Antibody response to pneumococcal and influenza vaccination in patients with rheumatoid arthritis receiving abatacept

Rieke Alten, Clifton O Bingham 3rd, Stanley B Cohen, Jeffrey R Curtis, Sheila Kelly, Dennis Wong, Mark C Genovese, Rieke Alten, Clifton O Bingham 3rd, Stanley B Cohen, Jeffrey R Curtis, Sheila Kelly, Dennis Wong, Mark C Genovese

Abstract

Background: Patients with rheumatoid arthritis (RA), including those treated with biologics, are at increased risk of some vaccine-preventable infections. We evaluated the antibody response to standard 23-valent pneumococcal polysaccharide vaccine (PPSV23) and the 2011-2012 trivalent seasonal influenza vaccine in adults with RA receiving subcutaneous (SC) abatacept and background disease-modifying anti-rheumatic drugs (DMARDs).

Methods: Two multicenter, open-label sub-studies enrolled patients from the ACQUIRE (pneumococcal and influenza) and ATTUNE (pneumococcal) studies at any point during their SC abatacept treatment cycle following completion of ≥3 months' SC abatacept. All patients received fixed-dose abatacept 125 mg/week with background DMARDs. A pre-vaccination blood sample was taken, and after 28 ± 3 days a final post-vaccination sample was collected. The primary endpoint was the proportion of patients achieving an immunologic response to the vaccine at Day 28 among patients without a protective antibody level to the vaccine antigens at baseline (pneumococcal: defined as ≥2-fold increase in post-vaccination titers to ≥3 of 5 antigens and protective antibody level of ≥1.6 μg/mL to ≥3 of 5 antigens; influenza: defined as ≥4-fold increase in post-vaccination titers to ≥2 of 3 antigens and protective antibody level of ≥1:40 to ≥2 of 3 antigens). Safety and tolerability were evaluated throughout the sub-studies.

Results: Pre- and post-vaccination titers were available for 113/125 and 186/191 enrolled patients receiving the PPSV23 and influenza vaccine, respectively. Among vaccinated patients, 47/113 pneumococcal and 121/186 influenza patients were without protective antibody levels at baseline. Among patients with available data, 73.9 % (34/46) and 61.3 % (73/119) met the primary endpoint and achieved an immunologic response to PPSV23 or influenza vaccine, respectively. In patients with pre- and post-vaccination data available, 83.9 % in the pneumococcal study demonstrated protective antibody levels with PPSV23 (titer ≥1.6 μg/mL to ≥3 of 5 antigens), and 81.2 % in the influenza study achieved protective antibody levels (titer ≥1:40 to ≥2 of 3 antigens) at Day 28 post-vaccination. Vaccines were well tolerated with SC abatacept with background DMARDs.

Conclusions: In these sub-studies, patients with RA receiving SC abatacept and background DMARDs were able to mount an appropriate immune response to pneumococcal and influenza vaccines.

Trial registration: NCT00559585 (registered 15 November 2007) and NCT00663702 (registered 18 April 2008).

Keywords: Abatacept; Immunization; Influenza; Pneumococcal; Rheumatoid arthritis; Vaccination.

Figures

Fig. 1
Fig. 1
Disposition of patients in the pneumococcal and influenza vaccination sub-studies

References

    1. Ferreira I, Isenberg D. Vaccines and biologics. Ann Rheum Dis. 2014;73:1446–1454. doi: 10.1136/annrheumdis-2014-205246.
    1. Keyser FD. Choice of biologic therapy for patients with rheumatoid arthritis: the infection perspective. Curr Rheumatol Rev. 2011;7:77–87. doi: 10.2174/157339711794474620.
    1. McMahan ZH, Bingham CO., III Effects of biological and non-biological immunomodulatory therapies on the immunogenicity of vaccines in patients with rheumatic diseases. Arthritis Res Ther. 2014;16:506. doi: 10.1186/s13075-014-0506-0.
    1. Rahier JF, Moutschen M, Van Gompel A, Van Ranst M, Louis E, Segaert S, et al. Vaccinations in patients with immune-mediated inflammatory diseases. Rheumatology (Oxford) 2010;49:1815–1827. doi: 10.1093/rheumatology/keq183.
    1. Saag KG, Teng GG, Patkar NM, Anuntiyo J, Finney C, Curtis JR, et al. American College of Rheumatology 2008 recommendations for the use of nonbiologic and biologic disease-modifying antirheumatic drugs in rheumatoid arthritis. Arthritis Rheum. 2008;59:762–784. doi: 10.1002/art.23721.
    1. van Assen S, Agmon-Levin N, Elkayam O, Cervera R, Doran MF, Dougados M, et al. EULAR recommendations for vaccination in adult patients with autoimmune inflammatory rheumatic diseases. Ann Rheum Dis. 2011;70:414–422. doi: 10.1136/ard.2010.137216.
    1. Prevention CDC. General recommendations on immunization: recommendations of the Advisory Committee on Immunization Practices (ACIP) MMWR Morb Mortal Wkly Rep. 2011;60:1–60.
    1. Curtis JR, Arora T, Narongroeknawin P, Taylor A, Bingham CO, III, Cush J, et al. The delivery of evidence-based preventive care for older Americans with arthritis. Arthritis Res Ther. 2010;12:R144. doi: 10.1186/ar3086.
    1. Desai SP, Turchin A, Szent-Gyorgyi LE, Weinblatt M, Coblyn J, Solomon DH, et al. Routinely measuring and reporting pneumococcal vaccination among immunosuppressed rheumatology outpatients: the first step in improving quality. Rheumatology (Oxford) 2011;50:366–372. doi: 10.1093/rheumatology/keq297.
    1. Gluck T, Muller-Ladner U. Vaccination in patients with chronic rheumatic or autoimmune diseases. Clin Infect Dis. 2008;46:1459–1465. doi: 10.1086/587063.
    1. Prelog M. Vaccination in patients with rheumatoid arthritis receiving immunotherapies. J Clin Cell Immunol. 2013;S6:007.
    1. Herrero-Beaumont G, Martinez Calatrava MJ, Castaneda S. Abatacept mechanism of action: concordance with its clinical profile. Reumatol Clin. 2012;8:78–83. doi: 10.1016/j.reuma.2011.08.002.
    1. Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Annu Rev Immunol. 1996;14:233–258. doi: 10.1146/annurev.immunol.14.1.233.
    1. Linsley PS, Brady W, Urnes M, Grosmaire LS, Damle NK, Ledbetter JA. CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med. 1991;174:561–569. doi: 10.1084/jem.174.3.561.
    1. Rochford R, Riggs JE, Clavo A, Ernst DN, Hobbs MV. Differential effects of CD28 costimulation upon cytokine production by CD4+ and CD8+ T cells. Immunobiology. 2004;209:513–522. doi: 10.1016/j.imbio.2004.05.004.
    1. Alten R, Kaine J, Keystone E, Nash P, Delaet I, Genovese MC. Long-term safety of subcutaneous abatacept in rheumatoid arthritis: integrated analysis of clinical trial data representing more than four years of treatment. Arthritis Rheumatol. 2014;66:1987–1997. doi: 10.1002/art.38687.
    1. Weinblatt M, Combe B, Covucci A, Aranda R, Becker JC, Keystone E. Safety of the selective costimulation modulator abatacept in rheumatoid arthritis patients receiving background biologic and nonbiologic disease-modifying antirheumatic drugs: a one-year randomized, placebo-controlled study. Arthritis Rheum. 2006;54:2807–2816. doi: 10.1002/art.22070.
    1. Tay L, Leon F, Vratsanos G, Raymond R, Corbo M. Vaccination response to tetanus toxoid and 23-valent pneumococcal vaccines following administration of a single dose of abatacept: a randomized, open-label, parallel group study in healthy subjects. Arthritis Res Ther. 2007;9:R38. doi: 10.1186/ar2174.
    1. Schiff M, Kaell A, Tay L, Vratsanos G, Bahrt K. Response to pneumococcal vaccine in rheumatoid arthritis patients with an inadequate response to anti-TNF therapy treated with abatacept in the ARRIVE trial. Ann Rheum Dis. 2007;66(Suppl II):437.
    1. Schiff M, Saewert M, Bahrt K, Genovese M. Response to influenza vaccine in rheumatoid arthritis patients with an inadequate response to anti-TNF therapy treated with abatacept in the ARRIVE Trial. Arthritis Rheum. 2007;56:S392.
    1. Abrams JR, Lebwohl MG, Guzzo CA, Jegasothy BV, Goldfarb MT, Goffe BS, et al. CTLA4Ig-mediated blockade of T-cell costimulation in patients with psoriasis vulgaris. J Clin Invest. 1999;103:1243–1252. doi: 10.1172/JCI5857.
    1. Genovese MC, Covarrubias A, Leon G, Mysler E, Keiserman M, Valente R, et al. Subcutaneous abatacept versus intravenous abatacept: a phase IIIb noninferiority study in patients with an inadequate response to methotrexate. Arthritis Rheum. 2011;63:2854–2864. doi: 10.1002/art.30463.
    1. Keystone EC, Kremer JM, Russell A, Box J, Abud-Mendoza C, Elizondo MG, et al. Abatacept in subjects who switch from intravenous to subcutaneous therapy: results from the phase IIIb ATTUNE study. Ann Rheum Dis. 2012;71:857–861. doi: 10.1136/annrheumdis-2011-200355.
    1. Grohskopf LA, Olsen SJ, Sokolow LZ, Bresee JS, Cox NJ, Broder KR, et al. Prevention and control of seasonal influenza with vaccines: recommendations of the Advisory Committee on Immunization Practices (ACIP)–United States, 2014–15 influenza season. MMWR Morb Mortal Wkly Rep. 2014;63:691–697.
    1. Orange JS, Ballow M, Stiehm ER, Ballas ZK, Chinen J, De La Morena M, et al. Use and interpretation of diagnostic vaccination in primary immunodeficiency: a working group report of the Basic and Clinical Immunology Interest Section of the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol. 2012;130:S1–S24. doi: 10.1016/j.jaci.2012.07.002.
    1. Bingham CO, III, Looney RJ, Deodhar A, Halsey N, Greenwald M, Codding C, et al. Immunization responses in rheumatoid arthritis patients treated with rituximab: results from a controlled clinical trial. Arthritis Rheum. 2010;62:64–74. doi: 10.1002/art.25034.
    1. Bingham CO, III, Rizzo W, Kivitz A, Hassanali A, Upmanyu R, Klearman M. Humoral immune response to vaccines in patients with rheumatoid arthritis treated with tocilizumab: results of a randomised controlled trial (VISARA) Ann Rheum Dis. 2014;74:818–822. doi: 10.1136/annrheumdis-2013-204427.
    1. Winthrop KL, Silverfield J, Racewicz A, Neal J, Lee EB, Hrycaj P, et al. The effect of tofacitinib on pneumococcal and influenza vaccine responses in rheumatoid arthritis. Ann Rheum Dis. 2016;75:687–695. doi: 10.1136/annrheumdis-2014-207191.
    1. Go ES, Ballas ZK. Anti-pneumococcal antibody response in normal subjects: a meta-analysis. J Allergy Clin Immunol. 1996;98:205–215. doi: 10.1016/S0091-6749(96)70244-0.
    1. Kaine JL, Kivitz AJ, Birbara C, Luo AY. Immune responses following administration of influenza and pneumococcal vaccines to patients with rheumatoid arthritis receiving adalimumab. J Rheumatol. 2007;34:272–279.
    1. Kivitz AJ, Schechtman J, Texter M, Fichtner A, de Longueville M, Chartash EK. Vaccine responses in patients with rheumatoid arthritis treated with certolizumab pegol: results from a single-blind randomized phase IV trial. J Rheumatol. 2014;41:648–657. doi: 10.3899/jrheum.130945.
    1. Elkayam O, Paran D, Caspi D, Litinsky I, Yaron M, Charboneau D, et al. Immunogenicity and safety of pneumococcal vaccination in patients with rheumatoid arthritis or systemic lupus erythematosus. Clin Infect Dis. 2002;34:147–153. doi: 10.1086/338043.
    1. Belshe RB, Newman FK, Cannon J, Duane C, Treanor J, Van Hoecke C, et al. Serum antibody responses after intradermal vaccination against influenza. N Engl J Med. 2004;351:2286–2294. doi: 10.1056/NEJMoa043555.
    1. Guidance for industry: clinical data needed to support the licensure of seasonal inactivated influenza vaccines.
    1. van Assen S, Holvast A, Benne CA, Posthumus MD, van Leeuwen MA, Voskuyl AE, et al. Humoral responses after influenza vaccination are severely reduced in patients with rheumatoid arthritis treated with rituximab. Arthritis Rheum. 2010;62:75–81. doi: 10.1002/art.25033.
    1. Kapetanovic MC, Roseman C, Jonsson G, Truedsson L, Saxne T, Geborek P. Antibody response is reduced following vaccination with 7-valent conjugate pneumococcal vaccine in adult methotrexate-treated patients with established arthritis, but not those treated with tumor necrosis factor inhibitors. Arthritis Rheum. 2011;63:3723–3732. doi: 10.1002/art.30580.
    1. Kapetanovic MC, Roseman C, Jonsson G, Truedsson L. Heptavalent pneumococcal conjugate vaccine elicits similar antibody response as standard 23-valent polysaccharide vaccine in adult patients with RA treated with immunomodulating drugs. Clin Rheumatol. 2011;30:1555–1561. doi: 10.1007/s10067-011-1856-5.
    1. Kapetanovic MC, Saxne T, Truedsson L, Geborek P. Persistence of antibody response 1.5 years after vaccination using 7-valent pneumococcal conjugate vaccine in patients with arthritis treated with different antirheumatic drugs. Arthritis Res Ther. 2013;15:R1. doi: 10.1186/ar4127.
    1. Kapetanovic MC, Saxne T, Sjoholm A, Truedsson L, Jonsson G, Geborek P. Influence of methotrexate, TNF blockers and prednisolone on antibody responses to pneumococcal polysaccharide vaccine in patients with rheumatoid arthritis. Rheumatology (Oxford) 2006;45:106–111. doi: 10.1093/rheumatology/kei193.
    1. Artz AS, Ershler WB, Longo DL. Pneumococcal vaccination and revaccination of older adults. Clin Microbiol Rev. 2003;16:308–318. doi: 10.1128/CMR.16.2.308-318.2003.
    1. Gardner EM, Bernstein ED, Dran S, Munk G, Gross P, Abrutyn E, et al. Characterization of antibody responses to annual influenza vaccination over four years in a healthy elderly population. Vaccine. 2001;19:4610–4617. doi: 10.1016/S0264-410X(01)00246-8.
    1. Schenkein JG, Park S, Nahm MH. Pneumococcal vaccination in older adults induces antibodies with low opsonic capacity and reduced antibody potency. Vaccine. 2008;26:5521–5526. doi: 10.1016/j.vaccine.2008.07.071.
    1. Rubins JB, Alter M, Loch J, Janoff EN. Determination of antibody responses of elderly adults to all 23 capsular polysaccharides after pneumococcal vaccination. Infect Immun. 1999;67:5979–5984.
    1. CDC and Prevention Use of 13-valent pneumococcal vaccine and 23-valent pneumococcal polysaccharide vaccine for adults with immunocompromising conditions: recommendations of the advisory committee on immunization practices (ACIP) MMWR Morb Wkly Report. 2012;61:816–819.
    1. World Medical Association Declaration of Helsinki Recommendations guiding physicians in biomedical research involving human subjects. JAMA. 1997;277:925–926. doi: 10.1001/jama.1997.03540350075038.
    1. ICH Harmonised Tripartite Guideline Guideline for good clinical practice. J Postgrad Med. 2001;47:199–203.

Source: PubMed

3
Abonnere