., Edwards J.F., Sacchini S., Sierra E. Capture myopathy in live-stranded cetaceans. Vet. J. 2013;196:181–188. doi: 10.1016/j.tvjl.2012.09.021.
    1. Harthoorn A.M., van der Walt K., Young E. Possible therapy for capture myopathy in captured wild animals. Nature. 1974;247:577. doi: 10.1038/247577a0.
    1. El-Battrawy I., Zhao Z., Lan H., Cyganek L., Tombers C., Li X., Buljubasic F., Lang S., Tiburcy M., Zimmermann W.H., et al. Electrical dysfunctions in human-induced pluripotent stem cell-derived cardiomyocytes from a patient with an arrhythmogenic right ventricular cardiomyopathy. Europace. 2018;20:f46–f56. doi: 10.1093/europace/euy042.
    1. El-Battrawy I., Besler J., Ansari U., Liebe V., Schimpf R., Tulumen E., Rudic B., Lang S., Odening K., Cyganek L., et al. Long-term follow-up of implantable cardioverter-defibrillators in Short QT syndrome. Clin. Res. Cardiol. 2019;108:1140–1146. doi: 10.1007/s00392-019-01449-3.
    1. El-Battrawy I., Albers S., Cyganek L., Zhao Z., Lan H., Li X., Xu Q., Kleinsorge M., Huang M., Liao Z., et al. A cellular model of Brugada syndrome with SCN10A variants using human-induced pluripotent stem cell-derived cardiomyocytes. Europace. 2019;21:1410–1421. doi: 10.1093/europace/euz122.
    1. El-Battrawy I., Muller J., Zhao Z., Cyganek L., Zhong R., Zhang F., Kleinsorge M., Lan H., Li X., Xu Q., et al. Studying Brugada Syndrome With an SCN1B Variants in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Front. Cell Dev. Biol. 2019;7:261. doi: 10.3389/fcell.2019.00261.
    1. Lan H., Xu Q., El-Battrawy I., Zhong R., Li X., Lang S., Cyganek L., Borggrefe M., Zhou X., Akin I. Ionic Mechanisms of Disopyramide Prolonging Action Potential Duration in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes From a Patient With Short QT Syndrome Type 1. Front. Pharmacol. 2020;11:554422. doi: 10.3389/fphar.2020.554422.
    1. El-Battrawy I., Lan H., Cyganek L., Zhao Z., Li X., Buljubasic F., Lang S., Yucel G., Sattler K., Zimmermann W.H., et al. Modeling Short QT Syndrome Using Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. J. Am. Heart Assoc. 2018;7 doi: 10.1161/JAHA.117.007394.
    1. Buljubasic F., El-Battrawy I., Lan H., Lomada S.K., Chatterjee A., Zhao Z., Li X., Zhong R., Xu Q., Huang M., et al. Nucleoside Diphosphate Kinase B Contributes to Arrhythmogenesis in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes from a Patient with Arrhythmogenic Right Ventricular Cardiomyopathy. J. Clin. Med. 2020;9:486. doi: 10.3390/jcm9020486.
    1. Zhao Z., Li X., El-Battrawy I., Lan H., Zhong R., Xu Q., Huang M., Liao Z., Lang S., Zimmermann W.H., et al. Drug Testing in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes From a Patient With Short QT Syndrome Type 1. Clin. Pharmacol. Ther. 2019;106:642–651. doi: 10.1002/cpt.1449.
    1. Yucel G., Zhao Z., El-Battrawy I., Lan H., Lang S., Li X., Buljubasic F., Zimmermann W.H., Cyganek L., Utikal J., et al. Lipopolysaccharides induced inflammatory responses and electrophysiological dysfunctions in human-induced pluripotent stem cell derived cardiomyocytes. Sci. Rep. 2017;7:2935. doi: 10.1038/s41598-017-03147-4.
    1. Fan X., Yang G., Kowitz J., Duru F., Saguner A.M., Akin I., Zhou X., El-Battrawy I. Preclinical short QT syndrome models: Studying the phenotype and drug-screening. Europace. 2021 doi: 10.1093/europace/euab214.
    1. El-Battrawy I., Lan H., Cyganek L., Maywald L., Zhong R., Zhang F., Xu Q., Lee J., Duperrex E., Hierlemann A., et al. Deciphering the pathogenic role of a variant with uncertain significance for short QT and Brugada syndromes using gene-edited human-induced pluripotent stem cell-derived cardiomyocytes and preclinical drug screening. Clin. Transl. Med. 2021;11:e646. doi: 10.1002/ctm2.646.
    1. El-Battrawy I., Lang S., Ansari U., Tulumen E., Schramm K., Fastner C., Zhou X., Hoffmann U., Borggrefe M., Akin I. Prevalence of malignant arrhythmia and sudden cardiac death in takotsubo syndrome and its management. Europace. 2018;20:843–850. doi: 10.1093/europace/eux073.
    1. Ebert A., Joshi A.U., Andorf S., Dai Y., Sampathkumar S., Chen H., Li Y., Garg P., Toischer K., Hasenfuss G., et al. Proteasome-Dependent Regulation of Distinct Metabolic States During Long-Term Culture of Human iPSC-Derived Cardiomyocytes. Circ. Res. 2019;125:90–103. doi: 10.1161/CIRCRESAHA.118.313973.
    1. Correia C., Koshkin A., Duarte P., Hu D., Teixeira A., Domian I., Serra M., Alves P.M. Distinct carbon sources affect structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Sci. Rep. 2017;7:8590. doi: 10.1038/s41598-017-08713-4.
    1. Sun X., Nunes S.S. Maturation of Human Stem Cell-derived Cardiomyocytes in Biowires Using Electrical Stimulation. J. Vis. Exp. 2017 doi: 10.3791/55373.
    1. Ruan J.L., Tulloch N.L., Razumova M.V., Saiget M., Muskheli V., Pabon L., Reinecke H., Regnier M., Murry C.E. Mechanical Stress Conditioning and Electrical Stimulation Promote Contractility and Force Maturation of Induced Pluripotent Stem Cell-Derived Human Cardiac Tissue. Circulation. 2016;134:1557–1567. doi: 10.1161/CIRCULATIONAHA.114.014998.
    1. Herron T.J., Rocha A.M., Campbell K.F., Ponce-Balbuena D., Willis B.C., Guerrero-Serna G., Liu Q., Klos M., Musa H., Zarzoso M., et al. Extracellular Matrix-Mediated Maturation of Human Pluripotent Stem Cell-Derived Cardiac Monolayer Structure and Electrophysiological Function. Circ. Arrhythm. Electrophysiol. 2016;9:e003638. doi: 10.1161/CIRCEP.113.003638.
    1. Nunes S.S., Miklas J.W., Liu J., Aschar-Sobbi R., Xiao Y., Zhang B., Jiang J., Masse S., Gagliardi M., Hsieh A., et al. Biowire: A platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat. Methods. 2013;10:781–787. doi: 10.1038/nmeth.2524.
    1. Land S., Niederer S.A., Louch W.E., Roe A.T., Aronsen J.M., Stuckey D.J., Sikkel M.B., Tranter M.H., Lyon A.R., Harding S.E., et al. Computational modeling of Takotsubo cardiomyopathy: Effect of spatially varying beta-adrenergic stimulation in the rat left ventricle. Am. J. Physiol. Heart Circ. Physiol. 2014;307:H1487–H1496. doi: 10.1152/ajpheart.00443.2014.

Source: PubMed

3
Abonnere