Animal Protein versus Plant Protein in Supporting Lean Mass and Muscle Strength: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

Meng Thiam Lim, Bernice Jiaqi Pan, Darel Wee Kiat Toh, Clarinda Nataria Sutanto, Jung Eun Kim, Meng Thiam Lim, Bernice Jiaqi Pan, Darel Wee Kiat Toh, Clarinda Nataria Sutanto, Jung Eun Kim

Abstract

Although animal protein is usually considered to be a more potent stimulator of muscle protein synthesis than plant protein, the effect of protein source on lean mass and muscle strength needs to be systematically reviewed. This study aimed to examine potential differences in the effect of animal vs. plant protein on lean mass and muscle strength, and the possible influence of resistance exercise training (RET) and age. The following databases were searched: PubMed, Embase, Scopus and CINAHL Plus with Full Text, and 3081 articles were screened. A total of 18 articles were selected for systematic review, of which, 16 were used for meta-analysis. Total protein intakes were generally above the recommended dietary allowance at the baseline and end of intervention. Results from the meta-analyses demonstrated that protein source did not affect changes in absolute lean mass or muscle strength. However, there was a favoring effect of animal protein on percent lean mass. RET had no influence on the results, while younger adults (<50 years) were found to gain absolute and percent lean mass with animal protein intake (weighted mean difference (WMD), 0.41 kg; 95% confidence interval (CI) 0.08 to 0.74; WMD 0.50%; 95% CI 0.00 to 1.01). Collectively, animal protein tends to be more beneficial for lean mass than plant protein, especially in younger adults.

Keywords: body composition; muscle mass; muscular strength; protein source.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flow chart of the literature selection process. 1-RM: one-repetition maximum.
Figure 2
Figure 2
Effect of consuming animal protein compared to plant protein on changes in absolute lean mass (kg) based on age group. Data expressed as weighted mean differences with 95% CIs, using a random-effects model.
Figure 3
Figure 3
Effect of consuming animal protein compared to plant protein on changes in percent lean mass (%) based on age group. Data expressed as weighted mean differences with 95% CIs, using a random-effects model.
Figure 4
Figure 4
Effect of consuming animal protein compared to plant protein on changes in 1-RM squat (kg). Data expressed as weighted mean differences with 95% CIs, using a random-effects model. 1-RM: one-repetition maximum.
Figure 5
Figure 5
Effect of consuming animal protein compared to plant protein on changes in peak torque of leg/knee extension (Nm) based on age group. Data expressed as weighted mean differences with 95% CIs, using a random-effects model. Nm: Newton meter.
Figure 6
Figure 6
Effect of consuming animal protein compared to plant protein on changes in peak torque of leg/knee flexion (Nm) based on age group. Data expressed as weighted mean differences with 95% CIs, using a random-effects model. Nm: Newton meter.

References

    1. Wolfe R.R. The underappreciated role of muscle in health and disease. Am. J. Clin. Nutr. 2006;84:475–482. doi: 10.1093/ajcn/84.3.475.
    1. Meyer C., Dostou J.M., Welle S.L., Gerich J.E. Role of human liver, kidney, and skeletal muscle in postprandial glucose homeostasis. Am. J. Physiol. Metab. 2002;282:E419–E427. doi: 10.1152/ajpendo.00032.2001.
    1. Prado C.M., Purcell S.A., Alish C., Pereira S.L., Deutz N.E., Heyland D.K., Goodpaster B.H., Tappenden K.A., Heymsfield S.B. Implications of low muscle mass across the continuum of care: A narrative review. Ann. Med. 2018;50:675–693. doi: 10.1080/07853890.2018.1511918.
    1. Newman A.B., Kupelian V., Visser M., Simonsick E.M., Goodpaster B.H., Kritchevsky S.B., Tylavsky F.A., Rubin S.M., Harris T.B. Strength, But Not Muscle Mass, Is Associated With Mortality in the Health, Aging and Body Composition Study Cohort. J. Gerontol. Ser. A: Boil. Sci. Med Sci. 2006;61:72–77. doi: 10.1093/gerona/61.1.72.
    1. Li R., Xia J.I., Zhang X., Gathirua-Mwangi W.G., Guo J., Li Y., McKenzie S., Song Y. Associations of Muscle Mass and Strength with All-Cause Mortality among US Older Adults. Med. Sci. Sports Exerc. 2018;50:458–467. doi: 10.1249/MSS.0000000000001448.
    1. Chen L., Nelson D.R., Zhao Y., Cui Z.A., Johnston J. Relationship between muscle mass and muscle strength, and the impact of comorbidities: A population-based, cross-sectional study of older adults in the United States. BMC Geriatr. 2013;13:74. doi: 10.1186/1471-2318-13-74.
    1. Landi F., Calvani R., Tosato M., Martone A.M., Fusco D., Sisto A., Ortolani E., Savera G., Salini S., Marzetti E. Age-Related Variations of Muscle Mass, Strength, and Physical Performance in Community-Dwellers: Results From the Milan EXPO Survey. J. Am. Med Dir. Assoc. 2017;18:88.e17–88.e24. doi: 10.1016/j.jamda.2016.10.007.
    1. Hayashida I., Tanimoto Y., Takahashi Y., Kusabiraki T., Tamaki J. Correlation between Muscle Strength and Muscle Mass, and Their Association with Walking Speed, in Community-Dwelling Elderly Japanese Individuals. PLoS ONE. 2014;9:e111810. doi: 10.1371/journal.pone.0111810.
    1. Bauer J., Biolo G., Cederholm T., Cesari M., Cruz-Jentoft A.J., Morley J.E., Phillips S., Sieber C., Stehle P., Teta D., et al. Evidence-Based Recommendations for Optimal Dietary Protein Intake in Older People: A Position Paper From the PROT-AGE Study Group. J. Am. Med Dir. Assoc. 2013;14:542–559. doi: 10.1016/j.jamda.2013.05.021.
    1. Cruz-Jentoft A.J., Bahat G., Bauer J., Boirie Y., Bruyère O., Cederholm T., Cooper C., Landi F., Rolland Y., Sayer A.A., et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019;48:16–31. doi: 10.1093/ageing/afy169.
    1. Sayer A.A., Syddall H., Martin H., Patel H., Baylis D., Cooper C. The developmental origins of sarcopenia. J. Nutr. Heal. Aging. 2008;12:427–432. doi: 10.1007/BF02982703.
    1. Norman K., Otten L. Financial impact of sarcopenia or low muscle mass—A short review. Clin. Nutr. 2019;38:1489–1495. doi: 10.1016/j.clnu.2018.09.026.
    1. Tipton K.D., Wolfe R.R. Exercise, protein metabolism, and muscle growth. Int. J. Sport Nutr. Exerc. Metab. 2001;11:109–132. doi: 10.1123/ijsnem.11.1.109.
    1. Kumar V., Atherton P., Smith K., Rennie M.J. Human muscle protein synthesis and breakdown during and after exercise. J. Appl. Physiol. 2009;106:2026–2039. doi: 10.1152/japplphysiol.91481.2008.
    1. Van Vliet S., Burd N.A., Van Loon L.J.C. The Skeletal Muscle Anabolic Response to Plant- versus Animal-Based Protein Consumption. J. Nutr. 2015;145:1981–1991. doi: 10.3945/jn.114.204305.
    1. Gorissen S.H.M., Witard O.C. Characterising the muscle anabolic potential of dairy, meat and plant-based protein sources in older adults. Proc. Nutr. Soc. 2018;77:20–31. doi: 10.1017/S002966511700194X.
    1. Berrazaga I., Micard V., Gueugneau M., Walrand S. The Role of the Anabolic Properties of Plant- versus Animal-Based Protein Sources in Supporting Muscle Mass Maintenance: A Critical Review. Nutrients. 2019;11:1825. doi: 10.3390/nu11081825.
    1. Zhubi-Bakija F., Bajraktari G., Bytyçi I., Mikhailidis D.P., Henein M.Y., Latkovskis G., Rexhaj Z., Zhubi E., Banach M., Alnouri F., et al. The impact of type of dietary protein, animal versus vegetable, in modifying cardiometabolic risk factors: A position paper from the International Lipid Expert Panel (ILEP) Clin. Nutr. 2021;40:255–276. doi: 10.1016/j.clnu.2020.05.017.
    1. Fasolin L., Pereira R., Pinheiro A., Martins J., Andrade C., Ramos O., Vicente A. Emergent food proteins—Towards sustainability, health and innovation. Food Res. Int. 2019;125:108586. doi: 10.1016/j.foodres.2019.108586.
    1. Langer H., Carlsohn A. Effects of Different Dietary Proteins and Amino Acids on Skeletal Muscle Hypertrophy in Young Adults after Resistance Exercise. Strength Cond. J. 2014;36:33–42. doi: 10.1519/SSC.0000000000000057.
    1. Phillips S.M., Tang J.E., Moore D.R. The Role of Milk- and Soy-Based Protein in Support of Muscle Protein Synthesis and Muscle Protein Accretion in Young and Elderly Persons. J. Am. Coll. Nutr. 2009;28:343–354. doi: 10.1080/07315724.2009.10718096.
    1. Janssen I., Heymsfield S.B., Wang Z., Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J. Appl. Physiol. 2000;89:81–88. doi: 10.1152/jappl.2000.89.1.81.
    1. Messina M., Lynch H., Dickinson J.M., Reed K.E. No Difference between the Effects of Supplementing With Soy Protein Versus Animal Protein on Gains in Muscle Mass and Strength in Response to Resistance Exercise. Int. J. Sport Nutr. Exerc. Metab. 2018;28:674–685. doi: 10.1123/ijsnem.2018-0071.
    1. Moher D., Liberati A., Tetzlaff J., Altman D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010;8:336–341. doi: 10.1016/j.ijsu.2010.02.007.
    1. Buckinx F., Landi F., Cesari M., Fielding R.A., Visser M., Engelke K., Maggi S., Dennison E., Al-Daghri N.M., Allepaerts S., et al. Pitfalls in the measurement of muscle mass: A need for a reference standard. J. Cachexia Sarcopenia Muscle. 2018;9:269–278. doi: 10.1002/jcsm.12268.
    1. Hames K.C., Anthony S.J., Thornton J.C., Gallagher D., Goodpaster B.H. Body composition analysis by air displacement plethysmography in normal weight to extremely obese adults. Obesity. 2013;22:1078–1084. doi: 10.1002/oby.20655.
    1. Josephs H., Huston R. Dynamics of Mechanical Systems. 1st ed. CRC Press; Boca Raton, FL, USA: 2002. p. 10.
    1. Yu S., Visvanathan T., Field J., Ward L.C., Chapman I., Adams R., Wittert G., Visvanathan R. Lean body mass: The development and validation of prediction equations in healthy adults. BMC Pharmacol. Toxicol. 2013;14:53. doi: 10.1186/2050-6511-14-53.
    1. Eriksen E.F. Cellular mechanisms of bone remodeling. Rev. Endocr. Metab. Disord. 2010;11:219–227. doi: 10.1007/s11154-010-9153-1.
    1. Toh D.W.K., Koh E.S., Kim J.E. Incorporating healthy dietary changes in addition to an increase in fruit and vegetable intake further improves the status of cardiovascular disease risk factors: A systematic review, meta-regression, and meta-analysis of randomized controlled trials. Nutr. Rev. 2019;78:532–545. doi: 10.1093/nutrit/nuz104.
    1. Borenstein M., Hedges L.V., Higgins J.P.T., Rothstein H.R. Introduction to Meta-Analysis. Wiley; New York, NY, USA: 2009. Fixed-Effect versus Random-Effects Models; pp. 77–86.
    1. Banaszek A., Townsend J.R., Bender D., Vantrease W.C., Marshall A.C., Johnson K.D. The Effects of Whey vs. Pea Protein on Physical Adaptations Following 8-Weeks of High-Intensity Functional Training (HIFT): A Pilot Study. Sports. 2019;7:12. doi: 10.3390/sports7010012.
    1. Basciani S., Camajani E., Contini S., Persichetti A., Risi R., Bertoldi L., Strigari L., Prossomariti G., Watanabe M., Mariani S., et al. Very-Low-Calorie Ketogenic Diets With Whey, Vegetable, or Animal Protein in Patients with Obesity: A Randomized Pilot Study. J. Clin. Endocrinol. Metab. 2020;105:2939–2949. doi: 10.1210/clinem/dgaa336.
    1. Candow D.G., Burke N.C., Smith-Palmer T., Burke D.G. Effect of whey and soy protein supplementation combined with resistance training in young adults. Int. J. Sport Nutr. Exerc. Metab. 2006;16:233–244. doi: 10.1123/ijsnem.16.3.233.
    1. DeNysschen C.A., Burton H.W., Horvath P.J., Leddy J.J., Browne R.W. Resistance training with soy vs whey protein supplements in hyperlipidemic males. J. Int. Soc. Sports Nutr. 2009;6:8. doi: 10.1186/1550-2783-6-8.
    1. Hartman J.W., Tang J.E., Wilkinson S.B., Tarnopolsky M.A., Lawrence R.L., Fullerton A.V., Phillips S.M. Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male weightlifters. Am. J. Clin. Nutr. 2007;86:373–381. doi: 10.1093/ajcn/86.2.373.
    1. Haub M.D., Wells A.M., Tarnopolsky M.A. Campbell, W.W. Effect of protein source on resistive-training-induced changes in body composition and muscle size in older men. Am. J. Clin. Nutr. 2002;76:511–517. doi: 10.1093/ajcn/76.3.511.
    1. Hill A.M., Jackson K.A.H., Roussell M.A., West S.G., Kris-Etherton P.M. Type and amount of dietary protein in the treatment of metabolic syndrome: A randomized controlled trial. Am. J. Clin. Nutr. 2015;102:757–770. doi: 10.3945/ajcn.114.104026.
    1. Joy J.M., Lowery R.P., Wilson J.M., Purpura M., De Souza E.O., Mc Wilson S., Kalman D.S., Dudeck J.E., Jäger R. The effects of 8 weeks of whey or rice protein supplementation on body composition and exercise performance. Nutr. J. 2013;12:86. doi: 10.1186/1475-2891-12-86.
    1. Kjølbæk L., Sørensen L.B., Søndertoft N.B., Rasmussen C.K., Lorenzen J.K., Serena A., Astrup A., Larsen L.H. Protein supplements after weight loss do not improve weight maintenance compared with recommended dietary protein intake despite beneficial effects on appetite sensation and energy expenditure: A randomized, controlled, double-blinded trial. Am. J. Clin. Nutr. 2017;106:684–697. doi: 10.3945/ajcn.115.129528.
    1. Lynch H.M., Buman M.P., Dickinson J.M., Ransdell L.B., Johnston C.S., Wharton C.M. No Significant Differences in Muscle Growth and Strength Development When Consuming Soy and Whey Protein Supplements Matched for Leucine Following a 12 Week Resistance Training Program in Men and Women: A Randomized Trial. Int. J. Environ. Res. Public Heal. 2020;17:3871. doi: 10.3390/ijerph17113871.
    1. Maltais M.L., Ladouceur J.P., Dionne I.J. The Effect of Resistance Training and Different Sources of Postexercise Protein Supplementation on Muscle Mass and Physical Capacity in Sarcopenic Elderly Men. J. Strength Cond. Res. 2016;30:1680–1687. doi: 10.1519/JSC.0000000000001255.
    1. Mobley C.B., Haun C.T., Roberson P.A., Mumford P.W., Romero M.A., Kephart W.C., Anderson R.G., Vann C.G., Osburn S.C., Pledge C.D., et al. Effects of Whey, Soy or Leucine Supplementation with 12 Weeks of Resistance Training on Strength, Body Composition, and Skeletal Muscle and Adipose Tissue Histological Attributes in College-Aged Males. Nutrients. 2017;9:972. doi: 10.3390/nu9090972.
    1. Moeller L.E., Peterson C.T., Hanson K.B., Dent S.B., Lewis D.S., King D.S., Alekel D.L. Isoflavone-rich soy protein prevents loss of hip lean mass but does not prevent the shift in regional fat distribution in perimenopausal women. Menopause. 2003;10:322–331. doi: 10.1097/01.GME.0000054763.94658.FD.
    1. Neacsu M., Fyfe C., Horgan G., Johnstone A.M. Appetite control and biomarkers of satiety with vegetarian (soy) and meat-based high-protein diets for weight loss in obese men: A randomized crossover trial. Am. J. Clin. Nutr. 2014;100:548–558. doi: 10.3945/ajcn.113.077503.
    1. Thomson R.L., Brinkworth G.D., Noakes M., Buckley J.D., Information P.E.K.F.C. Muscle strength gains during resistance exercise training are attenuated with soy compared with dairy or usual protein intake in older adults: A randomized controlled trial. Clin. Nutr. 2016;35:27–33. doi: 10.1016/j.clnu.2015.01.018.
    1. Tomayko E.J., Kistler B.M., Fitschen P.J., Wilund K.R. Intradialytic Protein Supplementation Reduces Inflammation and Improves Physical Function in Maintenance Hemodialysis Patients. J. Ren. Nutr. 2015;25:276–283. doi: 10.1053/j.jrn.2014.10.005.
    1. Volek J.S., Volk B.M., Gómez A.L., Kunces L.J., Kupchak B.R., Freidenreich D.J., Aristizabal J.C., Saenz C., Dunn-Lewis C., Ballard K.D., et al. Whey Protein Supplementation During Resistance Training Augments Lean Body Mass. J. Am. Coll. Nutr. 2013;32:122–135. doi: 10.1080/07315724.2013.793580.
    1. Vupadhyayula P.M., Gallagher J.C., Templin T., Logsdon S.M., Smith L.M. Effects of soy protein isolate on bone mineral density and physical performance indices in postmenopausal women-a 2-year randomized, double-blind, placebo-controlled trial. Menopause. 2009;16:320–328. doi: 10.1097/gme.0b013e3181844893.
    1. Trumbo P., Schlicker S., Yates A.A., Poos M. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids. J. Am. Diet. Assoc. 2002;102:1621–1630. doi: 10.1016/S0002-8223(02)90346-9.
    1. Boye J., Wijesinha-Bettoni R., Burlingame B. Protein quality evaluation twenty years after the introduction of the protein digestibility corrected amino acid score method. Br. J. Nutr. 2012;108:S183–S211. doi: 10.1017/S0007114512002309.
    1. Gilbert J.-A., Bendsen N., Tremblay A., Astrup A. Effect of proteins from different sources on body composition. Nutr. Metab. Cardiovasc. Dis. 2011;21:B16–B31. doi: 10.1016/j.numecd.2010.12.008.
    1. Fujita S., Dreyer H.C., Drummond M.J., Glynn E.L., Cadenas J.G., Yoshizawa F., Volpi E., Rasmussen B.B. Nutrient signalling in the regulation of human muscle protein synthesis. J. Physiol. 2007;582:813–823. doi: 10.1113/jphysiol.2007.134593.
    1. Volpi E., Kobayashi H., Sheffield-Moore M., Mittendorfer B., Wolfe R.R. Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am. J. Clin. Nutr. 2003;78:250–258. doi: 10.1093/ajcn/78.2.250.
    1. Park B.S., Yoon J.S. Relative Skeletal Muscle Mass Is Associated with Development of Metabolic Syndrome. Diabetes Metab. J. 2013;37:458–464. doi: 10.4093/dmj.2013.37.6.458.
    1. Bea J.W., Thomson C.A., Wertheim B.C., Nicholas J.S., Ernst K.C., Hu C., Jackson R.D., Cauley J.A., Lewis C.E., Caan B.J., et al. Risk of Mortality According to Body Mass Index and Body Composition Among Postmenopausal Women. Am. J. Epidemiology. 2015;182:585–596. doi: 10.1093/aje/kwv103.
    1. Li C.-Y., Fang A.-P., Ma W.-J., Wu S.-L., Li C.-L., Chen Y.-M., Zhu H.-L. Amount Rather than Animal vs Plant Protein Intake Is Associated with Skeletal Muscle Mass in Community-Dwelling Middle-Aged and Older Chinese Adults: Results from the Guangzhou Nutrition and Health Study. J. Acad. Nutr. Diet. 2019;119:1501–1510. doi: 10.1016/j.jand.2019.03.010.
    1. Morton R.W., Murphy K.T., McKellar S.R., Schoenfeld B.J., Henselmans M., Helms E., Aragon A.A., Devries M.C., Banfield L., Krieger J.W., et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br. J. Sports Med. 2018;52:376–384. doi: 10.1136/bjsports-2017-097608.
    1. Hudson J.L., Wang Y., Iii R.E.B., Campbell W.W. Protein Intake Greater than the RDA Differentially Influences Whole-Body Lean Mass Responses to Purposeful Catabolic and Anabolic Stressors: A Systematic Review and Meta-analysis. Adv. Nutr. 2020;11:548–558. doi: 10.1093/advances/nmz106.
    1. Atherton P.J., Smith K. Muscle protein synthesis in response to nutrition and exercise. J. Physiol. 2012;590:1049–1057. doi: 10.1113/jphysiol.2011.225003.
    1. Gorissen S.H.M., Crombag J.J.R., Senden J.M.G., Waterval W.A.H., Bierau J., Verdijk L.B., Van Loon L.J.C. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids. 2018;50:1685–1695. doi: 10.1007/s00726-018-2640-5.
    1. Breen L., Phillips S.M. Skeletal muscle protein metabolism in the elderly: Interventions to counteract the ’anabolic resistance’ of ageing. Nutr. Metab. 2011;8:68. doi: 10.1186/1743-7075-8-68.
    1. Cuthbertson D., Smith K., Babraj J., Leese G., Waddell T., Atherton P., Wackerhage H., Taylor P.M., Rennie M.J. Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J. 2004;19:1–22. doi: 10.1096/fj.04-2640fje.
    1. Wall B.T., Gorissen S.H., Pennings B., Koopman R., Groen B.B.L., Verdijk L.B., Van Loon L.J.C. Aging Is Accompanied by a Blunted Muscle Protein Synthetic Response to Protein Ingestion. PLoS ONE. 2015;10:e0140903. doi: 10.1371/journal.pone.0140903.
    1. Shad B.J., Thompson J.L., Breen L. Does the muscle protein synthetic response to exercise and amino acid-based nutrition diminish with advancing age? A systematic review. Am. J. Physiol. Metab. 2016;311:E803–E817. doi: 10.1152/ajpendo.00213.2016.
    1. Cruz-Jentoft A.J., Hughes B.D., Scott D., Sanders K.M., Rizzoli R. Nutritional strategies for maintaining muscle mass and strength from middle age to later life: A narrative review. Maturitas. 2020;132:57–64. doi: 10.1016/j.maturitas.2019.11.007.
    1. Daly R.M., Nowson C.A. Can protein supplementation lead to clinically meaningful improvements in muscle mass and function in undernourished (pre)frail elderly? Am. J. Clin. Nutr. 2018;108:911–912. doi: 10.1093/ajcn/nqy289.
    1. Yuan M., Pickering R.T., Bradlee M.L., Mustafa J., Singer M.R., Moore L.L. Animal protein intake reduces risk of functional impairment and strength loss in older adults. Clin. Nutr. 2020 doi: 10.1016/j.clnu.2020.06.019.
    1. Sahni S., Mangano K.M., Hannan M.T., Kiel D.P., McLean R.R. Higher Protein Intake Is Associated with Higher Lean Mass and Quadriceps Muscle Strength in Adult Men and Women. J. Nutr. 2015;145:1569–1575. doi: 10.3945/jn.114.204925.
    1. Loenneke J.P., Buckner S.L., Dankel S.J., Abe T. Exercise-Induced Changes in Muscle Size do not Contribute to Exercise-Induced Changes in Muscle Strength. Sports Med. 2019;49:987–991. doi: 10.1007/s40279-019-01106-9.
    1. Taber C.B., Vigotsky A., Nuckols G., Haun C.T. Exercise-Induced Myofibrillar Hypertrophy is a Contributory Cause of Gains in Muscle Strength. Sports Med. 2019;49:993–997. doi: 10.1007/s40279-019-01107-8.

Source: PubMed

3
Abonnere