Phylogroup stability contrasts with high within sequence type complex dynamics of Escherichia coli bloodstream infection isolates over a 12-year period

Guilhem Royer, Mélanie Mercier Darty, Olivier Clermont, Bénédicte Condamine, Cédric Laouenan, Jean-Winoc Decousser, David Vallenet, Agnès Lefort, Victoire de Lastours, Erick Denamur, COLIBAFI and SEPTICOLI groups, Michel Wolff, Loubna Alavoine, Xavier Duval, David Skurnik, Paul-Louis Woerther, Antoine Andremont, Etienne Carbonnelle, Olivier Lortholary, Xavier Nassif, Sophie Abgrall, Françoise Jaureguy, Bertrand Picard, Véronique Houdouin, Yannick Aujard, Stéphane Bonacorsi, Agnès Meybeck, Guilène Barnaud, Catherine Branger, Agnès Lefort, Bruno Fantin, Claire Bellier, Frédéric Bert, Marie-Hélène Nicolas-Chanoine, Bernard Page, Julie Cremniter, Jean-Louis Gaillard, Françoise Leturdu, Jean-Pierre Sollet, Gaëtan Plantefève, Xavière Panhard, France Mentré, Estelle Marcault, Florence Tubach, Virginie Zarrouk, Frederic Bert, Marion Duprilot, Véronique Leflon-Guibout, Naouale Maataoui, Laurence Armand, Liem Luong Nguyen, Rocco Collarino, Anne-Lise Munier, Hervé Jacquier, Emmanuel Lecorché, Laetitia Coutte, Camille Gomart, Ousser Ahmed Fateh, Luce Landraud, Jonathan Messika, Elisabeth Aslangul, Magdalena Gerin, Alexandre Bleibtreu, Mathilde Lescat, Violaine Walewski, Frederic Mechaï, Marion Dollat, Anne-Claire Maherault, Michel Wolff, Mélanie Mercier-Darty, Bernadette Basse, Guilhem Royer, Mélanie Mercier Darty, Olivier Clermont, Bénédicte Condamine, Cédric Laouenan, Jean-Winoc Decousser, David Vallenet, Agnès Lefort, Victoire de Lastours, Erick Denamur, COLIBAFI and SEPTICOLI groups, Michel Wolff, Loubna Alavoine, Xavier Duval, David Skurnik, Paul-Louis Woerther, Antoine Andremont, Etienne Carbonnelle, Olivier Lortholary, Xavier Nassif, Sophie Abgrall, Françoise Jaureguy, Bertrand Picard, Véronique Houdouin, Yannick Aujard, Stéphane Bonacorsi, Agnès Meybeck, Guilène Barnaud, Catherine Branger, Agnès Lefort, Bruno Fantin, Claire Bellier, Frédéric Bert, Marie-Hélène Nicolas-Chanoine, Bernard Page, Julie Cremniter, Jean-Louis Gaillard, Françoise Leturdu, Jean-Pierre Sollet, Gaëtan Plantefève, Xavière Panhard, France Mentré, Estelle Marcault, Florence Tubach, Virginie Zarrouk, Frederic Bert, Marion Duprilot, Véronique Leflon-Guibout, Naouale Maataoui, Laurence Armand, Liem Luong Nguyen, Rocco Collarino, Anne-Lise Munier, Hervé Jacquier, Emmanuel Lecorché, Laetitia Coutte, Camille Gomart, Ousser Ahmed Fateh, Luce Landraud, Jonathan Messika, Elisabeth Aslangul, Magdalena Gerin, Alexandre Bleibtreu, Mathilde Lescat, Violaine Walewski, Frederic Mechaï, Marion Dollat, Anne-Claire Maherault, Michel Wolff, Mélanie Mercier-Darty, Bernadette Basse

Abstract

Background: Escherichia coli is the leading cause of bloodstream infections, associated with a significant mortality. Recent genomic analyses revealed that few clonal lineages are involved in bloodstream infections and captured the emergence of some of them. However, data on within sequence type (ST) population genetic structure evolution are rare.

Methods: We compared whole genome sequences of 912 E. coli isolates responsible for bloodstream infections from two multicenter clinical trials that were conducted in the Paris area, France, 12 years apart, in teaching hospitals belonging to the same institution ("Assistance Publique-Hôpitaux de Paris"). We analyzed the strains at different levels of granularity, i.e., the phylogroup, the ST complex (STc), and the within STc clone taking into consideration the evolutionary history, the resistance, and virulence gene content as well as the antigenic diversity of the strains.

Results: We found a mix of stability and changes overtime, depending on the level of comparison. Overall, we observed an increase in antibiotic resistance associated to a restricted number of genetic determinants and in strain plasmidic content, whereas phylogroup distribution and virulence gene content remained constant. Focusing on STcs highlighted the pauci-clonality of the populations, with only 11 STcs responsible for more than 73% of the cases, dominated by five STcs (STc73, STc131, STc95, STc69, STc10). However, some STcs underwent dramatic variations, such as the global pandemic STc131, which replaced the previously predominant STc95. Moreover, within STc131, 95 and 69 genomic diversity analysis revealed a highly dynamic pattern, with reshuffling of the population linked to clonal replacement sometimes coupled with independent acquisitions of virulence factors such as the pap gene cluster bearing a papGII allele located on various pathogenicity islands. Additionally, STc10 exhibited huge antigenic diversity evidenced by numerous O:H serotype/fimH allele combinations, whichever the year of isolation.

Conclusions: Altogether, these data suggest that the bloodstream niche is occupied by a wide but specific phylogenetic diversity and that highly specialized extra-intestinal clones undergo frequent turnover at the within ST level. Additional worldwide epidemiological studies overtime are needed in different geographical and ecological contexts to assess how generalizable these data are.

Trial registration: ClinicalTrials.gov NCT02890901.

Keywords: Antibiotic resistance; Bloodstream infection; Clonal replacement; Escherichia coli; Extra-intestinal infection; Pandemic clones.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Global comparison of the 2005 and 2016-7 collections. a Phylogroup distribution of the strains. b Distribution of the number of virulence factors per strain among the six main functional classes of virulence. c Bar chart of predicted phenotypes of the strains. The results are presented as percentage of resistant strains for nine antibiotics of clinical importance. d Distribution of the number of replicons per strain and the plasmid sequence length predicted by PlaScope [36]. e Bar chart of the number of strains carrying complete integron, CALIN (clusters of attC sites lacking integron-integrases), and In0 (integron integrase only). Significant differences are highlighted by asterisks. AMP, ampicillin; TZP, piperacillin/tazobactam; CTX/CAZ, cefotaxime/ceftazidime; FEP, cefepime; CARB, carbapenems; FQ, fluoroquinolones; GEN, gentamicin; AMK, amikacin; SXT, cotrimoxazole
Fig. 2
Fig. 2
a Distribution of the patristic distances between all strains of a given STc in a given collection. b Distribution of the genome fluidity between all strains of a given STc in a given collection. Significant differences are highlighted by asterisks (Benjamini-Hochberg corrected p value < 0.05)
Fig. 3
Fig. 3
Distribution of the combinations O:H/fimH among the big four STcs and the STc10. a STc131. b STc95. c STc73. d STc69. e STc10. To have a rapid overview, the combinations O:H/fimH are also schematically represented by colored squares at the top of each bar graph
Fig. 4
Fig. 4
Comparison of STc131 strains in the 2005 and 2016-7 collections. a Distribution of strains in the three clades of STc131 described by Ben Zakour et al. [50]. b Distribution of the number of virulence factors per strain among the six main functional classes of virulence. c Distribution of the adhesins in both collections. Only adhesins with a significant difference between 2005 and 2016-7 are presented (Benjamini-Hochberg corrected p value < 0.05). d Predicted phenotypes of the strains. The results are presented as percentage of resistant strains for eight antibiotics of clinical importance (no carbapenem-resistant strain has been found). Significant differences are highlighted by asterisks. AMP, ampicillin; TZP, piperacillin/tazobactam; CTX/CAZ, cefotaxime/ceftazidime; FEP, cefepime; FQ, fluoroquinolones; GEN, gentamicin; AMK, amikacin; SXT, cotrimoxazole
Fig. 5
Fig. 5
Comparison of STc95 strains in the 2005 and 2016-7 collections. a Bar chart of the distribution of strains in the five subgroups of STc95 described by Gordon et al. [51]. b Distribution of the number of virulence factors per strain among the six main functional classes of virulence. c Distribution of the iron acquisition related genes in both collections. Only virulence factors with a significant difference between 2005 and 2016-7 are presented. d Predicted phenotypes of the strains. The results are presented as percentage of resistant strains for seven antibiotics of clinical importance (no strain resistant to carbapenems and amikacin has been found). Significant differences are highlighted by asterisks. AMP, ampicillin; TZP, piperacillin/tazobactam; CTX/CAZ, cefotaxime/ceftazidime; FEP, cefepime; FQ, fluoroquinolones; GEN, gentamicin; SXT, cotrimoxazole
Fig. 6
Fig. 6
Comparison of STc69 strains in 2005 and 2016-7 collections. a Bar chart of the distribution of strains in the four subgroups of STc69 defined by fastbaps [52]. b Distribution of the number of virulence factors per strain among the six main functional classes of virulence. c Distribution of the adhesins in both collections. Only virulence factors with the most significant differences (i.e., significant before multiple test correction) between 2005 and 2016-7 are presented. d Predicted phenotypes of the strains. The results are presented as percentage of resistant strains for seven antibiotics of clinical importance (no strain resistant to carbapenems and amikacin has been found). Significant differences are highlighted by asterisks. AMP, ampicillin; TZP, piperacillin/tazobactam; CTX/CAZ, cefotaxime/ceftazidime; FEP, cefepime; FQ, fluoroquinolones; CARB, carbapenems; GEN, gentamicin; SXT, cotrimoxazole
Fig. 7
Fig. 7
Schematic representation of the different scenarios leading to within STc dynamic. a Example of clonal replacement as observed in STc95. The represented plasmid corresponds to pS88 whereas the red terminal branches correspond to the emerging O1:H7 fimH41 subgroup A clone. The emerging O25b:H4 clone in the subgroup D is indicated by colored squares as in Fig. 3 and the branches are highlighted in green. b Multiple acquisitions of related PAIs associated to clonal expansion as observed in STc69 and STc131. The pap gene cluster with the papGII allele is represented in red on genetic maps. Red arrows indicate the acquisition of PAIs. c High antigenic diversity at a given time and overtime, as observed in STc10. This pattern corresponds probably to multiple recombination events at the main chromosomal hot spots (rfb, fimH)

References

    1. Russo TA, Johnson JR. Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbes Infect. 2003;5(5):449–456. doi: 10.1016/S1286-4579(03)00049-2.
    1. Vihta K-D, Stoesser N, Llewelyn MJ, Quan TP, Davies T, Fawcett NJ, Dunn L, Jeffery K, Butler CC, Hayward G, Andersson M, Morgan M, Oakley S, Mason A, Hopkins S, Wyllie DH, Crook DW, Wilcox MH, Johnson AP, Peto TEA, Walker AS. Trends over time in Escherichia coli bloodstream infections, urinary tract infections, and antibiotic susceptibilities in Oxfordshire, UK, 1998–2016: a study of electronic health records. Lancet Infect Dis. 2018;18(10):1138–1149. doi: 10.1016/S1473-3099(18)30353-0.
    1. Lefort A, Panhard X, Clermont O, Woerther P-L, Branger C, Mentre F, Fantin B, Wolff M, Denamur E, for the COLIBAFI Group Host factors and portal of entry outweigh bacterial determinants to predict the severity of Escherichia coli bacteremia. Journal of Clinical Microbiology. 2011;49(3):777–783. doi: 10.1128/JCM.01902-10.
    1. Abernethy JK, Johnson AP, Guy R, Hinton N, Sheridan EA, Hope RJ. Thirty day all-cause mortality in patients with Escherichia coli bacteraemia in England. Clin Microbiol Infect. 2015;21(3):251. doi: 10.1016/j.cmi.2015.01.001.
    1. Yoon E-J, Choi MH, Park YS, Lee HS, Kim D, Lee H, Shin KS, Shin JH, Uh Y, Kim YA, Shin JH, Jeong SH. Impact of host-pathogen-treatment tripartite components on early mortality of patients with Escherichia coli bloodstream infection: prospective observational study. EBioMedicine. 2018;35:76–86. doi: 10.1016/j.ebiom.2018.08.029.
    1. de Lastours V, Laouénan C, Royer G, Carbonnelle E, Lepeule R, Esposito-Farèse M, Clermont O, Duval X, Fantin B, Mentré F, Decousser JW, Denamur E, Lefort A. Mortality in Escherichia coli bloodstream infections: antibiotic resistance still does not make it. J Antimicrob Chemother. 2020;75(8):2334–2343. doi: 10.1093/jac/dkaa161.
    1. Martinez JA, Soto S, Fabrega A, Almela M, Mensa J, Soriano A, Marco F, Jimenez de Anta MT, Vila J. Relationship of phylogenetic background, biofilm production, and time to detection of growth in blood culture vials with clinical variables and prognosis associated with Escherichia coli bacteremia. J Clin Microbiol. 2006;44(4):1468–1474. doi: 10.1128/JCM.44.4.1468-1474.2006.
    1. Jauréguy F, Carbonnelle E, Bonacorsi S, Clec’h C, Casassus P, Bingen E, et al. Host and bacterial determinants of initial severity and outcome of Escherichia coli sepsis. Clin Microbiol Infect. 2007;13(9):854–862. doi: 10.1111/j.1469-0691.2007.01775.x.
    1. Mora-Rillo M, Fernández-Romero N, Navarro-San Francisco C, Díez-Sebastián J, Romero-Gómez MP, Arnalich Fernández F, Arribas López JR, Mingorance J. Impact of virulence genes on sepsis severity and survival in Escherichia coli bacteremia. Virulence. 2015;6(1):93–100. doi: 10.4161/21505594.2014.991234.
    1. Kang C-I, Song J-H, Chung DR, Peck KR, Ko KS, Yeom J-S, Ki HK, Son JS, Lee SS, Kim YS, Jung SI, Kim SW, Chang HH, Ryu SY, Kwon KT, Lee H, Moon C, Shin SY, Korean Network for Study of Infectious Diseases (KONSID) Risk factors and treatment outcomes of community-onset bacteraemia caused by extended-spectrum beta-lactamase-producing Escherichia coli. Int J Antimicrob Agents. 2010;36(3):284–287. doi: 10.1016/j.ijantimicag.2010.05.009.
    1. Tenaillon O, Skurnik D, Picard B, Denamur E. The population genetics of commensal Escherichia coli. Nature Reviews Microbiol. 2010;8(3):207–217. doi: 10.1038/nrmicro2298.
    1. Picard B, Garcia JS, Gouriou S, Duriez P, Brahimi N, Bingen E, et al. The link between phylogeny and virulence in Escherichia coli extraintestinal infection. Infect Immun. 1999;67(2):546–553. doi: 10.1128/IAI.67.2.546-553.1999.
    1. Johnson JR, Clermont O, Menard M, Kuskowski MA, Picard B, Denamur E. Experimental mouse lethality of Escherichia coli isolates, in relation to accessory traits, phylogenetic group, and ecological source. J Infect Dis. 2006;194(8):1141–1150. doi: 10.1086/507305.
    1. Johnson JR, Johnston BD, Porter S, Thuras P, Aziz M, Price LB. Accessory traits and phylogenetic background predict Escherichia coli extraintestinal virulence better than does ecological source. J Infect Dis. 2019;219(1):121–132. doi: 10.1093/infdis/jiy459.
    1. Landraud L, Jauréguy F, Frapy E, Guigon G, Gouriou S, Carbonnelle E, Clermont O, Denamur E, Picard B, Lemichez E, Brisse S, Nassif X. Severity of Escherichia coli bacteraemia is independent of the intrinsic virulence of the strains assessed in a mouse model. Clinical Microbiology and Infection. 2013;19(1):85–90. doi: 10.1111/j.1469-0691.2011.03750.x.
    1. Le Gall T, Clermont O, Gouriou S, Picard B, Nassif X, Denamur E, et al. Extraintestinal virulence is a coincidental by-product of commensalism in B2 phylogenetic group Escherichia coli strains. Mol Biol Evol. 2007;24(11):2373–2384. doi: 10.1093/molbev/msm172.
    1. Nicolas-Chanoine M-H, Bertrand X, Madec J-Y. Escherichia coli ST131, an intriguing clonal group. Clinical Microbiology Reviews. 2014;27(3):543–574. doi: 10.1128/CMR.00125-13.
    1. Massot M, Daubié A-S, Clermont O, Jauréguy F, Couffignal C, Dahbi G, Mora A, Blanco J, Branger C, Mentré F, Eddi A, Picard B, Denamur E, the COLIVILLE Group Phylogenetic, virulence and antibiotic resistance characteristics of commensal strain populations of Escherichia coli from community subjects in the Paris area in 2010 and evolution over 30 years. Microbiology. 2016;162(4):642–650. doi: 10.1099/mic.0.000242.
    1. Day MJ, Doumith M, Abernethy J, Hope R, Reynolds R, Wain J, Livermore DM, Woodford N. Population structure of Escherichia coli causing bacteraemia in the UK and Ireland between 2001 and 2010. J Antimicrob Chemother. 2016;71(8):2139–2142. doi: 10.1093/jac/dkw145.
    1. Kallonen T, Brodrick HJ, Harris SR, Corander J, Brown NM, Martin V, Peacock SJ, Parkhill J. Systematic longitudinal survey of invasive Escherichia coli in England demonstrates a stable population structure only transiently disturbed by the emergence of ST131. Genome Research. 2017;27(8):1437–1449. doi: 10.1101/gr.216606.116.
    1. Lipworth S, Vihta K-D, Chau KK, Kavanagh J, Davies T, George S, et al. Ten years of population-level genomic Escherichia coli and Klebsiella pneumoniae serotype surveillance informs vaccine development for invasive infections. Clin Infect Dis. 2021;ciab006. 10.1093/cid/ciab006. Online ahead of print.
    1. Roer L, Overballe-Petersen S, Hansen F, Schønning K, Wang M, Røder BL, et al. Escherichia coli Sequence Type 410 is causing new international high-risk clones. mSphere. 2018;3(4):e00337–18. 10.1128/mSphere.00337-18.
    1. Ludden C, Decano AG, Jamrozy D, Pickard D, Morris D, Parkhill J, et al. Genomic surveillance of Escherichia coli ST131 identifies local expansion and serial replacement of subclones. Microb Genom. 2020;6(4):e000352. 10.1099/mgen.0.000352. Epub 2020 Mar 20.
    1. Royer G, Mercier-Darty M, Clermont O, Condamine B, Laouénan C, Decousser J-W, et al. E. coli genomes from the prospective study COLIBAFI (adults suffering from bacteremia between January and December 2005). BioProject PRJEB39260. NCBI. 2020. Available from:
    1. Seemann T. Shovill. 2021 [cited 2021 Jan 29]. Available from:
    1. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–477. doi: 10.1089/cmb.2012.0021.
    1. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–2069. doi: 10.1093/bioinformatics/btu153.
    1. Ingle DJ, Valcanis M, Kuzevski A, Tauschek M, Inouye M, Stinear T, et al. In silico serotyping of E. coli from short read data identifies limited novel O-loci but extensive diversity of O:H serotype combinations within and between pathogenic lineages. Microb Genom. 2016;2(7):e000064.
    1. Beghain J, Bridier-Nahmias A, Le Nagard H, Denamur E, Clermont O. ClermonTyping: an easy-to-use and accurate in silico method for Escherichia genus strain phylotyping. Microb Genom. 2018;4(7):e000192. 10.1099/mgen.0.000192. Epub 2018 Jun 19.
    1. Bourrel AS, Poirel L, Royer G, Darty M, Vuillemin X, Kieffer N, Clermont O, Denamur E, Nordmann P, Decousser JW, IAME Resistance Group. Lafaurie M, Bercot B, Walewski V, Lescat M, Carbonnelle E, Ousser F, Idri N, Ricard JD, Landraud L, le Dorze M, Jacquier H, Cambau E, Lepeule R, Gomart C. Colistin resistance in Parisian inpatient faecal Escherichia coli as the result of two distinct evolutionary pathways. J Antimicrob Chemother. 2019;74(6):1521–1530. doi: 10.1093/jac/dkz090.
    1. Nascimento M, Sousa A, Ramirez M, Francisco AP, Carriço JA, Vaz C. PHYLOViZ 2.0: providing scalable data integration and visualization for multiple phylogenetic inference methods. Bioinformatics. 2017;33(1):128–129. doi: 10.1093/bioinformatics/btw582.
    1. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67(11):2640–2644. doi: 10.1093/jac/dks261.
    1. Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, Aarestrup FM. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol. 2014;52(5):1501–1510. doi: 10.1128/JCM.03617-13.
    1. Chen L, Zheng D, Liu B, Yang J, Jin Q. VFDB 2016: hierarchical and refined dataset for big data analysis—10 years on. Nucleic Acids Research. 2016;44(D1):D694–D697. doi: 10.1093/nar/gkv1239.
    1. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, Philippon A, Allesoe RL, Rebelo AR, Florensa AF, Fagelhauer L, Chakraborty T, Neumann B, Werner G, Bender JK, Stingl K, Nguyen M, Coppens J, Xavier BB, Malhotra-Kumar S, Westh H, Pinholt M, Anjum MF, Duggett NA, Kempf I, Nykäsenoja S, Olkkola S, Wieczorek K, Amaro A, Clemente L, Mossong J, Losch S, Ragimbeau C, Lund O, Aarestrup FM. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020;75(12):3491–3500. doi: 10.1093/jac/dkaa345.
    1. Royer G, Decousser JW, Branger C, Dubois M, Médigue C, Denamur E, et al. PlaScope: a targeted approach to assess the plasmidome from genome assemblies at the species level. Microb Genom. 2018;4(9):e000211. 10.1099/mgen.0.000211.
    1. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, Møller Aarestrup F, Hasman H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrobial Agents and Chemotherapy. 2014;58(7):3895–3903. doi: 10.1128/AAC.02412-14.
    1. Cury J, Jové T, Touchon M, Néron B, Rocha EP. Identification and analysis of integrons and cassette arrays in bacterial genomes. Nucleic Acids Res. 2016;44(10):4539–4550. doi: 10.1093/nar/gkw319.
    1. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M, Falush D, Keane JA, Parkhill J. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31(22):3691–3693. doi: 10.1093/bioinformatics/btv421.
    1. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37(5):1530–1534. doi: 10.1093/molbev/msaa015.
    1. Touchon M, Perrin A, de Sousa JAM, Vangchhia B, Burn S, O’Brien CL, Denamur E, Gordon D, Rocha EPC. Phylogenetic background and habitat drive the genetic diversification of Escherichia coli. PLOS Genetics. 2020;16(6):e1008866. doi: 10.1371/journal.pgen.1008866.
    1. Naas T, Oueslati S, Bonnin RA, Dabos ML, Zavala A, Dortet L, Retailleau P, Iorga BI. Beta-lactamase database (BLDB) - structure and function. J Enzyme Inhib Med Chem. 2017;32(1):917–919. doi: 10.1080/14756366.2017.1344235.
    1. Feldgarden M, Brover V, Haft DH, Prasad AB, Slotta DJ, Tolstoy I, et al. Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob Agents Chemother. 2019;63(11):e00483–19. 10.1128/AAC.00483-19. Print 2019 Nov.
    1. Ruppé E, Cherkaoui A, Charretier Y, Girard M, Schicklin S, Lazarevic V, et al. From genotype to antibiotic susceptibility phenotype in the order Enterobacterales: a clinical perspective. Clin Microbiol Infect. 2020;26(5):643. doi: 10.1016/j.cmi.2019.09.018.
    1. Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35(3):526–528. doi: 10.1093/bioinformatics/bty633.
    1. Kislyuk AO, Haegeman B, Bergman NH, Weitz JS. Genomic fluidity: an integrative view of gene diversity within microbial populations. BMC Genomics. 2011;12(1):32. doi: 10.1186/1471-2164-12-32.
    1. Seemann T. Snippy. 2021 [cited 2021 Feb 18]. Available from:
    1. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, Parkhill J, Harris SR. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 2015;43(3):e15. doi: 10.1093/nar/gku1196.
    1. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47(W1):W256–W259. doi: 10.1093/nar/gkz239.
    1. Ben Zakour NL, Alsheikh-Hussain AS, Ashcroft MM, Khanh Nhu NT, Roberts LW, Stanton-Cook M, et al. Sequential acquisition of virulence and fluoroquinolone resistance has shaped the evolution of Escherichia coli ST131. mBio. 2016;7(2):e00347–e00316. doi: 10.1128/mBio.00347-16.
    1. Gordon DM, Geyik S, Clermont O, O’Brien CL, Huang S, Abayasekara C, et al. Fine-scale structure analysis shows epidemic patterns of clonal complex 95, a cosmopolitan Escherichia coli lineage responsible for extraintestinal infection. mSphere. 2017;2(3):e00168–17. 10.1128/mSphere.00168-17. eCollection May-Jun 2017.
    1. Tonkin-Hill G, Lees JA, Bentley SD, Frost SDW, Corander J. Fast hierarchical Bayesian analysis of population structure. Nucleic Acids Res. 2019;47(11):5539–5549. doi: 10.1093/nar/gkz361.
    1. Deatherage DE, Barrick JE. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol Biol. 2014;1151:165–188. doi: 10.1007/978-1-4939-0554-6_12.
    1. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc Series B (Methodological) 1995;57(1):289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x.
    1. Clermont O, Gordon DM, Brisse S, Walk ST, Denamur E. Characterization of the cryptic Escherichia lineages: rapid identification and prevalence. Environmental Microbiology. 2011;13(9):2468–2477. doi: 10.1111/j.1462-2920.2011.02519.x.
    1. Skurnik D, Clermont O, Guillard T, Launay A, Danilchanka O, Pons S, Diancourt L, Lebreton F, Kadlec K, Roux D, Jiang D, Dion S, Aschard H, Denamur M, Cywes-Bentley C, Schwarz S, Tenaillon O, Andremont A, Picard B, Mekalanos J, Brisse S, Denamur E. Emergence of antimicrobial-resistant Escherichia coli of animal origin spreading in humans. Mol Biol Evol. 2016;33(4):898–914. doi: 10.1093/molbev/msv280.
    1. Denamur E, Clermont O, Bonacorsi S, Gordon D. The population genetics of pathogenic Escherichia coli. Nature Reviews Microbiol. 2021;19(1):37–54. doi: 10.1038/s41579-020-0416-x.
    1. Matsumura Y, Pitout JDD, Gomi R, Matsuda T, Noguchi T, Yamamoto M, Peirano G, DeVinney R, Bradford PA, Motyl MR, Tanaka M, Nagao M, Takakura S, Ichiyama S. Global Escherichia coli Sequence Type 131 clade with blaCTX-M-27 gene. Emerg Infect Dis. 2016;22(11):1900–1907. doi: 10.3201/eid2211.160519.
    1. Duprilot M, Baron A, Blanquart F, Dion S, Pouget C, Lettéron P, et al. Success of Escherichia coli O25b:H4 Sequence Type 131 clade C associated with a decrease in virulence. Infect Immun. 2020;88(12):e00576–20. 10.1128/IAI.00576-20. Print 2020 Nov 16.
    1. Biggel M, Xavier BB, Johnson JR, Nielsen KL, Frimodt-Møller N, Matheeussen V, Goossens H, Moons P, van Puyvelde S. Horizontally acquired papGII-containing pathogenicity islands underlie the emergence of invasive uropathogenic Escherichia coli lineages. Nat Commun. 2020;11(1):5968. doi: 10.1038/s41467-020-19714-9.
    1. Hammad AM, Hoffmann M, Gonzalez-Escalona N, Abbas NH, Yao K, Koenig S, Allué-Guardia A, Eppinger M. Genomic features of colistin resistant Escherichia coli ST69 strain harboring mcr-1 on IncHI2 plasmid from raw milk cheese in Egypt. Infect Genet Evol. 2019;73:126–131. doi: 10.1016/j.meegid.2019.04.021.
    1. McNally A, Kallonen T, Connor C, Abudahab K, Aanensen DM, Horner C, et al. Diversification of colonization factors in a multidrug-resistant Escherichia coli lineage evolving under negative frequency-dependent selection. mBio. 2019;10(2):e00644–19. 10.1128/mBio.00644-19.
    1. Clermont O, Couffignal C, Blanco J, Mentré F, Picard B, Denamur E, et al. Two levels of specialization in bacteraemic Escherichia coli strains revealed by their comparison with commensal strains. Epidemiol Infect. 2017;145(5):872–882. doi: 10.1017/S0950268816003010.
    1. Picard B, Goullet P. Correlation between electrophoretic types B1 and B2 of carboxylesterase B and sex of patients in Escherichia coli urinary tract infections. Epidemiol Infect. 1989;103(1):97–103. doi: 10.1017/S0950268800030399.
    1. Monk JM, Charusanti P, Aziz RK, Lerman JA, Premyodhin N, Orth JD, Feist AM, Palsson BO. Genome-scale metabolic reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments. Proc Natl Acad Sci. 2013;110(50):20338–20343. doi: 10.1073/pnas.1307797110.
    1. Alteri CJ, Mobley HLT. Escherichia coli physiology and metabolism dictates adaptation to diverse host microenvironments. Curr Opin Microbiol. 2012;15(1):3–9. doi: 10.1016/j.mib.2011.12.004.
    1. Stephens CM, Adams-Sapper S, Sekhon M, Johnson JR, Riley LW. Genomic analysis of factors associated with low prevalence of antibiotic resistance in extraintestinal pathogenic Escherichia coli Sequence Type 95 strains. mSphere. 2017;2(2):e00390–16. 10.1128/mSphere.00390-16. eCollection Mar-Apr 2017.
    1. Johnson JR, Porter SB, Zhanel G, Kuskowski MA, Denamur E. Virulence of Escherichia coli clinical isolates in a murine sepsis model in relation to sequence type ST131 status, fluoroquinolone resistance, and virulence genotype. Infection and Immunity. 2012;80(4):1554–1562. doi: 10.1128/IAI.06388-11.
    1. Galardini M, Clermont O, Baron A, Busby B, Dion S, Schubert S, Beltrao P, Denamur E. Major role of iron uptake systems in the intrinsic extra-intestinal virulence of the genus Escherichia revealed by a genome-wide association study. PLOS Genetics. 2020;16(10):e1009065. doi: 10.1371/journal.pgen.1009065.
    1. Tenaillon O, Rodríguez-Verdugo A, Gaut RL, McDonald P, Bennett AF, Long AD, et al. The molecular diversity of adaptive convergence. Science. 2012;335(6067):457–461. doi: 10.1126/science.1212986.
    1. Reid SD, Herbelin CJ, Bumbaugh AC, Selander RK, Whittam TS. Parallel evolution of virulence in pathogenic Escherichia coli. Nature. 2000;406(6791):64–67. doi: 10.1038/35017546.
    1. Mamani R, Flament-Simon SC, García V, Mora A, Alonso MP, López C, García-Meniño I, Díaz-Jiménez D, Blanco JE, Blanco M, Blanco J. Sequence types, clonotypes, serotypes, and virotypes of extended-spectrum β-lactamase-producing Escherichia coli causing bacteraemia in a Spanish hospital over a 12-year period (2000 to 2011) Front Microbiol. 2019;10:1530. doi: 10.3389/fmicb.2019.01530.
    1. Zhou Z, Alikhan N-F, Mohamed K, Fan Y, the Agama Study Group. Achtman M. The EnteroBase user’s guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Research. 2020;30(1):138–152. doi: 10.1101/gr.251678.119.
    1. Birgy A, Bidet P, Levy C, Sobral E, Cohen R, Bonacorsi S. CTX-M-27-producing Escherichia coli of Sequence Type 131 and clade C1-M27. France. Emerg Infect Dis. 2017;23(5):885. doi: 10.3201/eid2305.161865.
    1. Chen SL, Ding Y, Apisarnthanarak A, Kalimuddin S, Archuleta S, Omar SFS, de PP, Koh TH, Chew KL, Atiya N, Suwantarat N, Velayuthan RD, Wong JGX, Lye DC. The higher prevalence of extended spectrum beta-lactamases among Escherichia coli ST131 in Southeast Asia is driven by expansion of a single, locally prevalent subclone. Sci Rep. 2019;9(1):13245. doi: 10.1038/s41598-019-49467-5.
    1. Wang L, Rothemund D, Curd H, Reeves PR. Species-wide variation in the Escherichia coli flagellin (H-antigen) gene. J Bacteriol. 2003;185(9):2936–2943. doi: 10.1128/JB.185.9.2936-2943.2003.
    1. DebRoy C, Roberts E, Fratamico PM. Detection of O antigens in Escherichia coli. Anim Health Res Rev. 2011;12(2):169–185. doi: 10.1017/S1466252311000193.
    1. Tchesnokova V, Aprikian P, Kisiela D, Gowey S, Korotkova N, Thomas W, Sokurenko E. Type 1 fimbrial adhesin FimH elicits an immune response that enhances cell adhesion of Escherichia coli. Infect Immun. 2011;79(10):3895–3904. doi: 10.1128/IAI.05169-11.
    1. Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, Bidet P, Bingen E, Bonacorsi S, Bouchier C, Bouvet O, Calteau A, Chiapello H, Clermont O, Cruveiller S, Danchin A, Diard M, Dossat C, Karoui ME, Frapy E, Garry L, Ghigo JM, Gilles AM, Johnson J, le Bouguénec C, Lescat M, Mangenot S, Martinez-Jéhanne V, Matic I, Nassif X, Oztas S, Petit MA, Pichon C, Rouy Z, Ruf CS, Schneider D, Tourret J, Vacherie B, Vallenet D, Médigue C, Rocha EPC, Denamur E. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genetics. 2009;5(1):e1000344. doi: 10.1371/journal.pgen.1000344.
    1. Kauffmann F. The serology of the coli group. J Immunol. 1947;57(1):71–100.
    1. Allou N, Cambau E, Massias L, Chau F, Fantin B. Impact of low-level resistance to fluoroquinolones due to qnrA1 and qnrS1 genes or a gyrA mutation on ciprofloxacin bactericidal activity in a murine model of Escherichia coli urinary tract infection. Antimicrob Agents Chemother. 2009;53(10):4292–4297. doi: 10.1128/AAC.01664-08.
    1. Henderson A, Paterson DL, Chatfield MD, Tambyah PA, Lye DC, De PP, et al. Association between minimum inhibitory concentration, beta-lactamase genes and mortality for patients treated with piperacillin/tazobactam or meropenem from the MERINO study. Clin Infect Dis. 2020;ciaa1479. 10.1093/cid/ciaa1479. Online ahead of print.
    1. Diard M, Garry L, Selva M, Mosser T, Denamur E, Matic I. Pathogenicity-associated islands in extraintestinal pathogenic Escherichia coli are fitness elements involved in intestinal colonization. J Bacteriol. 2010;192(19):4885–4893. doi: 10.1128/JB.00804-10.
    1. Skurnik D, Bonnet D, Bernède-Bauduin C, Michel R, Guette C, Becker J-M, et al. Characteristics of human intestinal Escherichia coli with changing environments. Environ Microbiol. 2008;10(8):2132–2137. doi: 10.1111/j.1462-2920.2008.01636.x.

Source: PubMed

3
Abonnere