Tailored antiplatelet therapy can overcome clopidogrel and aspirin resistance--the BOchum CLopidogrel and Aspirin Plan (BOCLA-Plan) to improve antiplatelet therapy

Horst Neubauer, Andreas F C Kaiser, Heinz G Endres, Jan C Krüger, Andreas Engelhardt, Sebastian Lask, Fenena Pepinghege, Andreas Kusber, Andreas Mügge, Horst Neubauer, Andreas F C Kaiser, Heinz G Endres, Jan C Krüger, Andreas Engelhardt, Sebastian Lask, Fenena Pepinghege, Andreas Kusber, Andreas Mügge

Abstract

Background: Dual antiplatelet therapy using acetylsalicylic acid (ASA, aspirin) and clopidogrel is of great importance following coronary stenting. However, the variable platelet inhibitory effectiveness compromises the antithrombotic advantages provided by dual antiplatelet therapy. The aim of this single-center prospective study was to reduce the low response incidence of dual antiplatelet therapy with ASA and clopidogrel according to a prespecified therapy algorithm.

Methods: Platelet function testing using whole blood aggregometry (Chronolog 590) was performed 48 hours following coronary stenting (for either acute coronary syndromes or stable coronary artery disease) on 504 patients. The antiplatelet therapy included a loading dose of 600 mg clopidogrel and 500 mg ASA, followed by 75 mg clopidogrel and 100 mg ASA once daily. Clopidogrel low responders (CLR: >5 ohm; adenosine diphosphate (ADP) 5 μM) and/or ASA low responders (ALR: >0 ohm; arachidonic acid 10 μM) were treated according to a structured therapy plan: in the case of CLR, the maintenance + dose was doubled (repeated loading dose followed by 150 mg daily), and when still ineffective ticlopidine or prasugrel, if available and not contraindicated, were used. ALR was treated by increasing the dose to 300 mg in a first step or to 500 mg ASA when the first modification did not take effect sufficiently. In addition, ADP receptor antagonist 2-methylthioadenosine 5'-monophosphate triethylammonium salt (MeSAMP) testing and ASA incubation were performed to rule out either a platelet ADP-receptor defect or an ASA pharmacokinetic resistance.

Results: Of the total cohort of 504 patients, we detected 30.8% clopidogrel low-responders and 19.4% aspirin low-responders. For ALR, with a dose adjustment of 300 mg ASA daily, 94.6% of ALR were effectively treated and the residual 5.4% by administration of daily dosages of 500 mg ASA. This means that after modification of the ASA maintenance dose, all initial ALRs had an adequate antiplatelet response. The results for clopidogrel revealed that 69% of the CLR were treated effectively by increasing the clopidogrel dose to 150 mg daily. When prasugrel was not available or contraindicated, 12.7% of the remaining low responders showed an adequate result after being switched to ticlopidine. Consequently, by applying the therapy algorithm, we were able to reduce the CLR prevalence by 86.6%. On including prasugrel in the therapy plan, we were finally able to eliminate thienopyridine low response. In addition, no ADP receptor defect was found in this study as a potential reason for CLR. We identified the following factors associated with both CLR and ALR status: acute coronary syndromes, positive troponin values as well as diabetes mellitus and elevated HbA1C values and a higher platelet count. Furthermore, our data revealed for CLR elevated C-reactive protein values and a high PREDICT-score (including an age >65 years, acute coronary syndrome, diabetes mellitus, renal failure, and reduced left ventricular function) as risk factors. The following factors correlated with the risk of ASA low response: patients with elevated hemoglobin, serum creatinine and C-reactive protein values. In addition, medication with nitrates reduced the risk of being CLR. As also holds true for CLR, we found the PREDICT-score to be correlated to the risk of being ALR. However, by far the strongest risk factor for CLR or ALR was the fact of dual resistance.

Conclusion: Following a structured therapy plan based on a "test and treat" strategy, the prevalence of clopidogrel or aspirin low response can be significantly reduced and the risk of inadequate dual antiplatelet therapy minimized.

Trial registration: ClinicalTrials.gov NCT01212302.

Figures

Figure 1
Figure 1
Study plan optimizing clopidogrel treatment without prasugrel. (Prasugrel not available or contraindicated). Platelet function assay (if treatment ineffective, next step), Tx indicates treatment; high clopidogrel dose of 150 mg daily, ticlopidine 2 × 250 mg daily.
Figure 2
Figure 2
Study plan optimizing clopidogrel treatment including prasugrel. (Prasugrel available and not contraindicated). Platelet function assay (if treatment ineffective, next step), high clopidogrel dose of 150 mg daily, high prasugrel dose of 20 mg daily.
Figure 3
Figure 3
Study plan optimizing ASA treatment. Platelet function assay (if treatment ineffective, next step), ASA (acetylsalicylic acid, aspirin) 100 mg daily.
Figure 4
Figure 4
Results of the entire study group. Prevalence of ALR, CLR and Dual LR before and after modification according to the therapy algorithm (without prasugrel) Percentage of dual responder (Responder), clopidogrel low responder (CLR), ASA low responder (ALR) and dual low responder (Dual LR) before and after optimization of antiplatelet therapy. Note: By applying the therapy algorithm (without prasugrel), the low responder rate can be reduced absolute by 36.1% (relative -86.6%) and including prasugrel low response was eliminated.
Figure 5
Figure 5
Results of clopidogrel low-response (CLR) following therapy modification without prasugrel. The left section of the figure shows the prevalence in % (numbers) of clopidogrel responder and clopidogrel low responder (CLR). In the right section are the results after therapy modification according to the therapy algorithm for CLR. Treatment options used: clopidogrel responder (75 mg daily), high clopidogrel dose (150 mg daily), ticlopidine (250 mg twice daily).
Figure 6
Figure 6
Results of clopidogrel low-response (CLR) following therapy modification including prasugrel. The left section of the figure shows the prevalence in % (numbers) of clopidogrel responder and clopidogrel low responder (CLR). In the right section are the results after therapy modification according to the therapy algorithm for CLR including prasugrel. Clopidogrel responder were treated with 75 mg daily and the high clopidogrel dose was 150 mg daily. Definite low responder were low responder to either clopidogrel high dose or prasugrel high dose.
Figure 7
Figure 7
Results of ASA low response (ALR) before and after therapy modification. The left section of the figure shows the prevalence in % (numbers) of ASA responder and ASA low responder (ALR). In the right section are the results after therapy adjustment of ASA dose according to the therapy algorithm for ALR.

References

    1. Randomized trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. Lancet. 1988;9:349–360.
    1. Farid NA, Kurihara A, Wrighton SA. Metabolism and disposition of the thienopyridine antiplatelet drugs ticlopidine, clopidogrel, and prasugrel in humans. J Clin Pharmacol. 2010;9:126–142. doi: 10.1177/0091270009343005.
    1. Mehta SR, Yusuf S. Clopidogrel in Unstable angina to prevent Recurrent Events (CURE) Study Investigators. The Clopidogrel in Unstable angina to prevent Recurrent Events (CURE) trial programme; rationale, design and baseline characteristics including a meta-analysis of the effects of thienopyridines in vascular disease. Eur Heart J. 2000;9:2033–2041. doi: 10.1053/euhj.2000.2474.
    1. Kuliczkowski W, Witkowski A, Polonski L, Watala C, Filipiak K, Budaj A, Golanski J, Sitkiewicz D, Pregowski J, Gorski J, Zembala M, Opolski G, Huber K, Arnesen H, Kristensen SD, De Caterina R. Interindividual variability in the response to oral antiplatelet drugs: a position paper of the Working Group on antiplatelet drugs resistance appointed by the Section of Cardiovascular Interventions of the Polish Cardiac Society, endorsed by the Working Group on Thrombosis of the European Society of Cardiology. Eur Heart J. 2009;9:426–435. doi: 10.1093/eurheartj/ehn562.
    1. Patrono C, Baigent C, Hirsh J, Roth G. American College of Chest Physicians. Antiplatelet drugs: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition) Chest. 2008;9:199S–233S. doi: 10.1378/chest.08-0672.
    1. Ben-Dor I, Kleiman NS, Lev E. Assessment, mechanisms, and clinical implication of variability in platelet response to aspirin and clopidogrel therapy. Am J Cardiol. 2009;9:227–233. doi: 10.1016/j.amjcard.2009.03.022.
    1. Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD, Brandt JT, Walker JR, Antman EM, Macias W, Braunwald E, Sabatine MS. Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med. 2009;9:354–362. doi: 10.1056/NEJMoa0809171.
    1. Hulot JS, Bura A, Villard E, Azizi M, Remones V, Goyenvalle C, Aiach M, Lechat P, Gaussem P. Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects. Blood. 2006;9:2244–2247. doi: 10.1182/blood-2006-04-013052.
    1. Holmes DR Jr, Dehmer GJ, Kaul S, Leifer D, O'Gara PT, Stein CM. ACCF/AHA clopidogrel clinical alert: approaches to the FDA "boxed warning": a report of the American College of Cardiology Foundation Task Force on clinical expert consensus documents and the American Heart Association endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. J Am Coll Cardiol. 2010;9:321–341. doi: 10.1016/j.jacc.2010.05.013.
    1. Sofi F, Marcucci R, Gori AM, Giusti B, Abbate R, Gensini GF. Clopidogrel non-responsiveness and risk of cardiovascular morbidity. An updated meta-analysis. Thromb Haemost. 2010;9:841–848.
    1. Buonamici P, Marcucci R, Migliorini A, Gensini GF, Santini A, Paniccia R, Moschi G, Gori AM, Abbate R, Antoniucci D. Impact of platelet reactivity after clopidogrel administration on drug-eluting stent thrombosis. J Am Coll Cardiol. 2007;9:2312–2317. doi: 10.1016/j.jacc.2007.01.094.
    1. Krasopoulos G, Brister SJ, Beattie WS, Buchanan MR. Aspirin "resistance" and risk of cardiovascular morbidity: systematic review and meta-analysis. BMJ. 2008;9:195–198. doi: 10.1136/.
    1. Siller-Matula JM, Huber K, Christ G, Schrör K, Kubica J, Herkner H, Jilma B. Impact of clopidogrel loading dose on clinical outcome in patients undergoing percutaneous coronary intervention: a systematic review and meta-analysis. Heart. 2011;9:98–105. doi: 10.1136/hrt.2010.195438.
    1. Montalescot G, Sideris G, Meuleman C, Bal-dit-Sollier C, Lellouche N, Steg PG, Slama M, Milleron O, Collet JP, Henry P, Beygui F, Drouet L. ALBION Trial Investigators. A randomized comparison of high clopidogrel loading doses in patients with non-STsegment elevation acute coronary syndromes: the ALBION (Assessment of the Best Loading Dose of Clopidogrel to Blunt Platelet Activation, Inflammation and Ongoing Necrosis) trial. J Am Coll Cardiol. 2006;9:931–938. doi: 10.1016/j.jacc.2006.04.090.
    1. Bonello L, Camoin-Jau L, Armero S, Com O, Arques S, Burignat-Bonello C, Giacomoni MP, Bonello R, Collet F, Rossi P, Barragan P, Dignat-George F, Paganelli F. Tailored clopidogrel loading dose according to platelet reactivity monitoring to prevent acute and subacute stent thrombosis. Am J Cardiol. 2009;9:5–10. doi: 10.1016/j.amjcard.2008.08.048.
    1. Neubauer H, Lask S, Engelhardt A, Mügge A. How to optimise clopidogrel therapy? Reducing the low-response incidence by aggregometry-guided therapy modification. Thromb Haemost. 2008;9:357–362.
    1. Angiolillo DJ, Shoemaker SB, Desai B, Yuan H, Charlton RK, Bernardo E, Zenni MM, Guzman LA, Bass TA, Costa MA. Randomized comparison of a high clopidogrel maintenance dose in patients with diabetes mellitus and coronary artery disease. Results of the Optimizing Antiplatelet Therapy in Diabetes Mellitus (OPTIMUS) Study. Circulation. 2007;9:708–716. doi: 10.1161/CIRCULATIONAHA.106.667741.
    1. von Beckerath N, Kastrati A, Wieczorek A, Pogatsa-Murray G, Sibbing D, Graf I, Schömig A. A double-blind, randomized study on platelet aggregation in patients treated with a daily dose of 150 or 75 mg of clopidogrel for 30 days. Eur Heart J. 2007;9:1814–1819. doi: 10.1093/eurheartj/ehl489.
    1. CURRENT-OASIS 7 Investigators. Mehta SR, Bassand JP, Chrolavicius S, Diaz R, Eikelboom JW, Fox KA, Granger CB, Jolly S, Joyner CD, Rupprecht HJ, Widimsky P, Afzal R, Pogue J, Yusuf S. Dose comparisons of clopidogrel and aspirin in acute coronary syndromes. N Engl J Med. 2010;9:930–942. doi: 10.1056/NEJMoa0909475.
    1. Campo G, Valgimigli M, Gemmati D, Percoco G, Catozzi L, Frangione A, Federici F, Ferrari F, Tebaldi M, Luccarelli S, Parrinello G, Ferrari R. Poor responsiveness to clopidogrel: drug-specific or class-effect mechanism? Evidence from a clopidogrel-to-ticlopidine crossover study. J Am Coll Cardiol. 2007;9:1132–1137. doi: 10.1016/j.jacc.2007.04.092.
    1. Wiviott SD, Braunwald E, McCabe CH, Montalescot G, Ruzyllo W, Gottlieb S, Neumann FJ, Ardissino D, De Servi S, Murphy SA, Riesmeyer J, Weerakkody G, Gibson CM, Antman EM. TRITON-TIMI 38 Investigators. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2007;9:2001–2015. doi: 10.1056/NEJMoa0706482.
    1. Gurbel PA, Bliden KP, DiChiara J, Newcomer J, Weng W, Neerchal NK, Gesheff T, Chaganti SK, Etherington A, Tantry US. Evaluation of dose-related effects of aspirin on platelet function: results from the Aspirin-Induced Platelet Effect (ASPECT) study. Circulation. 2007;9:3156–3164. doi: 10.1161/CIRCULATIONAHA.106.675587.
    1. Ivandic BT, Sausemuth M, Ibrahim H, Giannitsis E, Gawaz M, Katus HA. Dual antiplatelet drug resistance is a risk factor for cardiovascular events after percutaneous coronary intervention. Clin Chem. 2009;9:1171–1176. doi: 10.1373/clinchem.2008.115089.
    1. Kuliczkowski W, Witkowski A, Polonski L, Watala C, Filipiak K, Budaj A, Golanski J, Sitkiewicz D, Pregowski J, Gorski J, Zembala M, Opolski G, Huber K, Arnesen H, Kristensen SD, De Caterina R. Interindividual variability in the response to oral antiplatelet drugs: a position paper of the Working Group on antiplatelet drugs resistance appointed by the Section of Cardiovascular Interventions of the Polish Cardiac Society, endorsed by the Working Group on Thrombosis of the European Society of Cardiology. Eur Heart J. 2009;9:426–435. doi: 10.1093/eurheartj/ehn562.
    1. Golański J, Chłopicki S, Golański R, Gresner P, Iwaszkiewicz A, Watala C. Resistance to aspirin in patients after coronary artery bypass grafting is transient: impact on the monitoring of aspirin antiplatelet therapy. Ther Drug Monit. 2005;9:484–490.
    1. Geisler T, Grass D, Bigalke B, Stellos K, Drosch T, Dietz K, Herdeg C, Gawaz M. The Residual Platelet Aggregation after Deployment of Intracoronary Stent (PREDICT) score. J Thromb Haemost. 2008;9:54–61. doi: 10.1111/j.1538-7836.2007.02812.x.
    1. Paniccia R, Antonucci E, Maggini N, Miranda M, Gori AM, Marcucci R, Giusti B, Balzi D, Prisco D, Abbate R. Comparison of methods for monitoring residual platelet reactivity after clopidogrel by point-of-care tests on whole blood in high-risk patients. Thromb Haemost. 2010;9:287–292.
    1. Wallentin L, Becker RC, Budaj A, Cannon CP, Emanuelsson H, Held C, Horrow J, Husted S, James S, Katus H, Mahaffey KW, Scirica BM, Skene A, Steg PG, Storey RF, Harrington RA. PLATO Investigators. Freij A, Thorsén M. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2009;9:1045–1057. doi: 10.1056/NEJMoa0904327.
    1. Geisler T, Gawaz M, Steinhubl SR, Bhatt DL, Storey RF, Flather M. Current strategies in antiplatelet therapy--does identification of risk and adjustment of therapy contribute to more effective, personalized medicine in cardiovascular disease? Pharmacol Ther. 2010;9:95–107. doi: 10.1016/j.pharmthera.2010.04.017.
    1. Bonello L, Camoin-Jau L, Arques S, Boyer C, Panagides D, Wittenberg O, Simeoni MC, Barragan P, Dignat-George F, Paganelli F. Adjusted clopidogrel loading doses according to vasodilator-stimulated phosphoprotein phosphorylation index decrease rate of major adverse cardiovascular events in patients with clopidogrel resistance: a multicenter randomized prospective study. J Am Coll Cardiol. 2008;9:1404–1411. doi: 10.1016/j.jacc.2007.12.044.
    1. Collet JP, Silvain J, Landivier A, Tanguy ML, Cayla G, Bellemain A, Vignolles N, Gallier S, Beygui F, Pena A, Montalescot G. Dose effect of clopidogrel reloading in patients already on 75-mg maintenance dose: the Reload with Clopidogrel Before Coronary Angioplasty in Subjects Treated Long Term with Dual Antiplatelet Therapy (RELOAD) study. Circulation. 2008;9:1225–1233. doi: 10.1161/CIRCULATIONAHA.108.776757.
    1. Smith SC Jr, Feldman TE, Hirshfeld JW Jr, Jacobs AK, Kern MJ, King SB, Morrison DA, O'Neill WW, Schaff HV, Whitlow PL, Williams DO, Antman EM, Adams CD, Anderson JL, Faxon DP, Fuster V, Halperin JL, Hiratzka LF, Hunt SA, Nishimura R, Ornato JP, Page RL, Riegel B. ACC/AHA/SCAI 2005 Guideline Update for Percutaneous Coronary Intervention--summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/SCAI Writing Committee to Update the 2001 Guidelines for Percutaneous Coronary Intervention) Circulation. 2006;9:156–175. doi: 10.1161/CIRCULATIONAHA.105.170815.
    1. Price MJ, Berger PB, Angiolillo DJ, Teirstein PS, Tanguay JF, Kandzari DE, Cannon CP, Topol EJ. Evaluation of individualized clopidogrel therapy after drug-eluting stent implantation in patients with high residual platelet reactivity: design and rationale of the GRAVITAS trial. Am Heart J. 2009;9:818–824. doi: 10.1016/j.ahj.2009.02.012.
    1. Frelinger AL, Furman MI, Linden MD, Li Y, Fox ML, Barnard MR, Michelson AD. Circulation. 3. Vol. 9. 2006. Residual arachidonic acid-induced platelet activation via an adenosine diphosphate-dependent but cyclooxygenase-1- and cyclooxygenase-2-independent pathway: a 700-patient study of aspirin resistance; pp. 2888–96.
    1. Gori AM, Marcucci R, Migliorini A, Valenti R, Moschi G, Paniccia R, Buonamici P, Gensini GF, Vergara R, Abbate R, Antoniucci D. Incidence and clinical impact of dual nonresponsiveness to aspirin and clopidogrel in patients with drug-eluting stents. J Am Coll Cardiol. 2008;9:734–739. doi: 10.1016/j.jacc.2008.05.032.
    1. Schuhmann CG, Sohn HY, Nagel J, Spannagl M, Klauss V, Krötz F. Clinical management of clopidogrel inefficiency by point of care platelet function testing and individual adjustment of anti-platelet therapy - initial experiences. Platelets. 2009;9:498–504. doi: 10.3109/09537100903207497.
    1. Price MJ, Nayak KR, Barker CM, Kandzari DE, Teirstein PS. Predictors of heightened platelet reactivity despite dual-antiplatelet therapy in patients undergoing percutaneous coronary intervention. Am J Cardiol. 2009;9:1339–1343. doi: 10.1016/j.amjcard.2009.01.341.
    1. Hochholzer W, Trenk D, Fromm MF, Valina CM, Stratz C, Bestehorn HP, Büttner HJ, Neumann FJ. Impact of cytochrome P450 2C19 loss-of-function polymorphism and of major demographic characteristics on residual platelet function after loading and maintenance treatment with clopidogrel in patients undergoing elective coronary stent placement. J Am Coll Cardiol. 2010;9:2427–2434. doi: 10.1016/j.jacc.2010.02.031.
    1. Bonello L, Tantry US, Marcucci R, Blindt R, Angiolillo DJ, Becker R, Bhatt DL, Cattaneo M, Collet JP, Cuisset T, Gachet C, Montalescot G, Jennings LK, Kereiakes D, Sibbing D, Trenk D, Van Werkum JW, Paganelli F, Price MJ, Waksman R, Gurbel PA. Working Group on High On-Treatment Platelet Reactivity. Consensus and future directions on the definition of high on-treatment platelet reactivity to adenosine diphosphate. J Am Coll Cardiol. 2010;9:919–933. doi: 10.1016/j.jacc.2010.04.047.

Source: PubMed

3
Abonnere