Neuromodulation of Aerobic Exercise-A Review

Saskia Heijnen, Bernhard Hommel, Armin Kibele, Lorenza S Colzato, Saskia Heijnen, Bernhard Hommel, Armin Kibele, Lorenza S Colzato

Abstract

Running, and aerobic exercise in general, is a physical activity that increasingly many people engage in but that also has become popular as a topic for scientific research. Here we review the available studies investigating whether and to which degree aerobic exercise modulates hormones, amino acids, and neurotransmitters levels. In general, it seems that factors such as genes, gender, training status, and hormonal status need to be taken into account to gain a better understanding of the neuromodular underpinnings of aerobic exercise. More research using longitudinal studies and considering individual differences is necessary to determine actual benefits. We suggest that, in order to succeed, aerobic exercise programs should include optimal periodization, prevent overtraining and be tailored to interindividual differences, including neuro-developmental and genetically-based factors.

Keywords: BDNF; HPA axis; aerobic exercise; dopamine; endocannabinoids; serotonin; stress.

References

    1. Adell A., Garcia-Marquez C., Armario A., Gelpi E. (1988). Chronic stress increases serotonin and noradrenaline in rat brain and sensitizes their responses to a further acute stress. J. Neurochem. 50, 1678–1681. 10.1111/j.1471-4159.1988.tb02462.x
    1. Altemus M., Roca C., Galliven E., Romanos C., Deuster P. (2001). Increased vasopressin and adrenocorticotropin responses to stress in the midluteal phase of the menstrual cycle. J. Clin. Endocrinol. Metab. 86, 2525–2530. 10.1210/jcem.86.6.7596
    1. Angeli A., Minetto M., Dovio A., Pacotti P. (2004). The overtraining syndrome in athletes: a stress-related disorder. J. Endocrinol. Invest. 27, 603–612. 10.1007/BF03347487
    1. Bakkali-Kassemi L., El Ouezzani S., Magoul R., Merroun I., Lopez-Jurado M., Errami M. (2011). Effects of cannabinoids on neuropeptide Y and β-endorphin expression in the rat hypothalamic arcuate nucleus. Br. J. Nutr. 105, 654–660. 10.1017/S0007114510004095
    1. Boecker H., Sprenger T., Spilker M. E., Henriksen G., Koppenhoefer M., Wagner K. J., et al. . (2008). The runner's high: opioidergic mechanisms in the human brain. Cereb. Cortex 18, 2523–2531. 10.1093/cercor/bhn013
    1. Bowman R. E., Beck K. D., Luine V. N. (2003). Chronic stress effects on memory: sex differences in performance and monoaminergic activity. Horm. Behav. 43, 48–59. 10.1016/S0018-506X(02)00022-3
    1. Chang Y. K., Labban J. D., Gapin J. I., Etnier J. L. (2012). The effects of acute exercise on cognitive performance: a meta-analysis. Brain Res. 1453, 87–101. 10.1016/j.brainres.2012.02.068
    1. Colzato L. S., Hertsig G., van den Wildenberg W. P. M., Hommel B. (2010). Estrogen modulates inhibitory control in healthy human females: evidence from the stop-signal paradigm. Neuroscience 167, 709–715. 10.1016/j.neuroscience.2010.02.029
    1. Colzato L. S., Hommel B. (2014). Effects of estrogen on higher-order cognitive functions in unstressed human females may depend on individual variation in dopamine baseline levels. Front. Neurosci. 8:65. 10.3389/fnins.2014.00065
    1. Colzato L. S., Jongkees B. J., Sellaro R., van den Wildenberg W. P. M., Hommel B. (2014). Eating to stop: tyrosine supplementation enhances inhibitory control but not response execution. Neuropsychologia 62, 398–402. 10.1016/j.neuropsychologia.2013.12.027
    1. Colzato L. S., Kool W., Hommel B. (2008). Stress modulation of visuomotor binding. Neuropsychologia 46, 1542–1548. 10.1016/j.neuropsychologia.2008.01.006
    1. Colzato L. S., Szapora A., Pannekoek J. N., Hommel B. (2013). The impact of physical exercise on convergent and divergent thinking. Front. Hum. Neurosci. 7:824. 10.3389/fnhum.2013.00824
    1. Colzato L. S., van der Does A. J. W., Kouwenhoven C., Elzinga B. M., Hommel B. (2011). BDNF Val66Met polymorphism is associated with higher anticipatory cortisol stress response, anxiety, and alcohol consumption in healthy adults. Psychoneuroendocrinology 36, 1562–1569. 10.1016/j.psyneuen.2011.04.010
    1. Crosby K. M., Bains J. S. (2012). The intricate link between glucocorticoids and endocannabinoids at stress-relevant synapses in the hypothalamus. Neuroscience 204, 31–37. 10.1016/j.neuroscience.2011.11.049
    1. Deijen J. B., Orbleke J. F. (1994). Effect of tyrosine on cognitive function and blood pressure under stress. Brain Res. Bull. 33, 319–323. 10.1016/0361-9230(94)90200-3
    1. Dey S., Singh R. H., Dey P. K. (1992). Exercise training: significance of regional alterations in serotonin metabolism of rat brain in relation to antidepressant effect of exercise. Physiol. Behav. 52, 1095–1099. 10.1016/0031-9384(92)90465-E
    1. Duclos M., Corcuff J. B., Arsac L., Moreau-Gaudry F., Rashedi M., Roger P., et al. . (1998). Corticotroph axis sensitivity after exercise in endurance-trained athletes. Clin. Endocrinol. (Oxf.) 48, 493–501. 10.1046/j.1365-2265.1998.00334.x
    1. Ehlert U., Gaab J., Heinrichs M. (2001). Psychoneuroendocrinological contributions to the etiology of depression, posttraumatic stress disorder, and stress-related bodily disorders: the role of the hypothalamus-pituitary-adrenal axis. Biol. Psychol. 57, 141–152. 10.1016/S0301-0511(01)00092-8
    1. Fattore L., Fadda P., Spano M. S., Pistis M., Fratta W. (2008). Neurobiological mechanisms of cannabinoid addiction. Mol. Cell. Endocrinol. 286, S97–S107. 10.1016/j.mce.2008.02.006
    1. Ferreira-Vieira T. H., Bastos C. P., Pereira G. S., Moreira F. A., Massensini A. R. (2014). A role for the endocannabinoid system in exercise- induced spatial memory enhancement in mice. Hippocampus 24, 79–88. 10.1002/hipo.22206
    1. Foley T. E., Fleshner M. (2008). Neuroplasticity of dopamine circuits after exercise: implications for central fatigue. Neuromolecular Med. 10, 67–80. 10.1007/s12017-008-8032-3
    1. Fuss J., Steinle J., Bindila L., Auer M. K., Kirchherr H., Lutz B., et al. . (2015). A runner's high depends on cannabinoid receptors in mice. Proc. Natl. Acad. Sci. U.S.A. 112, 13105–13108. 10.1073/pnas.1514996112
    1. Gouarné C., Groussard C., Gratas-Delamarche A., Delamarche P., Duclos M. (2005). Overnight urinary cortisol and cortisone add insights into adaptation to training. Med. Sci. Sports Exerc. 37, 1157–1167. 10.1249/01.mss.0000170099.10038.3b
    1. Gray J. M., Vecchiarelli H. A., Morena M., Lee T. T., Hermanson D. J., Kim A. B., et al. . (2015). Corticotropin-releasing hormone drives anandamide hydrolysis in the amygdala to promote anxiety. J. Neurosci. 35, 3879–3892. 10.1523/JNEUROSCI.2737-14.2015
    1. Gunduz-Cinar O., Hill M. N., McEwen B. S., Holmes A. (2013). Amygdala FAAH and anandamide: mediating protection and recovery from stress. Trends Pharmacol. Sci. 34, 637–644. 10.1016/j.tips.2013.08.008
    1. Haider S., Khaliq S., Ahmed S. P., Haleem D. J. (2006). Long-term tryptophan administration enhances cognitive performance and increases 5HT metabolism in the hippocampus of female rats. Amino Acids 31, 421–425. 10.1007/s00726-005-0310-x
    1. Harmer C. J. (2008). Serotonin and emotional processing: does it help explain antidepressant drug action? Neuropharmacology 55, 1023–1028. 10.1016/j.neuropharm.2008.06.036
    1. Heyman E., Gamelin F. X., Goekint M., Piscitelli F., Roelands B., Leclair E., et al. . (2012). Intense exercise increases circulating endocannabinoid and BDNF levels in humans—possible implications for reward and depression. Psychoneuroendocrinology 37, 844–851. 10.1016/j.psyneuen.2011.09.017
    1. Hill M. N., McLaughlin R. J., Pan B., Fitzgerald M. L., Roberts C. J., Lee T. T. Y., et al. . (2011). Recruitment of prefrontal cortical endocannabinoid signaling by glucocorticoids contributes to termination of the stress response. J. Neurosci. 31, 10506–10515. 10.1523/JNEUROSCI.0496-11.2011
    1. Hill M. N., Titterness A. K., Morrish A. C., Carrier E. J., Lee T. T. Y., Gil- Mohapel J., et al. . (2010). Endogenous cannabinoid signaling is required for voluntary exercise-induced enhancement of progenitor cell proliferation in the hippocampus. Hippocampus 20, 513–523. 10.1002/hipo.20647
    1. Hillman C. H., Erickson K. I., Kramer A. F. (2008). Be smart, exercise your heart: exercise effects on brain and cognition. Nat. Rev. Neurosci. 9, 58–65. 10.1038/nrn2298
    1. Hooper A. E. C., Bryan A. D., Hagger M. S. (2014). What keeps a body moving? The brain-derived neurotrophic factor val66met polymorphism and intrinsic motivation to exercise in humans. J. Behav. Med. 37, 1180–1192. 10.1007/s10865-014-9567-4
    1. Huang T., Larsen K. T., Ried-Larsen M., Møller N. C., Andersen L. B. (2014). The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans: a review. Scand. J. Med. Sci. Sports 24, 1–10. 10.1111/sms.12069
    1. Kanaley J. A., Weltman J. Y., Pieper K. S., Weltman A., Hartman M. L. (2001). Cortisol and growth hormone responses to exercise at different times of day. J. Clin. Endocrinol. Metab. 86, 2881–2889. 10.1210/jc.86.6.2881
    1. Kolata G. (2002). Runner's high? Endorphins? Fiction say some scientists. The New York Times, 21 May.
    1. Labsy Z., Prieur F., Le Panse B., Do M. C., Gagey O., Lasne F., et al. . (2013). The diurnal patterns of cortisol and dehydroepiandrosterone in relation to intense aerobic exercise in recreationally trained soccer players. Stress 16, 261–265. 10.3109/10253890.2012.707259
    1. Leckie R. L., Oberlin L. E., Voss M. W., Prakash R. S., Szabo-Reed A., Chaddock- Heyman L., et al. . (2014). BDNF mediates improvements in executive function following a 1-year exercise intervention. Front. Hum. Neurosci. 8:985. 10.3389/fnhum.2014.00985
    1. Lupien S. J., McEwen B. S., Gunnar M. R., Heim C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci. 10, 434–445. 10.1038/nrn2639
    1. Maccarrone M., Valensise H., Bari M., Lazzarin N., Romanini C., Finazzi- Agrò A. (2001). Progesterone up-regulates anandamide hydrolase in human lymphocytes: role of cytokines and implications for fertility. J. Immunol. 166, 7183–7189. 10.4049/jimmunol.166.12.7183
    1. Marco E. M., García-Gutiérrez M. S., Bermúdez-Silva F. J., Moreira F. A., Guimarães F., Manzanares J., et al. . (2011). Endocannabinoid system and psychiatry: in search of a neurobiological basis for detrimental and potential therapeutic effects. Front. Behav. Neurosci. 5:63. 10.3389/fnbeh.2011.00063
    1. Martinowich K., Lu B. (2008). Interaction between BDNF and serotonin: role in mood disorders. Neuropsychopharmacology 33, 73–83. 10.1038/sj.npp.1301571
    1. Meeusen R., De Meirleir K. (1995). Exercise and brain neurotransmission. Sports Med. 20, 160–188. 10.2165/00007256-199520030-00004
    1. Miller D. B., O'Callaghan J. P. (2002). Neuroendocrine aspects of the response to stress. Metabolism 51, 5–10. 10.1053/meta.2002.33184
    1. Murakami S., Imbe H., Morikawa Y., Kubo C., Senba E. (2005). Chronic stress, as well as acute stress, reduces BDNF mRNA expression in the rat hippocampus but less robustly. Neurosci. Res. 53, 129–139. 10.1016/j.neures.2005.06.008
    1. Nieoullon A. (2002). Dopamine and the regulation of cognition and attention. Prog. Neurobiol. 67, 53–83. 10.1016/S0301-0082(02)00011-4
    1. Patrick R. P., Ames B. N. (2015). Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: relevance for ADHD, bipolar, schizophrenia, and impulsive behavior. FASEB J. 29, 2207–2222. 10.1096/fj.14-268342
    1. Peeters F., Nicholson N. A., Berkhof J. (2003). Cortisol responses to daily events in major depressive disorder. Psychosom. Med. 65, 836–841. 10.1097/01.PSY.0000088594.17747.2E
    1. Ranabir S., Reetu K. (2011). Stress and hormones. Indian J. Endocrinol. Metab. 15, 18. 10.4103/2230-8210.77573
    1. Raichlen D. A., Foster A. D., Seillier A., Giuffrida A., Gerdeman G. L. (2013). Exercise-induced endocannabinoid signaling is modulated by intensity. Eur. J. Appl. Physiol. 113, 869–875. 10.1007/s00421-012-2495-5
    1. Reich C. G., Taylor M. E., McCarthy M. M. (2009). Differential effects of chronic unpredictable stress on hippocampal CB1 receptors in male and female rats. Behav. Brain Res. 203, 264–269. 10.1016/j.bbr.2009.05.013
    1. Sparling P. B., Giuffrida A., Piomelli D., Rosskopf L., Dietrich A. (2003). Exercise activates the endocannabinoid system. Cogn. Neurosci. Neuropsychol. 17, 2209–2211. 10.1097/00001756-200312020-00015
    1. Steenbergen L., Sellaro R., Hommel B., Colzato L. S. (2015). Tyrosine promotes cognitive flexibility: evidence from proactive vs. reactive control during task switching performance. Neuropsychologia 69, 50–55. 10.1016/j.neuropsychologia.2015.01.022
    1. Szuhany K. L., Bugatti M., Otto M. W. (2015). A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J. Psychiatr. Res. 60, 56–64. 10.1016/j.jpsychires.2014.10.003
    1. Tapia-Arancibia L., Aliaga E., Silhol M., Arancibia S. (2008). New insights into brain BDNF function in normal aging and Alzheimer disease. Brain Res. Rev. 59, 201–220. 10.1016/j.brainresrev.2008.07.007
    1. Tsai C. L., Chen F. C., Pan C. Y., Wang C. H., Huang T. H., Chen T. C. (2014). Impact of acute aerobic exercise and cardiorespiratory fitness on visuospatial attention performance and serum BDNF levels. Psychoneuroendocrinology 41, 121–131. 10.1016/j.psyneuen.2013.12.014
    1. Vaidya V. A., Terwilliger R. M. Z., Duman R. S. (1999). Role of 5- HT 2A receptors in the stress-induced down-regulation of brain-derived neurotrophic factor expression in rat hippocampus. Neurosci. Lett. 262, 1–4. 10.1016/S0304-3940(99)00006-3
    1. Whitworth J. A., Williamson P. M., Mangos G., Kelly J. J. (2005). Cardiovascular consequences of cortisol excess. Vasc. Health Risk Manag. 1, 291. 10.2147/vhrm.2005.1.4.291
    1. Wüst S., Federenko I., Hellhammer D. H., Kirschbaum C. (2000a). Genetic factors, perceived chronic stress, and the free cortisol response to awakening. Psychoneuroendocrinology 25, 707–720. 10.1016/S0306-4530(00)00021-4
    1. Wüst S., Wolf J., Hellhammer D. H., Federenko I., Schommer N., Kirschbaum C. (2000b). The cortisol awakening response—normal values and confounds. Noise Health 2, 79.

Source: PubMed

3
Abonnere