Implication of Different ECG Left Ventricular Hypertrophy in Patients Undergoing Transcatheter Aortic Valve Replacement

Yujin Yang, Jung-Min Ahn, Do-Yoon Kang, Euihong Ko, Seonok Kim, Tae Oh Kim, Ju Hyeon Kim, Junghoon Lee, Seung-Ah Lee, Dae-Hee Kim, Ho Jin Kim, Joon Bum Kim, Suk Jung Choo, Seung-Jung Park, Duk-Woo Park, Yujin Yang, Jung-Min Ahn, Do-Yoon Kang, Euihong Ko, Seonok Kim, Tae Oh Kim, Ju Hyeon Kim, Junghoon Lee, Seung-Ah Lee, Dae-Hee Kim, Ho Jin Kim, Joon Bum Kim, Suk Jung Choo, Seung-Jung Park, Duk-Woo Park

Abstract

Background Various ECG criteria for left ventricular hypertrophy (LVH) have been proposed, but their association with clinical outcomes in patients with severe aortic stenosis undergoing transcatheter aortic valve replacement is unknown. We investigated the prevalence of ECG LVH according to different criteria and its prognostic impact on clinical outcomes after transcatheter aortic valve replacement. Methods and Results In this prospective observational cohort, we evaluated 700 patients who underwent transcatheter aortic valve replacement between March 2010 and December 2019. Baseline preprocedural LVH was defined by 3 ECG criteria-Sokolow-Lyon, Romhilt-Estes, and Cornell voltage criteria. The primary outcome was major adverse cardiac or cerebrovascular event (MACCE; composite of death, myocardial infarction, stroke, or rehospitalization from cardiovascular cause); the key secondary outcome was all-cause and cardiovascular mortality. Among 596 eligible patients, the prevalence of LVH was determined as 56.3% by Sokolow-Lyon, 31.1% by Romhilt-Estes, and 48.1% by Cornell criteria. Regardless of the criteria, patients with ECG LVH had more severe aortic stenosis hemodynamics and higher left ventricular mass index. After multivariate adjustment, the presence of LVH by the Cornell criteria was significantly associated with lower risks of MACCE (adjusted hazard ratio [HR], 0.68; 95% CI, 0.51-0.91; P=0.009), all-cause mortality (adjusted HR, 0.55; 95% CI, 0.34-0.90 [P=0.017]), and cardiovascular mortality (adjusted HR, 0.40; 95% CI, 0.20-0.79 [P=0.008]). However, this association was absent with the Sokolow-Lyon and Romhilt-Estes criteria. Conclusions ECG LVH by Cornell criteria only was significantly associated with lower risks of MACCE and all-cause or cardiovascular mortality. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT03298178.

Keywords: aortic valve stenosis; left ventricular hypertrophy; transcatheter aortic valve replacement.

Figures

Figure 1. Time‐to‐event curves for the primary…
Figure 1. Time‐to‐event curves for the primary composite outcome according to the presence of ECG left ventricular hypertrophy (LVH) by Sokolow‐Lyon criteria (A), Romhilt‐Estes score (B), and Cornell criteria (C).
Kaplan–Meier (KM) estimates of the rate of the primary composite outcome of major adverse cardiac or cerebrovascular events (MACCE), which was a composite of all‐cause death, myocardial infarction, stroke, and rehospitalization from cardiovascular causes. TAVR indicates transaortic valvular replacement.
Figure 2. Time‐to‐event curves for all‐cause and…
Figure 2. Time‐to‐event curves for all‐cause and cardiovascular death according to the presence of ECG left ventricular hypertrophy (LVH) by Sokolow‐Lyon criteria (A and D), Romhilt‐Estes score (B and E), and Cornell criteria (C and F).
Kaplan–Meier (KM) estimates of the rates of all‐cause death and cardiovascular death. TAVR indicates transaortic valvular replacement.
Figure 3. Adjusted hazard ratios for (HRs;…
Figure 3. Adjusted hazard ratios for (HRs; A) primary composite outcome, (B) all‐cause death, and (C) cardiovascular death according to the presence of ECG left ventricular hypertrophy (LVH) by Sokolow‐Lyon criteria, Romhilt‐Estes score, and Cornell criteria.
Primary composite outcome of major adverse cardiac or cerebrovascular event (MACCE) was defined as a composite of all‐cause, myocardial infarction, stroke, and rehospitalization from cardiovascular causes.

References

    1. Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez‐Sarano M. Burden of valvular heart diseases: a population‐based study. Lancet. 2006;368:1005–1011. doi: 10.1016/S0140-6736(06)69208-8
    1. Shah AS, Chin CW, Vassiliou V, Cowell SJ, Doris M, Kwok TC, Semple S, Zamvar V, White AC, McKillop G, et al. Left ventricular hypertrophy with strain and aortic stenosis. Circulation. 2014;130:1607–1616. doi: 10.1161/CIRCULATIONAHA.114.011085
    1. Kupari M, Turto H, Lommi J. Left ventricular hypertrophy in aortic valve stenosis: preventive or promotive of systolic dysfunction and heart failure? Eur Heart J. 2005;26:1790–1796. doi: 10.1093/eurheartj/ehi290
    1. Dweck MR, Boon NA, Newby DE. Calcific aortic stenosis. J Am Coll Cardiol. 2012;60:1854–1863. doi: 10.1016/j.jacc.2012.02.093
    1. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. New Engl J Med. 1990;322:1561–1566. doi: 10.1056/NEJM199005313222203
    1. Aro AL, Chugh SS. Clinical diagnosis of electrical versus anatomic left ventricular hypertrophy: prognostic and therapeutic implications. Circ Arrhythm Electrophysiol. 2016;9:e003629. doi: 10.1161/CIRCEP.115.003629
    1. Sundström J, Lind L, Arnlöv J, Zethelius B, Andrén B, Lithell HO. Echocardiographic and electrocardiographic diagnoses of left ventricular hypertrophy predict mortality independently of each other in a population of elderly men. Circulation. 2001;103:2346–2351. doi: 10.1161/01.CIR.103.19.2346
    1. Misawa Y. Left ventricular mass index in aortic valve surgery: a new index for early valve replacement? Eur J Cardiothorac Surg. 2003;24:666–667. author reply 667–668. doi: 10.1016/S1010-7940(03)00458-5
    1. Duncan AI, Lowe BS, Garcia MJ, Xu M, Gillinov AM, Mihaljevic T, Koch CG. Influence of concentric left ventricular remodeling on early mortality after aortic valve replacement. Ann Thorac Surg. 2008;85:2030–2039. doi: 10.1016/j.athoracsur.2008.02.075
    1. Minamino‐Muta E, Kato T, Morimoto T, Taniguchi T, Inoko M, Haruna T, Izumi T, Miyamoto S, Nakane E, Sasaki K, et al. Impact of the left ventricular mass index on the outcomes of severe aortic stenosis. Heart. 2017;103:1992–1999. doi: 10.1136/heartjnl-2016-311022
    1. Kampaktsis PN, Ullal AV, Swaminathan RV, Minutello RM, Kim L, Bergman GS, Feldman DN, Singh H, Wong SC, Okin PM. Absence of electrocardiographic left ventricular hypertrophy is associated with increased mortality after transcatheter aortic valve replacement. Clin Cardiol. 2018;41:1246–1251. doi: 10.1002/clc.23034
    1. Varshney AS, Manandhar P, Vemulapalli S, Kirtane AJ, Mathew V, Shah B, Lowenstern A, Kosinski AS, Kaneko T, Thourani VH, et al. Left ventricular hypertrophy does not affect 1‐year clinical outcomes in patients undergoing transcatheter aortic valve replacement. JACC Cardiovasc Interv. 2019;12:373–382. doi: 10.1016/j.jcin.2018.11.013
    1. Zhang R, Jou S, Cao Y, Keller K, Xiao E, de La Rosa A, DeLago A, El‐Hajjar M, Torosoff M. Absence of electrocardiographic left ventricular hypertrophy in patients undergoing transcatheter aortic valve replacement is associated with increased mortality. J Electrocardiol. 2020;63:12–16. doi: 10.1016/j.jelectrocard.2020.09.010
    1. Gonzales H, Douglas PS, Pibarot P, Hahn RT, Khalique OK, Jaber WA, Cremer P, Weissman NJ, Asch FM, Zhang Y, et al. Left ventricular hypertrophy and clinical outcomes over 5 years after TAVR: an analysis of the partner trials and registries. JACC Cardiovasc Interv. 2020;13:1329–1339. doi: 10.1016/j.jcin.2020.03.011
    1. Hancock EW, Deal BJ, Mirvis DM, Okin P, Kligfield P, Gettes LS, Bailey JJ, Childers R, Gorgels A, Josephson M, et al. AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: part V: electrocardiogram changes associated with cardiac chamber hypertrophy: a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, council on clinical cardiology; the American College of Cardiology Foundation; and the heart rhythm society: endorsed by the international society for computerized electrocardiology. Circulation. 2009;119:e251–e261. doi: 10.1161/CIRCULATIONAHA.108.191097
    1. Bacharova L, Ugander M. Left ventricular hypertrophy: the relationship between the electrocardiogram and cardiovascular magnetic resonance imaging. Ann Noninvasive Electrocardiol. 2014;19:524–533. doi: 10.1111/anec.12223
    1. Oh JK, Park SJ, Kim HJ, Ahn JM, Kim DH, Gwon HC, Park PW, Kang DH, Park DW, Park SJ. Transcatheter versus surgical aortic valve replacement in low‐risk, elderly patients with severe aortic stenosis. J Am Coll Cardiol. 2019;74:1514–1515. doi: 10.1016/j.jacc.2019.07.028
    1. Yoon YH, Ahn JM, Kang DY, Ko E, Lee PH, Lee SW, Kim HJ, Kim JB, Choo SJ, Park DW, et al. Incidence, predictors, management, and clinical significance of new‐onset atrial fibrillation after transcatheter aortic valve implantation. Am J Cardiol. 2019;123:1127–1133. doi: 10.1016/j.amjcard.2018.12.041
    1. Yoon YH, Ko Y, Kim KW, Kang DY, Ahn JM, Ko E, Park H, Cho SC, Kim HJ, Kim JB, et al. Prognostic value of baseline sarcopenia on 1‐year mortality in patients undergoing transcatheter aortic valve implantation. Am J Cardiol. 2021;139:79–86. doi: 10.1016/j.amjcard.2020.10.039
    1. Sokolow M, Lyon TP. The ventricular complex in left ventricular hypertrophy as obtained by unipolar precordial and limb leads. 1949. Ann Noninvasive Electrocardiol. 2001;6:343–368. doi: 10.1111/j.1542-474x.2001.tb00129.x
    1. Romhilt DW, Estes EH Jr. A point‐score system for the ECG diagnosis of left ventricular hypertrophy. Am Heart J. 1968;75:752–758. doi: 10.1016/0002-8703(68)90035-5
    1. Casale PN, Devereux RB, Kligfield P, Eisenberg RR, Miller DH, Chaudhary BS, Phillips MC. Electrocardiographic detection of left ventricular hypertrophy: development and prospective validation of improved criteria. J Am Coll Cardiol. 1985;6:572–580. doi: 10.1016/S0735-1097(85)80115-7
    1. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, Fleisher LA, Jneid H, Mack MJ, McLeod CJ, O’Gara PT, et al. 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. Circulation. 2017;135:e1159–e1195. doi: 10.1161/CIR.0000000000000503
    1. Lang RM, Badano LP, Mor‐Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1–39.e14. doi: 10.1016/j.echo.2014.10.003
    1. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005;18:1440–1463. doi: 10.1016/j.echo.2005.10.005
    1. Kang DH, Park SJ, Shin SH, Hong GR, Lee S, Kim MS, Yun SC, Song JM, Park SW, Kim JJ. Angiotensin receptor neprilysin inhibitor for functional mitral regurgitation. Circulation. 2019;139:1354–1365. doi: 10.1161/CIRCULATIONAHA.118.037077
    1. Kang DH, Park SJ, Lee SA, Lee S, Kim DH, Kim HK, Yun SC, Hong GR, Song JM, Chung CH, et al. Early surgery or conservative care for asymptomatic aortic stenosis. New Engl J Med. 2020;382:111–119. doi: 10.1056/NEJMoa1912846
    1. Kappetein AP, Head SJ, Généreux P, Piazza N, van Mieghem NM, Blackstone EH, Brott TG, Cohen DJ, Cutlip DE, van Es GA, et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation: the valve academic research consortium‐2 consensus document. J Thorac Cardiovasc Surg. 2013;145:6–23. doi: 10.1016/j.jtcvs.2012.09.002
    1. Edwards FH, Cohen DJ, O’Brien SM, Peterson ED, Mack MJ, Shahian DM, Grover FL, Tuzcu EM, Thourani VH, Carroll J, et al. Development and validation of a risk prediction model for in‐hospital mortality after transcatheter aortic valve replacement. JAMA Cardiol. 2016;1:46–52. doi: 10.1001/jamacardio.2015.0326
    1. Dvir D, Waksman R, Barbash IM, Kodali SK, Svensson LG, Tuzcu EM, Xu KE, Minha Sa'ar, Alu MC, Szeto WY, et al. Outcomes of patients with chronic lung disease and severe aortic stenosis treated with transcatheter versus surgical aortic valve replacement or standard therapy: insights from the partner trial (placement of aortic transcatheter valve). J Am Coll Cardiol. 2014;63:269–279. doi: 10.1016/j.jacc.2013.09.024
    1. Balan P, Zhao Y, Johnson S, Arain S, Dhoble A, Estrera A, Smalling R, Nguyen TC. The society of thoracic surgery risk score as a predictor of 30‐day mortality in transcatheter vs surgical aortic valve replacement: a single‐center experience and its implications for the development of a TAVR risk‐prediction model. J Invasive Cardiol. 2017;29:109–114.
    1. Auffret V, Regueiro A, Del Trigo M, Abdul‐Jawad Altisent O, Campelo‐Parada F, Chiche O, Puri R, Rodés‐Cabau J. Predictors of early cerebrovascular events in patients with aortic stenosis undergoing transcatheter aortic valve replacement. J Am Coll Cardiol. 2016;68:673–684. doi: 10.1016/j.jacc.2016.05.065
    1. Buchner S, Debl K, Haimerl J, Djavidani B, Poschenrieder F, Feuerbach S, Riegger GA, Luchner A. Electrocardiographic diagnosis of left ventricular hypertrophy in aortic valve disease: evaluation of ECG criteria by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2009;11:18. doi: 10.1186/1532-429X-11-18
    1. Sjöberg S, Sundh F, Schlegel T, Maynard C, Rück A, Wagner G, Ugander M. The relationship between electrocardiographic left ventricular hypertrophy criteria and echocardiographic mass in patients undergoing transcatheter aortic valve replacement. J Electrocardiol. 2015;48:630–636. doi: 10.1016/j.jelectrocard.2015.03.008
    1. Bacharova L. Missing link between molecular aspects of ventricular arrhythmias and QRS complex morphology in left ventricular hypertrophy. Int J Mol Sci. 2019;21. doi: 10.3390/ijms21010048
    1. Bacharova L, Szathmary V, Kovalcik M, Mateasik A. Effect of changes in left ventricular anatomy and conduction velocity on the QRS voltage and morphology in left ventricular hypertrophy: a model study. J Electrocardiol. 2010;43:200–208. doi: 10.1016/j.jelectrocard.2009.07.014
    1. Tanaka T, Yahagi K, Asami M, Ninomiya K, Kikushima H, Okuno T, Horiuchi YU, Yuzawa H, Komiyama K, Tanaka J, et al. Prognostic impact of electrocardiographic left ventricular hypertrophy following transcatheter aortic valve replacement. J Cardiol. 2021;77:346–352. doi: 10.1016/j.jjcc.2020.12.017
    1. Martha JW, Pranata R, Yonas E, Wibowo A, Akbar MR. Absence of electrocardiographic left ventricular hypertrophy and poor outcome in patients undergoing transcatheter aortic valve replacement‐a systematic review and meta‐analysis. J Card Surg. 2021;36:2233–2239. doi: 10.1111/jocs.15515
    1. Hein S, Arnon E, Kostin S, Schönburg M, Elsässer A, Polyakova V, Bauer EP, Klövekorn W‐P, Schaper J. Progression from compensated hypertrophy to failure in the pressure‐overloaded human heart. Circulation. 2003;107:984–991. doi: 10.1161/01.CIR.0000051865.66123.B7
    1. Ternacle J, Krapf L, Mohty D, Magne J, Nguyen A, Galat A, Gallet R, Teiger E, Côté N, Clavel MA, et al. Aortic stenosis and cardiac amyloidosis: JACC review topic of the week. J Am Coll Cardiol. 2019;74:2638–2651. doi: 10.1016/j.jacc.2019.09.056
    1. Dohy Z, Vereckei A, Horvath V, Czimbalmos C, Szabo L, Toth A, Suhai FI, Csecs I, Becker D, Merkely B, et al. How are ECG parameters related to cardiac magnetic resonance images? Electrocardiographic predictors of left ventricular hypertrophy and myocardial fibrosis in hypertrophic cardiomyopathy. Ann Noninvas Electrocardiol. 2020;25:e12763. doi: 10.1111/anec.12763

Source: PubMed

3
Abonnere