ANO5 Muscle Disease

Sini Penttilä, Anna Vihola, Johanna Palmio, Bjarne Udd, Margaret P Adam, Jerry Feldman, Ghayda M Mirzaa, Roberta A Pagon, Stephanie E Wallace, Lora JH Bean, Karen W Gripp, Anne Amemiya, Sini Penttilä, Anna Vihola, Johanna Palmio, Bjarne Udd, Margaret P Adam, Jerry Feldman, Ghayda M Mirzaa, Roberta A Pagon, Stephanie E Wallace, Lora JH Bean, Karen W Gripp, Anne Amemiya

Excerpt

Clinical characteristics: The spectrum of ANO5 muscle disease is a continuum that ranges from asymptomatic hyperCKemia and exercise-induced myalgia to proximal and/or distal muscle weakness. The most typical presentation is limb-girdle muscular dystrophy type 2L (LGMD2L) with late-onset proximal lower-limb weakness in the fourth or fifth decade (range 15-70 years). Less common is Miyoshi-like disease (Miyoshi muscular dystrophy 3) with early-adult-onset calf distal myopathy (around age 20 years). Incidental hyperCKemia may be present even earlier. Initial symptoms are walking difficulties, reduced sports performance, and difficulties in standing on toes as well as nonspecific exercise myalgia and/or burning sensation in the calf muscles. Muscle weakness and atrophy are frequently asymmetric. Cardiac findings can include cardiomyopathy and arrhythmias and/or left ventricular dysfunction. Bulbar or respiratory symptoms have not been reported. Females have milder disease manifestations than males. Disease progression is slow in both the LGMD and distal forms; ambulation is preserved until very late in the disease course. Life span is normal.

Diagnosis/testing: The diagnosis of ANO5 muscle disease is established in a proband with identification of biallelic pathogenic variants in ANO5 on molecular genetic testing.

Management: Treatment of manifestations: No definitive treatments for the limb-girdle muscular dystrophies exist. Management is tailored to the individual. To assist with decreased mobility, the following are suggested: weight control to avoid obesity, physical therapy to promote mobility and prevent contractures, and use of mechanical aids to help ambulation and mobility.

Surveillance: Evaluate muscle strength and functional status every six to 12 months.

Agents/circumstances to avoid: Heavy muscle force training of weak muscles. The use of statins, which can induce muscle pain and worsen muscle weakness should be avoided, but if absolutely necessary for the health of the individual, use requires extra monitoring of clinical status especially at the beginning of treatment.

Genetic counseling: ANO5 muscle disease is inherited in an autosomal recessive manner. At conception, each sib of an affected individual has a 25% chance of being affected, a 50% chance of being an asymptomatic carrier, and a 25% chance of being unaffected and not a carrier. Carrier testing for at-risk family members, prenatal diagnosis for a pregnancy at increased risk and preimplantation testing are possible if the pathogenic variants in the family have been identified.

Copyright © 1993-2024, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved.

References

    1. Bolduc V, Marlow G, Boycott KM, Saleki K, Inoue H, Kroon J, Itakura M, Robitaille Y, Parent L, Baas F, Mizuta K, Kamata N, Richard I, Linssen WHJP, Mahjneh I, de Visser M, Bashir R, Brais B. Recessive mutations in the putative calcium-activated chloride channel Anoctamin 5 cause proximal LGMD2L and distal MMD3 muscular dystrophies. Am J Hum Genet. 2010;86:213–21.
    1. Chandra G, Defour A, Mamchoui K, Pandey K, Mishra S, Mouly V, Sreetama S, Mahad Ahmad M, Mahjneh I, Morizono H, Pattabiraman N, Menon AK, Jaiswal JK. Dysregulated calcium homeostasis prevents plasma membrane repair in Anoctamin 5/TMEM16E-deficient patient muscle cells. Cell Death Discov. 2019;5:118.
    1. Hicks D, Sarkozy A, Muelas N, Koehler K, Huebner A, Hudson G, Chinnery PF, Barresi R, Eagle M, Polvikoski T, Bailey G, Miller J, Radunovic A, Hughes PJ, Roberts R, Krause S, Walter MC, Laval SH, Straub V, Lochmüller H, Bushby K. A founder mutation in anoctamin 5 is a major cause of limb-girdle muscular dystrophy. Brain. 2011;134:171–82.
    1. Jin L, Liu Y, Sun F, Collins MT, Blackwell K, Woo AS, Reichenberger EJ, Hu Y. Three novel ANO5 missense mutations in Caucasian and Chinese families and sporadic cases with gnathodiaphyseal dysplasia. Sci Rep. 2017;7:40935.
    1. Magri F, Bo RD, D'Angelo MG, Sciacco M, Gandossini S, Govoni A, Napoli L, Ciscato P, Fortunato F, Brighina E, Bonato S, Bordoni A, Lucchini V, Corti S, Moggio M, Bresolin N, Comi GP. Frequency and characterisation of anoctamin 5 mutations in a cohort of Italian limb-girdle muscular dystrophy patients. Neuromuscul Disord. 2012;22:934–43.
    1. Mahjneh I, Jaiswal J, Lamminen A, Somer M, Marlow G, Kiuru-Enari S, Bashir R. A new distal myopathy with mutation in anoctamin 5. Neuromuscul Disord. 2010;20:791–5.
    1. Milone M, Liewluck T, Winder TL, Pianosi PT. Amyloidosis and exercise intolerance in ANO5 muscular dystrophy. Neuromuscul Disord. 2012;22:13–5.
    1. Nallamilli BRR, Chakravorty S, Kesari A, Tanner A, Ankala A, Schneider T, da Silva C, Beadling R, Alexander JJ, Askree SH, Whitt Z, Bean L, Collins C, Khadilkar S, Gaitonde P, Dastur R, Wicklund M, Mozaffar T, Harms M, Rufibach L, Mittal P, Hegde M. Genetic landscape and novel disease mechanisms from a large LGMD cohort of 4656 patients. Ann Clin Transl Neurol. 2018;5:1574–87.
    1. Papadopoulos C, Laforêt P, Nectoux J, Stojkovic T, Wahbi K, Carlier RY, Carlier PG, Leonard-Louis S, Leturcq F, Romero N, Eymard B, Behin A. Hyperckemia and myalgia are common presentations of anoctamin-5-related myopathy in French patients. Muscle Nerve. 2017;56:1096–100.
    1. Penttilä S, Palmio J, Suominen T, Raheem O, Evilä A, Muelas Gomez N, Tasca G, Waddell LB, Clarke NF, Barboi A, Hackman P, Udd B. Eight new mutations and the expanding phenotype variability in muscular dystrophy caused by ANO5. Neurology. 2012;78:897–903.
    1. Sarkozy A, Hicks D, Hudson J, Laval SH, Barresi R, Hilton-Jones D, Deschauer M, Harris E, Rufibach L, Hwang E, Bashir R, Walter MC, Krause S, van den Bergh P, Illa I, Pénisson-Besnier I, De Waele L, Turnbull D, Guglieri M, Schrank B, Schoser B, Seeger J, Schreiber H, Gläser D, Eagle M, Bailey G, Walters R, Longman C, Norwood F, Winer J, Muntoni F, Hanna M, Roberts M, Bindoff LA, Brierley C, Cooper RG, Cottrell DA, Davies NP, Gibson A, Gorman GS, Hammans S, Jackson AP, Khan A, Lane R, McConville J, McEntagart M, Al-Memar A, Nixon J, Panicker J, Parton M, Petty R, Price CJ, Rakowicz W, Ray P, Schapira AH, Swingler R, Turner C, Wagner KR, Maddison P, Shaw PJ, Straub V, Bushby K, Lochmüller H. ANO5 gene analysis in a large cohort of patients with anoctaminopathy: confirmation of male prevalence and high occurrence of the common exon 5 gene mutation. Hum Mutat. 2013;34:1111–8.
    1. Ten Dam L, Frankhuizen WS, Linssen WHJP, Straathof CS, Niks EH, Faber K, Fock A, Kuks JB, Brusse E, de Coo R, Voermans N, Verrips A, Hoogendijk JE, van der Pol L, Westra D, de Visser M, van der Kooi AJ, Ginjaar I. Autosomal recessive limb-girdle and Miyoshi muscular dystrophies in the Netherlands: The clinical and molecular spectrum of 244 patients. Clin Genet. 2019;96:126–33.
    1. van der Kooi AJ, Ten Dam L, Frankhuizen WS, Straathof CS, van Doorn PA, de Visser M, Ginjaar IB. ANO5 mutations in the Dutch limb girdle muscular dystrophy population. Neuromuscul Disord. 2013;23:456–60.
    1. Vihola A, Luque H, Savarese M, Penttilä S, Lindfors M, Leturq F, Eymard B, Tasca G, Brais B, Conte T, Charton K, Richard I, Udd B. Diagnostic anoctamin 5 protein defect in patients with ANO5 mutated muscular dystrophy. Neuropathol Appl Neurobiol. 2018;44:441–8.
    1. Wahbi K, Béhin A, Bécane HM, Leturcq F, Cossée M, Laforêt P, Stojkovic T, Carlier P, Toussaint M, Gaxotte V, Cluzel P, Eymard B, Duboc D. Dilated cardiomyopathy in patients with mutations in anoctamin 5. Int J Cardiol. 2013;168:76–9.
    1. Witting N, Duno M, Petri H, Krag T, Bundgaard H, Kober L, Vissing J. Anoctamin 5 muscular dystrophy in Denmark: prevalence, genotypes, phenotypes, cardiac findings, and muscle protein expression. J Neurol. 2013;260:2084–93.

Source: PubMed

3
Abonnere