'Chronomics' in ICU: circadian aspects of immune response and therapeutic perspectives in the critically ill

Vasilios Papaioannou, Alexandre Mebazaa, Benoît Plaud, Matthieu Legrand, Vasilios Papaioannou, Alexandre Mebazaa, Benoît Plaud, Matthieu Legrand

Abstract

Complex interrelations exist between the master central clock, located in the suprachiasmatic nuclei of the hypothalamus, and several peripheral clocks, such as those found in different immune cells of the body. Moreover, external factors that are called 'timekeepers', such as light/dark and sleep/wake cycles, interact with internal clocks by synchronizing their different oscillation phases. Chronobiology is the science that studies biologic rhythms exhibiting recurrent cyclic behavior. Circadian rhythms have a duration of approximately 24 h and can be assessed through chronobiologic analysis of time series of melatonin, cortisol, and temperature. Critically ill patients experience severe circadian deregulation due to not only the lack of effective timekeepers in the intensive care unit (ICU) environment but also systemic inflammation. The latter has been found in both animal and human studies to disrupt circadian rhythmicity of all measured biomarkers. The aims of this article are to describe circadian physiology during acute stress and to discuss the effects of ICU milieu upon circadian rhythms, in order to emphasize the value of considering circadian-immune disturbance as a potential tool for personalized treatment. Thus, besides neoplastic processes, critical illness could be linked to what has been referred as 'chronomics': timing and rhythm. In addition, different therapeutic perspectives will be presented in association with environmental approaches that could restore circadian connection and hasten physical recovery.

Figures

Figure 1
Figure 1
Melatonin: the ‘master biological clock’. Non-visual effects of light are mediated through specific retinal ganglion cells which subsequently activate SCN neurons. As a result, SCN inhibits the pineal production of melatonin during daytime through a polysynaptic pathway including paraventricular nucleus (PVN), superior cervical ganglia, and preganglionic sympathetic neurons of the lateral horn of the spinal cord. The pineal melatonin is considered the master biological clock that synchronizes the circadian rhythms of different clock genes throughout the body with different external ‘timekeepers’, such as light/dark cycles. Furthermore, the SCN-PVN network is responsible for 24-h period fluctuations of both sympathetic and parasympathetic tone, estimated with heart rate variability analysis, and for circadian oscillations of immunity and endocrine function. During inflammation, circadian rhythms of different hormones are disrupted, whereas immune cells in the periphery suppress melatonin's nocturnal surge through TNF-α and produce melatonin themselves. This extrapineal melatonin acts on a paracrine manner and exhibits both pro- and anti-inflammatory properties, depending on time phase and severity of stress. SCN, suprachiasmatic nucleus; PVN, paraventricular nucleus. Figures are reproduced from the free website: ‘The brain from top to bottom’, according to its copyleft policy (http://thebrain.mcgill.ca/flash/pop/popcopy/popcopy.html).
Figure 2
Figure 2
Chronobiologic analysis of a time series through cosinor analysis. Schematic illustration of basic metrics derived from cosinor analysis: This method is applicable to the individual biological time series anticipated to be rhythmic with a given period. The procedure fits a cosine function (blue) to the data (red) by least squares. Midline estimating statistic of rhythm (MESOR) is the mean level of oscillation that is the average value of the rhythmic function (e.g., cosine curve) fitted to the data. Amplitude is the difference between the maximum and the MESOR. Acrophase is the time of occurrence of the maximum value.

References

    1. Esquifino AI, Cano P, Jimenez-Ortega V, Fernandez-Mateos P, Cardinali DP. Neuro-endocrine-immune correlates of circadian physiology: studies in experimental models of arthritis, ethanol feeding, aging, social isolation and calorie restriction. Endocr. 2007;32:1–19. doi: 10.1007/s12020-007-9009-y.
    1. Webster JI, Tonelli L, Sternberg EM. Neuroendocrine regulation of immunity. Annu Rev Immunol. 2002;20:125–163. doi: 10.1146/annurev.immunol.20.082401.104914.
    1. Kusanagi H, Hida A, Satoh K. Expression profiles of 10 circadian clock genes in human peripheral blood mononuclear cells. Neurosci Res. 2008;61:136–142. doi: 10.1016/j.neures.2008.01.012.
    1. Brainard GC, Hanifin JP, Greeson JM, Byrne B, Glickman G, Gerner E, Rollag MD. Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J Neurosci. 2001;21(16):6405–6412.
    1. Golombek DA, Rosenstein RE. Physiology of circadian entrainment. Physiol Rev. 2010;90:1063–1102. doi: 10.1152/physrev.00009.2009.
    1. Buijs RM, la Fleur SE, Wortel J, Van Heyningen C, Zuiddam L, Mettenleiter TC, Kalsbeek A, Nagai K, Niijima A. The suprachiasmatic nucleus balances sympathetic and parasympathetic output to peripheral organs through separate preautonomic neurons. J Comp Neurol. 2003;464(1):36–48. doi: 10.1002/cne.10765.
    1. Antle MC, Silver R. Orchestrating time: arrangements of the brain circadian clock. Trends Neurosci. 2005;28:145–151. doi: 10.1016/j.tins.2005.01.003.
    1. Pevet P, Challet E. Melatonin: both master clock output and internal time-giver in the circadian clocks network. J Physiol. 2011;105:170–182.
    1. Brzezinski A. Melatonin in humans. N Engl J Med. 1997;336:186–195. doi: 10.1056/NEJM199701163360306.
    1. Bourne RS, Mills GH. Melatonin: possible implications for the post-operative and critically ill patient. Intensive Care Med. 2006;32:371–379. doi: 10.1007/s00134-005-0061-x.
    1. Bubenik GA. Gastrointestinal melatonin: localization, function, and clinical relevance. Dig Dis Scie. 2002;47:2336–2348. doi: 10.1023/A:1020107915919.
    1. Aschoff J. Exogenous and endogenous components in circadian rhythms. Cold Spring Symp Quant Biol. 1960;25:11–28. doi: 10.1101/SQB.1960.025.01.004.
    1. Arjona A, Sarkar DK. Circadian oscillations of clock genes, cytolytic factors, and cytokines in rat NK cells. J Immunol. 2005;174:7618–7624. doi: 10.4049/jimmunol.174.12.7618.
    1. Mazzoccoli G, Sothern RB, Greco A, Pazienza V, Vinciquerra M, Liu S, Cai Y. Time-related dynamics of variation in core clock gene expression levels in tissues relevant to the immune system. Int J Immunopathol Pharmacol. 2011;24(4):869–879.
    1. Dimitrov S, Lange T, Tieken S, Fehm HL, Born J. Sleep associated regulation of T helper 1/T helper 2 cytokine balance in humans. Brain Behav Immun. 2004;18(4):341–348. doi: 10.1016/j.bbi.2003.08.004.
    1. Dantzer R. Cytokine, sickness behavior, and depression. Neurol Clin. 2006;24(3):441–460. doi: 10.1016/j.ncl.2006.03.003.
    1. Haldberg F, Johnson EA, Brown BW, Bittner JJ. Susceptibility rhythm to E. coli endotoxin and bioassay. Proc Soc Exp Biol Med. 1960;103:142–144. doi: 10.3181/00379727-103-25439.
    1. Hrushesky WJ, Langevin T, Kim YJ, Wood PA. Circadian dynamics of tumor necrosis factor alpha (cachectin) lethality. J Exp Med. 1994;180(3):1059–1065. doi: 10.1084/jem.180.3.1059.
    1. Smolensky MH, Halberg F, Sargent FS. Chronobiology of the life sequence. In: Ogata SLK, Yoshimura H, editors. Advances in climatic physiology. Tokyo: Igaku Shoin; 1972.
    1. Hrushesky WJ, Wood PA. Circadian time structure of septic shock: timing is everything. J Infect Dis. 1997;175(5):1283–1284. doi: 10.1093/infdis/175.5.1283-b.
    1. Keller M, Mazuch J, Abraham U, Eom GD, Herzog ED, Volk HD, Kramer A, Maier B. A circadian clock in macrophages controls inflammatory immune responses. Proc Natl Acad Sci USA. 2009;106:21407–21412. doi: 10.1073/pnas.0906361106.
    1. Silver AC, Arjona A, Walker WE, Fikrig E. The circadian clock controls toll-like receptor 9-mediated innate and adaptive immunity. Immunity. 2012;36(2):251–261. doi: 10.1016/j.immuni.2011.12.017.
    1. Lundkvist GB, Robertson B, Mhlanga JD, Rottenberg ME, Kristensson K. Expression of an oscillating interferon-gamma receptor in the supra-chiasmatic nuclei. Neuroreport. 1998;9:1059–1063. doi: 10.1097/00001756-199804200-00018.
    1. Kwak Y, Lundkvist GB, Brask J, Davidson A, Menaker M, Kristensson K, Block GD. Interferon-γ alters electrical activity and clock gene expression in suprachiasmatic nucleus neurons. J Biol Rhythms. 2008;23(2):150–159. doi: 10.1177/0748730407313355.
    1. Okada K, Yano M, Doki Y, Azama T, Iwanaga H, Miki H, Nakayama M, Miyata H, Takiguchi S, Fujiwara Y. Injection of LPS causes transient suppression of biological clock genes in rats. J Surg Res. 2008;145(1):5–12. doi: 10.1016/j.jss.2007.01.010.
    1. Boivin DB, James FO, Wu A, Cho-Park PF, Xiong H, Sun ZS. Circadian clock genes oscillate in human peripheral blood mononuclear cells. Blood. 2003;102(12):4143–4145. doi: 10.1182/blood-2003-03-0779.
    1. Haimovich B, Calvano J, Haimovich AD, Calvano SE, Coyle SM, Lowry SF. In vivo endotoxin synchronizes and suppresses clock gene expression in human peripheral blood leucocytes. Crit Care Med. 2010;38(3):751–758. doi: 10.1097/CCM.0b013e3181cd131c.
    1. Godin PJ, Buchman TG. Uncoupling of biological oscillators: a complementary hypothesis concerning the pathogenesis of multiple organ dysfunction syndrome. Crit Care Med. 1996;24:1107–1116. doi: 10.1097/00003246-199607000-00008.
    1. Markus RP, Ferreira ZS, Fernandes PACM, Cecon E. The immune-pineal axis: a shuttle between endocrine and paracrine melatonin sources. Neuro-immunomodulation. 2007;14:126–133.
    1. Skwarlo-Sonta K, Majewski P, Markowska M, Oblap R, Olszanka B. Bidirectional communication between the pineal gland and the immune system. Can J Physiol Pharmacol. 2003;81:342–349. doi: 10.1139/y03-026.
    1. Lotufo CM, Yamashita CE, Farksy SH, Markus RP. Melatonin effect on endothelial cells reduces vascular permeability increase induced by leukotriene B4. Eur J Pharmacol. 2006;534:258–263. doi: 10.1016/j.ejphar.2006.01.050.
    1. Pontes GN, Cardoso EC, Carneiro-Sampaio MM, Markus RP. Injury switches melatonin production source from endocrine (pineal) to paracrine (phagocytes) - melatonin in human colostrum and colostrum phagocytes. J Pineal Res. 2006;41:136–141. doi: 10.1111/j.1600-079X.2006.00345.x.
    1. Da Silveira C-MS, Pinato L, Tamura EK, Carvalho-Sousa CA, Markus RP. Glia-pinealocyte network: the paracrine modulation of melatonin synthesis by tumor necrosis factor (TNF) PloS ONE. 2012;7(7):e40142. doi: 10.1371/journal.pone.0040142.
    1. Da Silveira C-MS, Carvalho-Sousa CE, Tamura EK, Pinato L, Cecon E. TLR4 and CD14 receptors expressed in the rat pineal gland triggers NFKB pathway. J Pineal Res. 2010;49:183–192.
    1. Markus RP, Ceson E, Pires-Lapa MA. Immune-pineal axis: Nuclear factor kB (NF-kB) mediates the shift in the melatonin source from pinealocytes to immune competent cells. Int J Mol Sci. 2013;14:10979–10997. doi: 10.3390/ijms140610979.
    1. Carrillo-Vico A, Lardone PJ, Alvarez-Sanchez N, Rodriguez-Rodriguez A, Guerrero JM. Melatonin: buffering the immune system. Int J Mol Sci. 2013;14:8638–8683. doi: 10.3390/ijms14048638.
    1. Lopes C, Mariano M, Markus RP. Interaction between the adrenal and the pineal gland in chronic experimental inflammation induced by BCG in mice. Inflamm Res. 2001;1:6–11. doi: 10.1007/s000110050717.
    1. Ferreira ZS, Fernandez PA, Duma D, Assreuy J, Avellar MC, Markus RP. Corticosterone modulates noradrenaline-induced melatonin synthesis through inhibition of nuclear factor kappa B. J Pineal Res. 2005;3:182–188. doi: 10.1111/j.1600-079X.2004.00191.x.
    1. Yuwiler A. Effects of steroids on serotonin-N-acetyltransferase activity of pineals in organ culture. J Neurochem. 1989;52:46–53. doi: 10.1111/j.1471-4159.1989.tb10896.x.
    1. Venkataraman S, Munoz R, Candido C, Witchel SF. The hypothalamic-pituitary-adrenal axis in critical illness. Rev Endocr Metab Disord. 2007;8:365–373. doi: 10.1007/s11154-007-9058-9.
    1. Bingham C, Arbogast B, Guillaume GC, Lee JK, Halberg F. Inferential statistical methods for estimating and comparing cosinor parameters. Chronobiologia. 1982;9:397–439.
    1. Weinert W, Waterhouse J. The circadian rhythm of core temperature: effects of physical activity and aging. Physiol Behav. 2007;90:246–256. doi: 10.1016/j.physbeh.2006.09.003.
    1. Freedman NS, Gazandam J, Levan L, Pack AI, Scwab RJ. Abnormal sleep/wake cycles and the effect of environmental noise on sleep disruption in the intensive care unit. Am J Respir Crit Care Med. 2001;163:451–457. doi: 10.1164/ajrccm.163.2.9912128.
    1. Gabor JY, Cooper AB, Crombach SA, Lee B, Kadikar N, Bettger HE, Hanly PJ. Contribution of the intensive care unit environment to sleep disruption in mechanically ventilated patients and healthy subjects. Am J Respir Crit Care Med. 2003;167:708–715. doi: 10.1164/rccm.2201090.
    1. Tweedie IE, Bell CF, Clegg A, Campbell IT, Minors DS, Waterhouse JM. Retrospective study of temperature rhythms of intensive care patients. Crit Care Med. 1989;17(11):1159–1165. doi: 10.1097/00003246-198911000-00012.
    1. Nuttall GA, Kumar M, Murray MJ. No difference exists in the alteration of circadian rhythm between patients with and without intensive care unit psychosis. Crit Care Med. 1998;26(8):1351–1355. doi: 10.1097/00003246-199808000-00019.
    1. Olofsson K, Alling C, Lundberg D, Malmros C. Abolished circadian rhythm of melatonin secretion in sedated and artificially ventilated intensive care patients. Acta Anaesthesiol Scand. 2004;48:679–684. doi: 10.1111/j.0001-5172.2004.00401.x.
    1. Frisk U, Olsson J, Nylen P, Hahn RG. Low melatonin excretion during mechanical ventilation in the intensive care unit. Clin Sci. 2004;107:47–53. doi: 10.1042/CS20030374.
    1. Paul T, Lemmer B. Disturbance of circadian rhythms in analgosedated intensive care unit patients with and without craniocerebral injury. Chronobiol Int. 2007;24(1):45–61. doi: 10.1080/07420520601142569.
    1. Pina G, Brun J, Tissot S, Claustrat B. Long-term alteration of daily melatonin, 6-sulfatoxymelatonin, cortisol and temperature profiles in burn patients: a preliminary report. Chronobiol Int. 2010;27(2):378–392. doi: 10.3109/07420520903502234.
    1. Gazendam JAC, Van Dongen HPA, Grant DA, Freedman NS, Zwaveling JH, Schwab RJ. Altered circadian rhythmicity in patients in the ICU. Chest. 2013;144(2):483–489. doi: 10.1378/chest.12-2405.
    1. Scheer FA, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci USA. 2009;106(11):4453–4458. doi: 10.1073/pnas.0808180106.
    1. Young ME. Anticipating anticipation: pursuing identification of cardiomyocyte circadian clock function. J Appl Physiol. 1985;107(4):1339–1347. doi: 10.1152/japplphysiol.00473.2009.
    1. Martino TA, Oudit GY, Herzenberg AM, Tata N, Koletar MM, Kabir GM, Belsham DD, Backx PH, Ralph MR, Sole MJ. Circadian rhythm disorganization produces profound cardiovascular and renal diseases in hamsters. Am J Physiol Regul Integr Comp Physiol. 2008;294(5):1675–1683. doi: 10.1152/ajpregu.00829.2007.
    1. Mundigler G, Delle-Karth G, Koreny M, Zehetgruber M, Steindl-Munda P, Marktl W, Fertl L, Siostrzonek P. Impaired circadian rhythm of melatonin secretion in sedated critically ill patients with severe sepsis. Crit Care Med. 2002;30:536–540. doi: 10.1097/00003246-200203000-00007.
    1. Perras B, Kurowski V, Dodt C. Nocturnal melatonin concentration is correlated with illness severity in patients with septic disease. Intensive Care Med. 2006;32:624–625. doi: 10.1007/s00134-006-0069-x.
    1. Bagci S, Yildizdas D, Horoz OO, Reinsberg J, Bartmann P, Mueller A. Use of nocturnal melatonin concentration and 6-sulfatoxymelatonin excretion to evaluate melatonin status in children with severe sepsis. J Pediatr Endocrinol Metab. 2011;24(11–12):1025–1030.
    1. Gehlbach BK, Chapotot F, Leproult R, Whitmore H, Poston J, Pohlman M, Miller A, Pohlman AS, Nedeltcheva A, Jacobsen JH, Hal JB, Van Cauter E. Temporal disorganization of circadian rhythmicity and sleep-wake regulation in mechanically ventilated patients receiving continuous intravenous sedation. Sleep. 2012;35(8):1105–1114.
    1. Li CX, Liang DD, Xie GH, Cheng BL, Chen QX, Wu SJ, Wang JL, Cho W, Fang XM. Altered melatonin secretion and circadian gene expression with increased proinflammatory cytokine expression in early-stage sepsis patients. Mol Med Rep. 2013;7(4):1117–1122.
    1. Esposti D, Esposti G, Lissoni P, Parravicini L, Fraschini F. Action of morphine on melatonin release in the rat. J Pineal Res. 1988;5:35–39. doi: 10.1111/j.1600-079X.1988.tb00766.x.
    1. Meyer TJ, Eveloff SE, Bauer MS, Schwartz WA, Hill NS, Millman RP. Adverse environmental conditions in the respiratory and medical ICU settings. Chest. 1994;105(4):1211–1216. doi: 10.1378/chest.105.4.1211.
    1. Dennis CM, Lee R, Woodard EK, Szalaj JJ, Walker CA. Benefits of quiet time for neuro-intensive care patients. J Neurosci Nurs. 2010;42(4):217–224. doi: 10.1097/JNN.0b013e3181e26c20.
    1. Carlson DE, Chiu WC. The absence of circadian cues during recovery from sepsis modifies pituitary-adrenocortical function and impairs survival. Shock. 2008;29(1):127–132. doi: 10.1097/shk.0b013e318142c5a2.
    1. Bojkowski CJ, Aldhous ME, English J, Franey C, Poulton AL, Skene DJ, Arendt J. Suppression of nocturnal plasma melatonin and 6-sulphatoxymelatonin by bright and dim light in man. Horm Metabol Res. 1987;19:437–440. doi: 10.1055/s-2007-1011846.
    1. Perras B, Meier M, Dodt C. Light and darkness fail to regulate melatonin release in critically ill humans. Intensive Care Med. 2007;33:1954–1958. doi: 10.1007/s00134-007-0769-x.
    1. Verceles AC, Silhan L, Terrin M, Netzer G, Shanholtz C, Scharf SM. Circadian rhythm disruption in severe sepsis: the effect of ambient light on urinary 6-sulfatoxymelatonin secretion. Intensive Care Med. 2012;38:804–810. doi: 10.1007/s00134-012-2494-3.
    1. McIntyre IM, Norman TR, Burrows GD. Alterations to plasma melatonin and cortisol after evening alprazolam administration in humans. Chronobiol Int. 1993;10:205–213. doi: 10.3109/07420529309073889.
    1. Parfitt AG, Klein DC. Sympathetic nerve endings in the pineal gland protect against acute stress induced increase in N-acetyltransferase (EC 2.3.1.5.) activity. Endocrinology. 1976;99:840–851. doi: 10.1210/endo-99-3-840.
    1. Berlin I, Touitou Y, Guillemant S, Danjou P, Puech AJ. Beta-adrenoceptor agonists do not stimulate daytime melatonin secretion in healthy subjects. Life Sci. 1995;56:325–331. doi: 10.1016/0024-3205(95)00096-8.
    1. Shilo L, Dagan Y, Smorjik Y, Weinberg U, Dolev S, Komptel B, Balaum H, Shenkman L. Patients in the intensive care unit suffer from severe lack of sleep associated with loss of normal melatonin secretion pattern. Am J Med Sci. 1999;317:278–281. doi: 10.1016/S0002-9629(15)40528-2.
    1. Zeitzer JM, Dijk D-J, Kronauer RE, Brown EN, Czeisler CA. Sensitivity of the human circadian pacemaker to nocturnal light: melatonin phase resetting and suppression. J Physiol. 2000;526:695–702. doi: 10.1111/j.1469-7793.2000.00695.x.
    1. Danilenko KV, Cajochen C, Wirz-Justice A. Is sleep per se a zeitgeber in humans? J Biol Rhythms. 2003;18:170–178. doi: 10.1177/0748730403251732.
    1. Balan S, Leibovitz A, Zila SO, Ruth M, Chana W, Yassica B, Rahel B, Richard G, Neumann E, Blagman B, Habot B. The relation between the clinical subtypes of delirium and the urinary level of 6-SMT. J Neuropsychiatry Clin Neurosci. 2003;15:363–366. doi: 10.1176/jnp.15.3.363.
    1. Wu YH, Swaab DF. Disturbance and strategies for reactivation of the circadian rhythm system in aging and Alzheimer's disease. Sleep Med. 2007;8(6):623–636. doi: 10.1016/j.sleep.2006.11.010.
    1. Lewis MC, Barnett SR. Post-operative delirium: the tryptophan dyregulation model. Med Hypotheses. 2004;63:402–406. doi: 10.1016/j.mehy.2004.01.033.
    1. Duboule D. Time for chronomics? Science. 2003;301:277. doi: 10.1126/science.301.5631.277.
    1. Halberg FE, Cornelissen G, Otsuka K, Schwartzkopff O, Halberg J, Bakken EE. Chronomics. Biomed Pharmacother. 2001;55(1):153–190.
    1. Moser M, Schaumberger K, Schernhammer E, Stevens RG. Cancer and rhythm. Cancer Causes Control. 2006;17:483–487. doi: 10.1007/s10552-006-0012-z.
    1. Paskaloglu K, Sener G, Kapucu C, Ayanoglu-Dulger G. Melatonin treatment protects against sepsis induced functional and biochemical changes in rat ileum and urinary bladder. Life Sci. 2004;74:1093–1104. doi: 10.1016/j.lfs.2003.07.038.
    1. Lin XJ, Mei GP, Liu J, Li YL, Zuo D, Liu SJ, Zhao TB, Lin MT. Therapeutic effects of melatonin on heatstroke-induced multiple organ dys-function syndrome in rats. J Pineal Res. 2011;50(4):436–444. doi: 10.1111/j.1600-079X.2011.00863.x.
    1. Gitto E, Karbownik M, Reiter RJ, Tan DX, Cuzzocrea S, Chiurazzi P, Cordaro S, Corona G, Trimarchi G, Barberi I. Effects of melatonin treatment in septic newborns. Pediatr Res. 2001;50:756–760. doi: 10.1203/00006450-200112000-00021.
    1. Tekbas OF, Ogur R, Korkmaz A, Kilic A, Reiter RJ. Melatonin as an antibiotic: new insights into the action of this ubiquitous molecule. J Pineal Res. 2008;44:222–226. doi: 10.1111/j.1600-079X.2007.00516.x.
    1. Li Z, Nickkholgh A, Yi X, Bruns H, Gross ML, Hoffmann K, Mohr E, Zorn M, Büchler MW, Schemmer P. Melatonin protects kidney grafts from ischemia/reperfusion injury through inhibition of NF-kB and apoptosis after experimental kidney transplantation. J Pineal Res. 2009;46(4):365–372. doi: 10.1111/j.1600-079X.2009.00672.x.
    1. Scheer FA, Van Montfrans GA, van Someren EJ, Mairuhu G, Buijs RM. Daily nighttime melatonin reduces blood pressure in male patients with essential hypertension. Hypertension. 2004;43(2):192–197. doi: 10.1161/01.HYP.0000113293.15186.3b.
    1. Goncharuk VD, van Heerikhuize J, Dai JP, Swaab DF, Buijs RM. Neuropeptide changes in the suprachiasmatic nucleus in primary hypertension indicate functional impairment of the biological clock. J Comp Neurol. 2001;431(3):320–330. doi: 10.1002/1096-9861(20010312)431:3<320::AID-CNE1073>;2-2.
    1. Al-Aama T, Brymer C, Gutmanis I, Woolmore-Goodwin SM, Esbaugh J, Dasgupta M. Melatonin decreases delirium in elderly patients: a randomized placebo-controlled trial. Int J Geriatr Psychiatry. 2011;26(7):687–694. doi: 10.1002/gps.2582.
    1. Hatta K, Kishi Y, Wada K, Takeuchi T, Odawara T, Usui C, Kakamura H, for the DELIRIA-J Group . JAMA Psychiatry. 2014. Preventive effects of ramelteon on delirium: a randomized placebo-controlled trial.
    1. Beauchamp D, Labrecque G. Chronobiology and chronotoxicology of antibiotics and aminoglycosides. Adv Drug Deliv Rev. 2007;59:896–903. doi: 10.1016/j.addr.2006.07.028.
    1. Chan M-C, Spieth PM, Quinn K, Parotto M, Zhang H, Slutsky AS. Circadian rhythms: from basic mechanisms to the intensive care unit. Crit Care Med. 2012;40:246–253. doi: 10.1097/CCM.0b013e31822f0abe.
    1. Terman JS, Terman M. Photopic and scotopic light detection in patients with seasonal affective disorder and control subjects. Biol Psychiatry. 1999;46:1642–1648. doi: 10.1016/S0006-3223(99)00221-8.
    1. Cardinali DP, Brusco LI, Lloret SP, Furio AM. Melatonin in sleep disorders and jet-lag. Neuroendocrinol Lett. 2002;3(Suppl 1):9–13.
    1. Bettermann H, von Bonin D, Fruhwirth M, Cysarz D, Moser M. Effects of speech therapy with poetry on heart rate rhythmicity and cardiorespiratory coordination. Int J Cardiol. 2002;84:77–88. doi: 10.1016/S0167-5273(02)00137-7.
    1. Kohsaka A, Bass J. A sense of time: how molecular clocks organize metabolism. Trends Endocrinol Metab. 2007;18(1):4–11. doi: 10.1016/j.tem.2006.11.005.
    1. Litinski M, Scheer FA, Shea SA. Influence of the circadian system on disease severity. Sleep Med Clin. 2009;4(2):143–163. doi: 10.1016/j.jsmc.2009.02.005.
    1. Castro R, Angus DC, Rosengart MR. The effect of light on critical illness. Crit Care. 2011;15:218. doi: 10.1186/cc10000.
    1. Ospina-Tascon GA, Buchele GL, Vincent JL. Multicenter, randomized, controlled trials evaluating mortality in intensive care: doomed to fail? Crit Care Med. 2008;36:1311–1322. doi: 10.1097/CCM.0b013e318168ea3e.
    1. Poli-de-Figueiredo LF, Garrido AG, Nakagawa N, Sannomiya P. Experimental models of sepsis and their clinical relevance. Shock. 2008;30(1):53–59. doi: 10.1097/SHK.0b013e318181a343.
    1. Angus DC, Mira JP, Vincent JL. Improving clinical trials in the critically ill. Crit Care Med. 2010;38:527–532. doi: 10.1097/CCM.0b013e3181c0259d.
    1. Castanon-Cervantes O, Wu M, Ehlen JC, Paul K, Gamble KL, Johnson RL, Besing RC, Menaker M, Gewirtz AT, Davidson AJ. Dysregulation of inflammatory responses by chronic circadian disruption. J Immunol. 2010;185(10):5796–5805. doi: 10.4049/jimmunol.1001026.
    1. Hadrich D. Project Info: EUCLOCK-Entrainment of the Circadian Clock. 2006.
    1. Halberg F, Cornelissen G, Wilson D, Singh RB, De Meester F, Watanabe Y, Otsuka K, Khalilov E. Chronobiology and chronomics: detecting and applying the cycles of nature. Biologist. 2009;56(4):209–214.
    1. Halberg F, Powell D, Otsuka K, Watanabe Y, Beaty LA, Rosch P, Czaplicki J, Hillman D, Schwartzkopff O, Cornelissen G. Diagnosing vascular variability anomalies, not only MESOR-hypertension. Am J Physiol Heart Circ Physiol. 2013;305(3):279–294. doi: 10.1152/ajpheart.00212.2013.
    1. Scheff JD, Calvano SE, Lowry SF, Androulakis IP. Modeling the influence of circadian rhythms on the acute inflammatory response. J Theor Biol. 2010;264:1068–1076. doi: 10.1016/j.jtbi.2010.03.026.

Source: PubMed

3
Abonnere