Efficacy and safety of extracorporeal shock wave therapy for orthopedic conditions: a systematic review on studies listed in the PEDro database

Christoph Schmitz, Nikolaus B M Császár, Stefan Milz, Matthias Schieker, Nicola Maffulli, Jan-Dirk Rompe, John P Furia, Christoph Schmitz, Nikolaus B M Császár, Stefan Milz, Matthias Schieker, Nicola Maffulli, Jan-Dirk Rompe, John P Furia

Abstract

Background: Extracorporeal shock wave therapy (ESWT) is an effective and safe non-invasive treatment option for tendon and other pathologies of the musculoskeletal system.

Sources of data: This systematic review used data derived from the Physiotherapy Evidence Database (PEDro; www.pedro.org.au, 23 October 2015, date last accessed).

Areas of agreement: ESWT is effective and safe. An optimum treatment protocol for ESWT appears to be three treatment sessions at 1-week intervals, with 2000 impulses per session and the highest energy flux density the patient can tolerate.

Areas of controversy: The distinction between radial ESWT as 'low-energy ESWT' and focused ESWT as 'high-energy ESWT' is not correct and should be abandoned.

Growing points: There is no scientific evidence in favour of either radial ESWT or focused ESWT with respect to treatment outcome.

Areas timely for developing research: Future randomized controlled trials should primarily address systematic tests of the aforementioned optimum treatment protocol and direct comparisons between radial and focused ESWT.

Keywords: ESWT; PEDRo; RSWT; musculoskeletal system.

© The Author 2015. Published by Oxford University Press.

Figures

Fig. 1
Fig. 1
Working principle of focused and radial extracorporeal shock wave technology. In case of focused shock waves, single acoustic pulses are generated either with a spark-gap (electrohydraulic principle), a technology similar to a loudspeaker (electromagnetic principle) or piezocrystals (piezoelectric principle) (details are provided in Fig. 2). By means of reflectors of certain shape, the acoustic pulses are converted into a focused acoustic pressure wave/shock wave with a point of highest pressure at the desired target within pathological tissue. In case of radial shock waves, a projectile is fired within a guiding tube that strikes a metal applicator placed on the skin. The projectile generates stress waves in the applicator that transmit pressure waves into tissue. It is of note that any disturbance in the pathway of the acoustic pulses between a focused shock wave source and the target within tissue (such as bone, calcifications, etc.; grey dots in the figures) may result in some parts of the acoustic pulse not reaching the target and, thus, weakening the shock wave energy (i.e. the energy flux density) at the target. The same disturbances would not impact the energy of radial shock waves at the target. This is most probably the reason why in muscle tissue, the energy of focused shock waves was found to be decreased by >50% compared with measurements in water, whereas for radial shock waves, measurements in muscle tissue and water were consistent.
Fig. 2
Fig. 2
Schematic representation of the mode of operation of focused (AC) and radial (D) extracorporeal shock wave generators. (A) Electrohydraulic principle (fESWT): a high voltage discharges rapidly across two electrode tips (spark-gap) (1) that are positioned in water. The spark-gap serves as the first focal point (1). The heat generated by this process vaporizes the surrounding water. This generates a gas bubble centered on the first focal point, with the gas bubble being filled with water vapor and plasma. The result of the very rapid expansion of this bubble is a sonic pulse, and the subsequent implosion of this bubble causes a reverse pulse, manifesting a shock wave. By means of reflectors of certain shape (2), this shock wave can be converted into a convergent/focused acoustic pressure wave/shock wave with a point of highest pressure at the second focal point (3). (B) Electromagnetic principle (fESWT): a strong, variable magnetic field is generated by passing a high electric current through a coil (4). This causes a high current in an opposed metal membrane (5), which causes an adjacent membrane (6) with surrounding liquid to be forced rapidly away. Because the adjacent membrane is highly conductive, it is forced away so rapidly that the compression of the surrounding liquid generates a shock wave within the liquid. By means of an acoustic lens (7) of certain shape, this shock wave can be converted into a convergent/focused acoustic pressure wave/shock wave with a point of highest pressure at a focal point (8). (C) Piezoelectric principle (fESWT): a large number of piezocrystals (9) are mounted in a bowl-shaped device (10); the number of piezocrystals can vary from a few to several thousands (typically between 1000 and 2000). When applying a rapid electrical discharge, the piezocrystals react with a deformation (contraction and expansion), which is known as the piezoelectric effect. This induces an acoustic pressure puls in the surrounding water that can steep into a shock wave. Because of the design of the bowl-shaped device an acoustic pressure wave/shock wave can emerge with a point of highest pressure at a focal point (11). (D) Ballistic principle (rESWT): compressed air (pneumatic principle; 12) or a magnetic field (not shown) is used to fire a projectile (13) within a guiding tube (14) that strikes a metal applicator (15) placed on the patient's skin. The projectile generates stress waves in the applicator that transmit pressure waves into tissue (16).
Fig. 3
Fig. 3
Systematic review flow chart of the first literature search according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. *, one study addressed both radial and focused ESWT and, thus, was listed in both categories rESWT+ and fESWT+.
Fig. 4
Fig. 4
Mean and standard error of the mean (SEM) of the number of treatment sessions (A), interval between treatment sessions (B), number of impulses per treatment session (C), energy flux density of the impulses (D), total energy flux density that was applied (E) and the PEDro score of all RCTs on radial (rESWT) and focused (fESWT) extracorporeal shock wave therapy with positive (+) or negative (−) outcome listed in the PEDro database (deadline: May 17, 2015). Details are provided in the main text.

References

    1. Schmitz C, Császár NB, Rompe JD et al. . Treatment of chronic plantar fasciopathy with extracorporeal shock waves (review). J Orthop Surg Res 2013;8:31–41.
    1. Ioppolo F, Rompe JD, Furia JP et al. . Clinical application of shock wave therapy (SWT) in musculoskeletal disorders. Eur J Phys Rehabil Med 2014;50:217–30.
    1. Speed C. A systematic review of shockwave therapies in soft tissue conditions: focusing on the evidence. Br J Sports Med 2014;48:1538–42.
    1. Cacchio A, Giordano L, Colafarina O et al. . Extracorporeal shock-wave therapy compared with surgery for hypertrophic long-bone nonunions. J Bone Joint Surg Am 2009;91:2589–97.
    1. Rompe JD, Furia JP, Maffulli N. Eccentric loading versus eccentric loading plus shock-wave treatment for midportion Achilles tendinopathy: a randomized controlled trial. Am J Sports Med 2009;37:463–70.
    1. Lee SS, Kang S, Park NK et al. . Effectiveness of initial extracorporeal shock wave therapy on the newly diagnosed lateral or medial epicondylitis. Ann Rehabil Med 2012;36:681–7.
    1. Vetrano M, Castorina A, Vulpiani MC et al. . Platelet-rich plasma versus focused shock waves in the treatment of jumper's knee in athletes. Am J Sports Med 2013;41:795–803.
    1. Rompe JD, Furia J, Weil L et al. . Shock wave therapy for chronic plantar fasciopathy. Brit Med Bul 2007;81 and 82:183–208.
    1. Verhagen AP, de Vet HC, de Bie RA et al. . The Delphi list: a criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by Delphi consensus. J Clin Epidemiol 1998;51:1235–41.
    1. Liberati A, Altman DG, Tetzlaff J et al. . The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. Br Med J 2009;339:b2700.
    1. Kearney CJ, Prevost T, Socrate S et al. . Pressure-time profiles of a focused and a radial shockwave device: measurements in tissue, ex vivo, and in a water bath. J Acoust Soc Am 2010;128:2364.
    1. Lohrer H, Nauck T, Dorn-Lange NV et al. . Comparison of radial versus focused extracorporeal shock waves in plantar fasciitis using functional measures. Foot Ankle Int 2010;31:1–9.
    1. Grabow L. Controlled study of the analgetic effectivity of acupuncture. Arzneimittel-Forschung [Drug Research] 1994;44:554–8.
    1. Milgrom C, Finestone A, Lubovsky O et al. . A controlled randomized study of the effect of training with orthoses on the incidence of weight bearing induced back pain among infantry recruits. Spine 2005;30:272–5.
    1. al-Bluwi MT, Sadat-Ali M, al-Habdan IM et al. . Efficacy of EZStep in the management of plantar fasciitis: a prospective, randomized study. Foot Ankle Special 2011;4:218–21.
    1. Dumfarth J, Zimpfer D, Vögele-Kadletz M et al. . Prophylactic low-energy shock wave therapy improves wound healing after vein harvesting for coronary artery bypass graft surgery: a prospective, randomized trial. Ann Thorac Surg 2008;86:1909–13.
    1. Larking AM, Duport S, Clinton M et al. . Randomized control of extracorporeal shock wave therapy versus placebo for chronic decubitus ulceration. Clin Rehabil 2010;24:222–9.
    1. Ottomann C, Hartmann B, Tyler J et al. . Prospective randomized trial of accelerated re-epithelization of skin graft donor sites using extracorporeal shock wave therapy. J Am Coll Surg 2010;211:361–7.
    1. Wang CJ, Wu RW, Yang YJ. Treatment of diabetic foot ulcers: a comparative study of extracorporeal shockwave therapy and hyperbaric oxygen therapy. Diabetes Res Clin Pract 2011;92:187–93.
    1. Ottomann C, Stojadinovic A, Lavin P et al. . Prospective randomized phase II Trial of accelerated reepithelialization of superficial second-degree burn wounds using extracorporeal shock wave therapy. Ann Surg 2012;255:23–9.
    1. Gerdesmeyer L, Maier M, Haake M et al. . Physikalisch-technische Grundlagen der extrakorporalen Stosswellentherapie (ESWT). [Physical-technical principles of extracorporeal shockwave therapy (ESWT)] [Article in German]. Orthopäde 2002;31:610–7.
    1. Ogden JA, Tóth-Kischkat A, Schultheiss R. Principles of shock wave therapy. Clin Orthop Relat Res 2001;387:8–17.
    1. Cacchio A, Paoloni M, Barile A et al. . Effectiveness of radial shock-wave therapy for calcific tendinitis of the shoulder: single-blind, randomized clinical study. Phys Ther 2006;86:672–82.
    1. Gerdesmeyer L, Frey C, Vester J et al. . Radial extracorporeal shock wave therapy is safe and effective in the treatment of chronic recalcitrant plantar fasciitis: results of a confirmatory randomized placebo-controlled multicenter study. Am J Sports Med 2008;36:2100–9.
    1. Ibrahim MI, Donatelli RA, Schmitz C et al. . Chronic plantar fasciitis treated with two sessions of radial extracorporeal shock wave therapy. Foot Ankle Int 2010;31:391–7.
    1. Rompe JD, Nafe B, Furia JP et al. . Eccentric loading, shock-wave treatment, or a wait-and-see policy for tendinopathy of the main body of tendo Achillis: a randomized controlled trial. Am J Sports Med 2007;35:374–83.
    1. Rompe JD, Furia JP, Maffulli N. Eccentric loading compared with shock wave treatment for chronic insertional Achilles tendinopathy. A randomized, controlled trial. J Bone Joint Surg Am 2008;90:52–61.
    1. Rompe JD, Cacchio A, Weil L Jr et al. . Plantar fascia-specific stretching versus radial shock-wave therapy as initial treatment of plantar fasciopathy. J Bone Joint Surg Am 2010;92:2514–22.
    1. Cacchio A, Rompe JD, Furia JP et al. . Shockwave therapy for the treatment of chronic proximal hamstring tendinopathy in professional athletes. Am J Sports Med 2011;39:146–53.
    1. Engebretsen K, Grotle M, Bautz-Holter E et al. . Radial extracorporeal shockwave treatment compared with supervised exercises in patients with subacromial pain syndrome: single blind randomised study. Br Med J 2009;339:b3360.
    1. Kolk A, Yang KG, Tamminga R et al. . Radial extracorporeal shock-wave therapy in patients with chronic rotator cuff tendinitis: a prospective randomised double-blind placebo-controlled multicentre trial. Bone Joint J 2013;95-B:1521–6.
    1. Engebretsen K, Grotle M, Bautz-Holter E et al. . Supervised exercises compared with radial extracorporeal shock-wave therapy for subacromial shoulder pain: 1-year results of a single-blind randomized controlled trial. Phys Ther 2011;91:37–47.
    1. Gündüz R, Malas FÜ, Borman P et al. . Physical therapy, corticosteroid injection, and extracorporeal shock wave treatment in lateral epicondylitis. Clinical and ultrasonographical comparison. Clin Rheumatol 2012;31:807–12.
    1. Chow IHW, Cheing GLY. Comparison of different energy densities of extracorporeal shock wave therapy (ESWT) for the management of chronic heel pain . Clin Rehabil 2007;21:131–41.
    1. Shaheen AAM. Comparison of three different treatment protocols of low-energy radial extracorporeal shock wave therapy for management of chronic plantar fasciitis. Ind J Physiother Occup Ther 2010;4:8–12.
    1. Damian M, Zalpour C. Trigger point treatment with radial shock waves in musicians with nonspecific shoulder-neck pain: data from a special physio outpatient clinic for musicians. Med Probl Perform Art 2011;26:211–7.
    1. Liu S, Zhai L, Shi Z et al. . Radial extracorporeal pressure pulse therapy for the primary long bicipital tenosynovitis a prospective randomized controlled study. Ultrasound Med Biol 2012;38:727–35.
    1. Cho YS, Park SJ, Jang SH et al. . Effects of the combined treatment of extracorporeal shock wave therapy (ESWT) and stabilization exercises on pain and functions of patients with myofascial pain syndrome. J Physical Ther Sci 2012;24:1319–23.
    1. Sarkar B, Das PG, Equebal A et al. . Efficacy of low-energy extracorporeal shockwave therapy and a supervised clinical exercise protocol for the treatment of chronic lateral epicondylitis: a randomised controlled study. Hong Kong Physiother J 2013;31:19–24.
    1. Rompe JD, Segal NA, Cacchio A et al. . Home training, local corticosteroid injection, or radial shock wave therapy for greater trochanter pain syndrome. Am J Sports Med 2009;37:1981–90.
    1. Grecco MV, Brech GC, Greve JM. One-year treatment follow-up of plantar fasciitis: radial shockwaves vs. conventional physiotherapy. Clinics 2013;68:1089–95.
    1. Greve JM, Grecco MV, Santos-Silva PR. Comparison of radial shockwaves and conventional physiotherapy for treating plantar fasciitis. Clinics 2009;64:97–103.
    1. Marks W, Jackiewicz A, Witkowski Z et al. . Extracorporeal shock-wave therapy (ESWT) with a new-generation pneumatic device in the treatment of heel pain. A double blind randomised controlled trial. Acta Orthop Belg 2008;74:98–101.
    1. Mehra A, Zaman T, Jenkin AI. The use of a mobile lithotripter in the treatment of tennis elbow and plantar fasciitis. Surgeon 2003;1:290–2.
    1. Vidal X, Morral A, Costa L et al. . Radial extracorporeal shock wave therapy (rESWT) in the treatment of spasticity in cerebral palsy: a randomized, placebo-controlled clinical trial. NeuroRehabilitation 2011;29:413–9.
    1. Gerdesmeyer L, Wagenpfeil S, Haake M et al. . Extracorporeal shock wave therapy for the treatment of chronic calcifying tendonitis of the rotator cuff: a randomized controlled trial. JAMA 2003;290:2573–80.
    1. Rompe JD, Decking J, Schoellner C et al. . Repetitive low-energy shock wave treatment for chronic lateral epicondylitis in tennis players. Am J Sports Med 2004;32:734–43.
    1. Pettrone FA, McCall BR. Extracorporeal shock wave therapy without local anesthesia for chronic lateral epicondylitis. J Bone Joint Surg Am 2005;87:1297–304.
    1. Zwerver J, Hartgens F, Verhagen E et al. . No effect of extracorporeal shockwave therapy on patellar tendinopathy in jumping athletes during the competitive season: a randomized clinical trial. Am J Sports Med 2011;39:1191–9.
    1. Rasmussen S, Christensen M, Mathiesen I et al. . Shockwave therapy for chronic Achilles tendinopathy: a double-blind, randomized clinical trial of efficacy. Acta Orthopaedica 2008;79:249–56.
    1. Buchbinder R, Ptasznik R, Gordon J et al. . Ultrasound-guided extracorporeal shock wave therapy for plantar fasciitis: a randomized controlled trial. J Am Med Assoc 2002;288:1364–72.
    1. Kudo P, Dainty K, Clarfield M et al. . Randomized, placebo-controlled, double-blind clinical trial evaluating the treatment of plantar fasciitis with an extracoporeal shockwave therapy (ESWT) device: a North American confirmatory study. J Orthop Res 2006;24:115–23.
    1. Gollwitzer H, Diehl P, von Korff A et al. . Extracorporeal shock wave therapy for chronic painful heel syndrome: a prospective, double blind, randomized trial assessing the efficacy of a new electromagnetic shock wave device. J Foot Ankle Surg 2007;46:348–57.
    1. Schmitt J, Haake M, Tosch A et al. . Low-energy extracorporeal shock-wave treatment (ESWT) for tendinitis of the supraspinatus. A prospective, randomised study. J Bone Joint Surg Br 2001;83–B:873–6.
    1. Haake M, Deike B, Thon A et al. . Exact focusing of extracorporeal shock wave therapy for calcifying tendinopathy. Clin Orthop Relat Res 2002;397:323–31.
    1. Ioppolo F, Tattoli M, Di Sante L et al. . Extracorporeal shock-wave therapy for supraspinatus calcifying tendinitis: a randomized clinical trial comparing two different energy levels. Phys Ther 2012;92:1376–85.
    1. Albert JD, Meadeb J, Guggenbuhl P et al. . High-energy extracorporeal shock-wave therapy for calcifying tendinitis of the rotator cuff: a randomised trial. J Bone Joint Surg Br 2007;89:335–41.
    1. Speed CA, Nichols D, Richards C et al. . Extracorporeal shock wave therapy for lateral epicondylitis – a double blind randomised controlled trial. J Orthop Res 2002;20:895–8.
    1. Staples MP, Forbes A, Ptasznik R et al. . A randomized controlled trial of extracorporeal shock wave therapy for lateral epicondylitis (tennis elbow). J Rheumatol 2008;35:2038–46.
    1. Haake M, Konig IR, Decker T et al. . Extracorporeal shock wave therapy in the treatment of lateral epicondylitis: a randomized multicenter trial. J Bone Joint Surg Am 2002;84-A:1982–91.
    1. Chung B, Wiley JP. Effectiveness of extracorporeal shock wave therapy in the treatment of previously untreated lateral epicondylitis: a randomized controlled trial. Am J Sports Med 2004;32:1660–7.
    1. Buch M, Knorr U, Fleming L et al. . Extracorporeal shock wave therapy in plantar fasciitis: a review. Orthopaede 2002;31:637–44.
    1. Haake M, Buch M, Schoellner C et al. . Extracorporeal shock wave therapy for plantar fasciitis: randomised controlled multicentre trial. Br Med J 2003;327:75–9.
    1. Speed CA, Nichols D, Wies J et al. . Extracorporeal shock wave therapy for plantar fasciitis. A double blind randomised controlled trial. J Orthop Res 2003;21:937–40.
    1. Peters J, Luboldt W, Schwarz W et al. . Extracorporeal shock wave therapy in calcific tendinitis of the shoulder. Skeletal Radiol 2004;33:712–8.
    1. Hearnden A, Desai A, Karmegam A et al. . Extracorporeal shock wave therapy in chronic calcific tendonitis of the shoulderd – is it effective? Acta Orthop Belg 2009;75:25–31.
    1. Pleiner J, Crevenna R, Langenberger H et al. . Extracorporeal shockwave treatment is effective in calcific tendonitis of the shoulder. A randomized controlled trial. Wien Klin Wochenschr 2004;116:536–41.
    1. Tornese D, Mattei E, Bandi M et al. . Arm position during extracorporeal shock wave therapy for calcifying tendinitis of the shoulder: a randomized study. Clin Rehabil 2011;25:731–9.
    1. Sabeti M, Dorotka R, Goll A et al. . A comparison of two different treatments with navigated extracorporeal shock-wave therapy for calcifying tendinitis – a randomized controlled trial. Wien Klin Wochenschr 2007;119:124–8.
    1. Haake M, Sattler A, Gross MW et al. . Comparison of extracorporeal shockwave therapy (ESWT) with roentgen irradiation in supraspinatus tendon syndrome – a prospective randomized single-blind parallel group comparison. Z Orthop Ihre Grenzgeb 2001;139:397–402.
    1. Groß MW, Sattler A, Haake M et al. . The value of radiotherapy in comparison with extracorporeal shockwave therapy for supraspinatus tendinitis. Strahlenther Onkol 2002;178:314–20.
    1. Galasso O, Amelio E, Riccelli DA et al. . Short-term outcomes of extracorporeal shock wave therapy for the treatment of chronic non-calcific tendinopathy of the supraspinatus: a double-blind, randomized, placebo-controlled trial. BMC Musculoskeletal Disord 2012;13:86.
    1. Rompe JD, Decking J, Schoellner C et al. . Shock wave application for chronic plantar fasciitis in running athletes. A prospective, randomized, placebo-controlled trial. Am J Sports Med 2003;31:268–75.
    1. Ogden JA, Alvarez RG, Levitt RL et al. . Electrohydraulic high-energy shock-wave treatment for chronic plantar fasciitis . J Bone Joint Surg Am 2004;86:2216–28.
    1. Theodore GH, Buch M, Amendola A et al. . Extracorporeal shock wave therapy for the treatment of plantar fasciitis. Foot Ankle Int 2004;25:290–7.
    1. Porter MD, Shadbolt B. Intralesional corticosteroid injection versus extracorporeal shock wave therapy for plantar fasciopathy. Clin J Sport Med 2005;15:119–24.
    1. Liang HW, Wang TG, Chen WS et al. . Thinner plantar fascia predicts decreased pain after extracorporeal shock wave therapy. Clin Orthop Relat Res 2007;460:219–25.
    1. Malay DS, Pressman MM, Assili A et al. . Extracorporeal shockwave therapy versus placebo for the treatment of chronic proximal plantar fasciitis: results of a randomized, placebo-controlled, double-blinded, multicenter intervention trial. J Foot Ankle Surg 2006;45:196–210.
    1. Vahdatpour B, Sajadieh S, Bateni V et al. . Extracorporeal shock wave therapy in patients with plantar fasciitis. A randomized, placebo-controlled trial with ultrasonographic and subjective outcome assessments. J Res Med Sci 2012;17:834–8.
    1. Radwan YA, Mansour AM, Badawy WS. Resistant plantar fasciopathy: shock wave versus endoscopic plantar fascial release. Int Orthop 2012;36:2147–56.
    1. Chen TW, Lin CW, Lee CL et al. . The efficacy of shock wave therapy in patients with knee osteoarthritis and popliteal cyamella. Kaohsiung J Med Sci 2014;30:362–70.
    1. Kraus M, Reinhart E, Krause H et al. . Niederenergetische extrakorporale Stosswellentherapie (ESWT) zur Behandlung von Myogelosen des M. masseter. [Low energy extracorporeal shockwave therapy (ESWT) for treatment of myogelosis of the masseter muscle]. Mund Kiefer Gesichtschir 1999;3:20–3.
    1. Pan PJ, Chou CL, Chiou HJ et al. . Extracorporeal shock wave therapy for chronic calcific tendinitis of the shoulders: a functional and sonographic study. Arch Phys Med Rehabil 2003;84:988–93.
    1. Perlick L, Luring C, Bathis H et al. . Efficacy of extracorporal shock-wave treatment for calcific tendinitis of the shoulder: experimental and clinical results. J Orthop Sci 2003;8:777–83.
    1. Sabeti-Aschraf M, Dorotka R, Goll A et al. . Extracorporeal shock wave therapy in the treatment of calcific tendinitis of the rotator cuff. Am J Sports Med 2005;33:1365–8.
    1. Rompe JD, Hope C, Küllmer K et al. . Analgesic effect of extracorporeal shock-wave therapy on chronic tennis elbow. J Bone Joint Surg Br 1996;78:233–7.
    1. Haake M, Boddeker IR, Decker T et al. . Side-effects of extracorporeal shock wave therapy (ESWT) in the treatment of tennis elbow. Arch Orthop Trauma Surg 2002;122:222–8.
    1. Melikyan EY, Shahin E, Miles J et al. . Extracorporeal shock-wave treatment for tennis elbow. A randomised double-blind study. J Bone Joint Surg Br 2003;85:852–5.
    1. Melegati G, Tornese D, Bandi M et al. . Comparison of two ultrasonographic localization techniques for the treatment of lateral epicondylitis with extracorporeal shock wave therapy: a randomized study. Clin Rehabil 2004;18:366–70.
    1. Wang CJ, Liu HC, Fu TH. The effects of extracorporeal shockwave on acute high-energy long bone fractures of the lower extremity. Arch Orthop Trauma Surg 2007;127:137–42.
    1. Costa ML, Shepstone L, Donell ST et al. . Shock wave therapy for chronic Achilles tendon pain: a randomized placebo-controlled trial. Clin Orthop Relat Res 2005;440:199–204.
    1. Ogden JA, Alvarez R, Levitt R et al. . Shock wave therapy for chronic proximal plantar fasciitis. Clin Orthop Relat Res 2001;387:47–59.
    1. Rompe JD, Schoellner C, Nafe B. Evaluation of low-energy extracorporeal shock-wave application for treatment of chronic plantar fasciitis. J Bone Joint Surg Am 2002;84:335–41.
    1. Chew KT, Leong D, Lin CY et al. . Comparison of autologous conditioned plasma injection, extracorporeal shockwave therapy, and conventional treatment for plantar fasciitis: a randomized trial. PM R 2013;5:1035–43.
    1. Tornese D, Mattei E, Lucchesi G et al. . Comparison of two extracorporeal shock wave therapy techniques for the treatment of painful subcalcaneal spur. A randomized controlled study. Clin Rehabil 2008;22:780–7.
    1. Saxena A, Fournier M, Gerdesmeyer L et al. . Comparison between extracorporeal shockwave therapy, placebo ESWT and endoscopic plantar fasciotomy for the treatment of chronic plantar heel pain in the athlete. Muscles Ligaments Tendons J 2013;2:312–6.
    1. El-Shamy SM, Eid MA, El-Banna MF. Effect of extracorporeal shock wave therapy on gait pattern in hemiplegic cerebral palsy: a randomized controlled trial. Am J Phys Med Rehabil 2014;93:1065–72.
    1. Cosentino R, De Stefano R, Selvi E et al. . Extracorporeal shock wave therapy for chronic calcific tendinitis of the shoulder: single blind study. Ann Rheum Dis 2003;62:248–50.
    1. Hsu CJ, Wang DY, Tseng KF et al. . Extracorporeal shock wave therapy for calcifying tendinitis of the shoulder. J Shoulder Elbow Surg 2008;17:55–9.
    1. Farr S, Sevelda F, Mader P et al. . Extracorporeal shockwave therapy in calcifying tendinitis of the shoulder. Knee Surg Sports Traumatol Arthrosc 2011;19:2085–9.
    1. Speed CA, Richards C, Nichols D et al. . Extracorporeal shock-wave therapy for tendonitis of the rotator cuff. A double-blind, randomised, controlled trial. J Bone Joint Surg Br 2002;84:509–12.
    1. Rompe JD, Krischek O, Eysel P et al. . Chronische Insertionstendopathie am lateralen Epicondylus humeri. Ergebnisse der extrakorporalen Stosswellenapplikation [Results of extracorporeal shock-wave application in lateral elbow tendopathy] [Article in German]. Schmerz 1998;12:105–11.
    1. Rompe JD, Riedel C, Betz U et al. . Chronic lateral epicondylitis of the elbow: a prospective study of low-energy shockwave therapy and low-energy shockwave therapy plus manual therapy of the cervical spine. Arch Phys Med Rehabil 2001;82:578–82.
    1. Chung B, Wiley JP, Rose MS. Long-term effectiveness of extracorporeal shockwave therapy in the treatment of previously untreated lateral epicondylitis. Clin J Sport Med 2005;15:305–12.
    1. Ozturan KE, Yucel I, Cakici H et al. . Autologous blood and corticosteroid injection and extracoporeal shock wave therapy in the treatment of lateral epicondylitis. Orthopedics 2010;33:84–91.
    1. Wang CJ, Ko JY, Chan YS et al. . Extracorporeal shockwave for chronic patellar tendinopathy. Am J Sports Med 2007;35:972–8.
    1. Rompe JD, Kullmer K, Riehle H-M et al. . Effectiveness of low-energy extracorporal shock waves for chronic plantar fasciitis. Foot Ankle Surg 1996;2:215–21.
    1. Krischek O, Rompe JD, Herbsthofer B et al. . Symptomatische niedrig-energetische Stosswellentherapie bei Fersenschmerzen und radiologisch nachweisbarem plantaren Fersensporn [Symptomatic low-energy shockwave therapy in heel pain and radiologically detected plantar heel spur] [Article in German]. Z Orthop Ihre Grenzgeb 1998;136:169–74.
    1. Cosentino R, Falsetti P, Manca S et al. . Efficacy of extracorporeal shock wave treatment in calcaneal enthesophytosis. Ann Rheum Dis 2001;60:1064–7.
    1. Hammer DS, Adam F, Kreutz A et al. . Extracorporeal shock wave therapy (ESWT) in patients with chronic proximal plantar fasciitis: a 2-year follow-up . Foot Ankle Int 2003;24:823–8.
    1. Seil R, Rupp S, Hammer DS et al. . Extrakorporale Stosswellentherapie bei der Tendionosis calcarea der Rotatorenmanschette: Vergleich verschiedener Behandlungsprotokolle. [Extracorporeal shockwave therapy in tendionosis calcarea of the rotator cuff: comparison of different treatment protocols] [Article in German]. Z Orthop Ihre Grenzgeb 1999;137:310–5.
    1. Loew M, Daecke W, Kusnierczak D et al. . Shock-wave therapy is effective for chronic calcifying tendinitis of the shoulder. J Bone Joint Surg Br 1999;81:863–7.
    1. Schmitt J, Tosch A, Hünerkopf M et al. . Die extrakorporale Stosswellentherapie (ESWT) als therapeutische Option beim Supraspinatussehnensyndrom? Ein-Jahres-Ergebnisse einer placebokontrollierten Studie. [Extracorporeal shockwave therapy (ESWT) as therapeutic option in supraspinatus tendon syndrome? One year results of a placebo controlled study] [Article in German]. Orthopade 2002;31:652–7.
    1. Haake M, Willenberg T, Sauer F et al. . Einfluss der Extrakorporalen Stosswellentherapie auf die Gefassregulation. Infrarotthermographie bei Epicondylitis humeri radialis. [Effect of extracorporeal shockwave therapy on vascular regulation. Infrared thermography in epicondylitis humeri radialis] [Article in German]. Swiss Surg 2002;8:176–80.
    1. Wang CJ, Wang FS, Huang CC et al. . Treatment for osteonecrosis of the femoral head: comparison of extracorporeal shock waves with core decompression and bone-grafting. J Bone Joint Surg Am 2005;87:2380–7.
    1. Rompe JD, Hopf C, Nafe B et al. . Low-energy extracorporeal shock wave therapy for painful heel: a prospective controlled single-blind study. Arch Orthop Trauma Surg 1996;115:75–9.
    1. Wang CJ, Wang FS, Yang KD et al. . Long-term results of extracorporeal shockwave treatment for plantar fasciitis. Am J Sports Med 2006;34:592–6.
    1. Yucel I, Ozturan KE, Demiraran Y et al. . Comparison of high-dose extracorporeal shockwave therapy and intralesional corticosteroid injection in the treatment of plantar fasciitis. J Am Podiatr Med Assoc 2010;100:105–10.
    1. Hammer DS, Rupp S, Kreutz A et al. . Extracorporeal shockwave therapy (ESWT) in patients with chronic proximal plantar fasciitis. Foot Ankle Int 2002;23:309–13.
    1. Notarnicola A, Maccagnano G, Tafuri S et al. . CHELT therapy in the treatment of chronic insertional Achilles tendinopathy. Lasers Med Sci 2014;29:1217–25.
    1. Rompe JD, Bürger R, Hopf C et al. . Shoulder function after extracorporal shock wave therapy for calcific tendinitis. J Shoulder Elbow Surg 1998;7:505–9.
    1. Crowther MA, Bannister GC, Huma H et al. . A prospective, randomised study to compare extracorporeal shock-wave therapy and injection of steroid for the treatment of tennis elbow. J Bone Joint Surg Br 2002;84:678–9.
    1. Rompe JD, Hopf C, Küllmer K et al. . Low-energy extracorporal shock wave therapy for persistent tennis elbow . Int Orthop 1996;20:23–7.
    1. Rompe JD, Eysel P, Hopf C et al. . Extrakorporale Sstosswellentherapie in der Orthopädie. Positive Ergebnisse beim Tennisellenbogen und der Tendinosis calcarea der Schulter [Extracorporeal shockwave therapy in orthopedics. Positive results in tennis elbow and tendinosis calcarea of the shoulder] [Article in German]. Fortschr Med 1997;115:26,29–33.
    1. Saggini R, Cavezza T, Di Pancrazio L et al. . Treatment of lesions of the rotator cuff. J Biol Regul Homeost Agents 2010;24:453–9.
    1. Maher CG, Sherrington C, Herbert RD et al. . Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther 2003;83:713–21.
    1. De Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother 2009;55:129–33.
    1. Rompe JD, Meurer A, Nafe B et al. . Repetitive low-energy shock wave application without local anesthesia is more efficient than repetitive low-energy shock wave application with local anesthesia in the treatment of chronic plantar fasciitis. J Orthop Res 2005;23:931–41.
    1. Labek G, Auersperg V, Ziernhöld M et al. . Einfluss von Lokalanasthesie und Energieflussdichte bei niederenergetischer extrakorporaler Stosswellentherapie der chronischen Plantaren Fasziitis – Eine prospektiv-randomisierte klinische Studie. [Influence of local anesthesia and energy level on the clinical outcome of extracorporeal shock wave-treatment of chronic plantar fasciitis] [Article in German]. Z Orthop Ihre Grenzgeb 2005;143:240–6.
    1. Maier M, Averbeck B, Milz S et al. . Substance P and prostaglandin E2 release after shock wave application to the rabbit femur. Clin Orthop Relat Res 2003;406:237–45.
    1. Hausdorf J, Lemmens MA, Kaplan S et al. . Extracorporeal shockwave application to the distal femur of rabbits diminishes the number of neurons immunoreactive for substance P in dorsal root ganglia L5. Brain Res 2008;1207:96–101.
    1. Schmitz C, DePace R. Pain relief by extracorporeal shockwave therapy: an update on the current understanding. Urol Res 2009;37:231–4.
    1. Klonschinski T, Ament SJ, Schlereth T et al. . Application of local anesthesia inhibits effects of low-energy extracorporeal shock wave treatment (ESWT) on nociceptors. Pain Med 2011;12:1532–7.
    1. van der Worp H, Zwerver J, Hamstra M et al. . No difference in effectiveness between focused and radial shockwave therapy for treating patellar tendinopathy: a randomized controlled trial. Knee Surg Sports Traumatol Arthrosc 2014;22:2026–32.
    1. Neufeld SK, Cerrato R. Plantar fasciitis: evaluation and treatment. J Am Acad Orthop Surg 2008;16:338–46.
    1. Lei H, Liu J, Li H et al. . Low-intensity shock wave therapy and its application to erectile dysfunction. World J Mens Health 2013;31:208–14.

Source: PubMed

3
Abonnere