Neurodevelopmental Outcomes of Extremely Preterm Infants Randomized to Stress Dose Hydrocortisone

Nehal A Parikh, Kathleen A Kennedy, Robert E Lasky, Jon E Tyson, Nehal A Parikh, Kathleen A Kennedy, Robert E Lasky, Jon E Tyson

Abstract

Objective: To compare the effects of stress dose hydrocortisone therapy with placebo on survival without neurodevelopmental impairments in high-risk preterm infants.

Study design: We recruited 64 extremely low birth weight (birth weight ≤1000 g) infants between the ages of 10 and 21 postnatal days who were ventilator-dependent and at high-risk for bronchopulmonary dysplasia. Infants were randomized to a tapering 7-day course of stress dose hydrocortisone or saline placebo. The primary outcome at follow-up was a composite of death, cognitive or language delay, cerebral palsy, severe hearing loss, or bilateral blindness at a corrected age of 18-22 months. Secondary outcomes included continued use of respiratory therapies and somatic growth.

Results: Fifty-seven infants had adequate data for the primary outcome. Of the 28 infants randomized to hydrocortisone, 19 (68%) died or survived with impairment compared with 22 of the 29 infants (76%) assigned to placebo (relative risk: 0.83; 95% CI, 0.61 to 1.14). The rates of death for those in the hydrocortisone and placebo groups were 31% and 41%, respectively (P = 0.42). Randomization to hydrocortisone also did not significantly affect the frequency of supplemental oxygen use, positive airway pressure support, or need for respiratory medications.

Conclusions: In high-risk extremely low birth weight infants, stress dose hydrocortisone therapy after 10 days of age had no statistically significant effect on the incidence of death or neurodevelopmental impairment at 18-22 months. These results may inform the design and conduct of future clinical trials.

Trial registration: ClinicalTrials.gov NCT00167544.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1. Stress Dose Hydrocortisone Trial Flow…
Fig 1. Stress Dose Hydrocortisone Trial Flow Diagram.
Flow of study participants from study enrollment to 18 to 22 months corrected age follow-up.

References

    1. Laughon MM, Langer JC, Bose CL, Smith PB, Ambalavanan N, Kennedy KA, et al. Prediction of bronchopulmonary dysplasia by postnatal age in extremely premature infants. Am J Respir Crit Care Med. 2011;183(12):1715–22. 10.1164/rccm.201101-0055OC
    1. Tyson JE, Parikh NA, Langer J, Green C, Rosemary HD; National Institute of Child Health and Human Development Neonatal Research Network. Intensive care for extreme prematurity—moving beyond gestational age. N Engl J Med. 2008;358(16):1672–81. 10.1056/NEJMoa073059
    1. Ball G, Counsell SJ, Anjari M, Merchant N, Arichi T, Doria V, et al. An optimised tract-based spatial statistics protocol for neonates: applications to prematurity and chronic lung disease. Neuroimage. 2010;53(1):94–102. 10.1016/j.neuroimage.2010.05.055
    1. Pogribna U, Yu X, Burson K, Zhou Y, Lasky RE, Narayana PA, et al. Perinatal clinical antecedents of white matter microstructural abnormalities on diffusion tensor imaging in extremely preterm infants. PLoS One. 2013;8(8):e72974 10.1371/journal.pone.0072974
    1. Watterberg KL, Shaffer ML, Mishefske MJ, Leach CL, Mammel MC, Couser RJ, et al. Growth and neurodevelopmental outcomes after early low-dose hydrocortisone treatment in extremely low birth weight infants. Pediatrics. 2007;120(1):40–8.
    1. Doyle LW, Ehrenkranz RA, Halliday HL. Postnatal hydrocortisone for preventing or treating bronchopulmonary dysplasia in preterm infants: a systematic review. Neonatology. 2010;98(2):111–17. 10.1159/000279992
    1. Yoder BA, Harrison M, Clark RH. Time-related changes in steroid use and bronchopulmonary dysplasia in preterm infants. Pediatrics. 2009;124(2):673–79. 10.1542/peds.2008-2793
    1. Hsieh EM, Hornik CP, Clark RH, Matthew LM, Daniel BK, Smith BP. Medication use in the neonatal intensive care unit. Amer J Perinatol. 2014;31(9):811–22.
    1. Higgins S, Friedlich P, Seri I. Hydrocortisone for hypotension and vasopressor dependence in preterm neonates: a meta-analysis. J Perinatol. 2010;30(6):373–78. 10.1038/jp.2009.126
    1. Doyle LW, Halliday HL, Ehrenkranz RA, Davis PG, Sinclair JC. Impact of postnatal systemic corticosteroids on mortality and cerebral palsy in preterm infants: effect modification by risk for chronic lung disease. Pediatrics. 2005;115(3):655–61.
    1. O'Shea TM, Allred EN, Dammann O, Hirtz D, Kuban KC, Paneth N, et al. The ELGAN study of the brain and related disorders in extremely low gestational age newborns. Early Hum Dev. 2009;85(11):719–25. 10.1016/j.earlhumdev.2009.08.060
    1. Patra K, Greene MM, Silvestri JM. J Perinatol. Neurodevelopmental impact of hydrocortisone exposure in extremely low birth weight infants: outcomes at 1 and 2 years. 2015;35(1):77–81. 10.1038/jp.2014.133
    1. Parikh NA, Lasky RE, Kennedy KA, Moya FR, Hochhauser L, Romo S, et al. Postnatal dexamethasone therapy and cerebral tissue volumes in extremely low birth weight infants. Pediatrics. 2007;119(2):265–72.
    1. Yeh TF, Lin YJ, Lin HC, Huang CC, Hsieh WS, Lin CH, et al. Outcomes at school age after postnatal dexamethasone therapy for lung disease of prematurity. N Eng J Med. 2004;350(13):1304–13.
    1. Halliday HL, Ehrenkranz RA, Doyle LW. Early (< 8 days) postnatal corticosteroids for preventing chronic lung disease in preterm infants. Cochrane Database Syst Rev. 2010(1):CD001146.
    1. Watterberg KL; American Academy of Pediatrics. Committee on Fetus and Newborn. Policy statement—postnatal corticosteroids to prevent or treat bronchopulmonary dysplasia. Pediatrics. 2010;126(4):800–808. 10.1542/peds.2010-1534
    1. Murphy BP, Inder TE, Huppi PS, Warfield S, Zientara GP, Kikinis R, et al. Impaired cerebral cortical gray matter growth after treatment with dexamethasone for neonatal chronic lung disease. Pediatrics. 2001;107(2):217–21.
    1. Peterson BS, Anderson AW, Ehrenkranz R, Staib LH, Taqeldin M, Colson E, et al. Regional brain volumes and their later neurodevelopmental correlates in term and preterm infants. Pediatrics. 2003;111(5):939–48.
    1. Woodward LJ, Edgin JO, Thompson D, Inder TE. Object working memory deficits predicted by early brain injury and development in the preterm infant. Brain. 2005;128(11):2578–87.
    1. Lind A, Parkkola R, Lehtonen L, Munck P, Maunu J, Lapinleimu H, Haataja L; PIPARI Study Group. Associations between regional brain volumes at term-equivalent age and development at 2 years of age in preterm children. Pediatr Radiol. 2011;41(8):953–61 10.1007/s00247-011-2071-x
    1. Parikh NA, Kennedy KA, Lasky RE, McDavid GE, Tyson JE. Pilot randomized trial of hydrocortisone in ventilator-dependent extremely preterm infants: effects on regional brain volumes. J Pediatr. 2013;162(4):685–90. 10.1016/j.jpeds.2012.09.054
    1. Papile LA, Tyson JE, Stoll BJ, Wright LL, Donovan EF, Bauer CR, et al. A multicenter trial of two dexamethasone regimens in ventilator- dependent premature infants. N Engl J Med 1998;338:1112–8
    1. Bayley N. Bayley Scales of Infant and Toddler Development–Third Edition. 2006; San Antonio, TX: Harcourt Assessment.
    1. Vohr BR, Stephens BE, Higgins RD, Bann CM, Hintz SR, Epi MS, et al. Are outcomes of extremely preterm infants improving? Impact of Bayley assessment on outcomes. J Pediatr. 2012;161(2):222–28. 10.1016/j.jpeds.2012.01.057
    1. Amiel-Tison C. Neuromotor status In: Taeusch HW, Yogman MW, editors. Follow-up management of the high-risk infant. Boston: Little, Brown; 1987.
    1. Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39(4):214–23.
    1. Baby Infant Growth Chart Calculator based on the World Health Organization growth curves [cited 2014 Oct 2]. Available: . Accessed June 2015.
    1. Lodygensky GA, Rademaker K, Zimine S, Gex-Fabry M, Lieftink AF, Lazeyras F, et al. Structural and functional brain development after hydrocortisone treatment for neonatal chronic lung disease. Pediatrics. 2005;116(1):1–7.
    1. Rademaker KJ, Uiterwaal CS, Groenendaal F, Venema MM, van Bel F, Beek FJ, et al. Neonatal hydrocortisone treatment: neurodevelopmental outcome and MRI at school age in preterm-born children. J Pediatr. 2007;150(4):351–57.
    1. van der Heide-Jalving M, Kamphuis PJ, van der Laan MJ, Bakker JM, Wiegant VM, Heijnen CJ, et al. Short- and long-term effects of neonatal glucocorticoid therapy: is hydrocortisone an alternative to dexamethasone? Acta paediatr. 2003;92(7):827–35.
    1. Benders MJ, Groenendaal F, van Bel F, Ha Vinh R, Dubois J, Lazeyras F, et al. Brain development of the preterm neonate after neonatal hydrocortisone treatment for chronic lung disease. Pediatr Res. 2009;66(5):555–59. 10.1203/PDR.0b013e3181b3aec5
    1. Eunice Kennedy Shriver National Institute of Child Health and Human Development. Hydrocortisone for BPD NICHD Neonatal Research Network Trial In: [Internet]. Bethesda (MD): National Library of Medicine (US) 2011. –[cited 2014 Feb 20]. Available: NLM Identifier: NCT01353313
    1. Peralta-Carcelen M, Moses M, Adams-Chapman I, Gantz M, Vohr BR; NICHD Neonatal Research Network; National Institutes of Health. Stability of neuromotor outcomes at 18 and 30 months of age after extremely low birth weight status. Pediatrics. 2009;123(5):e887–95. 10.1542/peds.2008-0135
    1. Hack M, Taylor HG, Drotar D, Schluchter M, Cartar L, Wilson-Costello D, et al. Poor predictive validity of the Bayley Scales of Infant Development for cognitive function of extremely low birth weight children at school age. Pediatrics. 2005;116(2):333–41.

Source: PubMed

3
Abonnere