Altered epithelial barrier functions in the colon of patients with spina bifida

Charlène Brochard, Guillaume Bouguen, Raphael Olivier, Tony Durand, Sébastien Henno, Benoît Peyronnet, Mael Pagenault, Chloé Lefèvre, Gaëlle Boudry, Mikael Croyal, Alain Fautrel, Maxime Esvan, Alain Ropert, Anne Dariel, Laurent Siproudhis, Michel Neunlist, Charlène Brochard, Guillaume Bouguen, Raphael Olivier, Tony Durand, Sébastien Henno, Benoît Peyronnet, Mael Pagenault, Chloé Lefèvre, Gaëlle Boudry, Mikael Croyal, Alain Fautrel, Maxime Esvan, Alain Ropert, Anne Dariel, Laurent Siproudhis, Michel Neunlist

Abstract

Our objectives were to better characterize the colorectal function of patients with Spina Bifida (SB). Patients with SB and healthy volunteers (HVs) completed prospectively a standardized questionnaire, clinical evaluation, rectal barostat, colonoscopy with biopsies and faecal collection. The data from 36 adults with SB (age: 38.8 [34.1-47.2]) were compared with those of 16 HVs (age: 39.0 [31.0-46.5]). Compared to HVs, rectal compliance was lower in patients with SB (p = 0.01), whereas rectal tone was higher (p = 0.0015). Ex vivo paracellular permeability was increased in patients with SB (p = 0.0008) and inversely correlated with rectal compliance (r = - 0.563, p = 0.002). The expression of key tight junction proteins and inflammatory markers was comparable between SB and HVs, except for an increase in Claudin-1 immunoreactivity (p = 0.04) in SB compared to HVs. TGFβ1 and GDNF mRNAs were expressed at higher levels in patients with SB (p = 0.02 and p = 0.008). The levels of acetate, propionate and butyrate in faecal samples were reduced (p = 0.04, p = 0.01, and p = 0.02, respectively). Our findings provide evidence that anorectal and epithelial functions are altered in patients with SB. The alterations in these key functions might represent new therapeutic targets, in particular using microbiota-derived approaches.Clinical Trials: NCT02440984 and NCT03054415.

Conflict of interest statement

The authors declare no competing interests.

© 2022. The Author(s).

Figures

Figure 1
Figure 1
Rectal adaptation to isobaric distension. (A) Increasing the pressure of distension increased the recorded initial rectal volume (pressure effect, p < 0.0001). Compared with the HVs, the recorded initial rectal volumes (rectal compliance) were significantly lower in the patients with SB (group effect, p = 0.01; interaction group pression, p = 0.04). (B) Increasing the pressure of distension increased the recorded maximal rectal volumes (pressure effect, p < 0.0001). (C) Increasing pressure of distension decreased the rectal tone (maximal volume–initial volume) up to the treshold of 21 mmHg (pressure effect, p < 0.0001) for both groups. Compared with the HVs, rectal tone was significantly higher in the patients with SB up to the treshold of 21 mmHg (group effect, p = 0.08; interaction group pression; p = 0.001). *Patients with Spina Bifida; O Healthy volunteers.
Figure 2
Figure 2
(A) and (B) Comparison of para- and transcellular permeability in patients with Spina Bifida and healthy volunteers (Hvs). (A) The paracellular permeability was significantly increased in patients with SB (p = 0008). (B) For the evaluation of transcellular permeability, no significant changes were observed between the two groups (p = 0.16). (C,D) The expression levels of claudin 1 and ZO1 assessed in Western Blot were comparable between the two groups. (D) The average claudin 1 area/crypt tended to be lower in patients with SB (p = 0.08). (E) The average ZO1 area /crypt were comparable between the two groups.
Figure 3
Figure 3
(A) A first macroscopic image of the whole biopsy was first obtained using a wide-field camera in order to screen for the regions of interest within the biopsy. Static FF-OCT images of the region of interest were then obtained at 2 depths. (B) Two images for each subject were assessed. (C) Image of biopsy of Hv stained with Sirius red. (D) Image of biopsy of SB stained with Sirius red. (E) The percentage of collagen per area were significantly lower in patients with SB (p = 0.0003). (F) The percentage of collagen per area after staining with red sirius was significantly lower in patients with SB (p = 0.0075). (G) The mRNA expression of TGF beta was significantly higher in patients with SB compared with Hvs (p = 0.0176). (H) The mRNA expression of MMP2 was significantly higher in patients with SB compared with Hvs (p = 0.0121) and tended to be correlated with the paracellular permeability (p = 0.0516) (I). (J) The TIMP1/MMP1 balance was significantly lower in patients with Spina Bifida (p = 0.0348).
Figure 4
Figure 4
The expression levels of acetate, propionate and butyrate in fecal samples were significantly lower by 33, 54 and 53% in patients with SB compared with HVs (p = 0.02, p = 0.01, p = 0.02, respectively).

References

    1. Verhoef M, Lurvink M, Barf HA, Post MWM, van Asbeck FWA, Gooskens RHJM, et al. High prevalence of incontinence among young adults with spina bifida: Description, prediction and problem perception. Spinal Cord. 2005;43(6):331–340. doi: 10.1038/sj.sc.3101705.
    1. Lemelle JL, Guillemin F, Aubert D, Guys JM, Lottmann H, Lortat-Jacob S, et al. A multicentre study of the management of disorders of defecation in patients with spina bifida. Neurogastroenterol. Motil. 2006;18(2):123–128. doi: 10.1111/j.1365-2982.2005.00737.x.
    1. Brochard C, Peyronnet B, Dariel A, Ménard H, Manunta A, Ropert A, et al. Bowel dysfunction related to spina bifida: Keep it simple. Dis. Colon. Rectum. 2017;60(11):1209–1214. doi: 10.1097/DCR.0000000000000892.
    1. Krogh K, Lie HR, Bilenberg N, Laurberg S. Bowel function in Danish children with myelomeningocele. APMIS Suppl. 2003;109:81–85.
    1. Jørgensen B, Olsen LH, Jørgensen TM. Long-term follow-up in spinal dysraphism: Outcome of renal function and urinary and faecal continence. Scand J. Urol. Nephrol. 2010;44(2):95–100. doi: 10.3109/00365590903494916.
    1. Brochard C, Ropert A, Peyronnet B, Ménard H, Manunta A, Neunlist M, et al. Fecal incontinence in patients with spina bifida: The target is the rectum. Neurourol. Urodyn. 2018;37(3):1082–1087. doi: 10.1002/nau.23417.
    1. Siproudhis L, Bellissant E, Juguet F, Allain H, Bretagne JF, Gosselin M. Effects of cholinergic agents on anorectal physiology. Aliment Pharmacol. Ther. 1998;12(8):747–754. doi: 10.1046/j.1365-2036.1998.00361.x.
    1. Siproudhis L, Bellissant E, Juguet F, Allain H, Bretagne JF, Gosselin M. Perception of and adaptation to rectal isobaric distension in patients with faecal incontinence. Gut. 1999;44(5):687–692. doi: 10.1136/gut.44.5.687.
    1. Siproudhis L, Bellissant E, Pagenault M, Mendler MH, Allain H, Bretagne JF, et al. Fecal incontinence with normal anal canal pressures: Where is the pitfall? Am. J. Gastroenterol. 1999;94(6):1556–1563. doi: 10.1111/j.1572-0241.1999.01144.x.
    1. Trivedi PM, Kumar L, Emmanuel AV. Altered colorectal compliance and anorectal physiology in upper and lower motor neurone spinal injury may explain bowel symptom pattern. Am. J. Gastroenterol. 2016;111(4):552–560. doi: 10.1038/ajg.2016.19.
    1. Marchiando AM, Graham WV, Turner JR. Epithelial barriers in homeostasis and disease. Annu. Rev. Pathol. 2010;5:119–144. doi: 10.1146/annurev.pathol.4.110807.092135.
    1. Suzuki T. Regulation of intestinal epithelial permeability by tight junctions. Cell Mol. Life Sci. CMLS. 2013;70(4):631–659. doi: 10.1007/s00018-012-1070-x.
    1. Piche T, Barbara G, Aubert P, Bruley des Varannes S, Dainese R, Nano JL, et al. Impaired intestinal barrier integrity in the colon of patients with irritable bowel syndrome: Involvement of soluble mediators. Gut. 2009;58(2):196–201. doi: 10.1136/gut.2007.140806.
    1. Bertiaux-Vandaële N, Youmba SB, Belmonte L, Lecleire S, Antonietti M, Gourcerol G, et al. The expression and the cellular distribution of the tight junction proteins are altered in irritable bowel syndrome patients with differences according to the disease subtype. Am. J. Gastroenterol. 2011;106(12):2165–2173. doi: 10.1038/ajg.2011.257.
    1. Barbara G. Mucosal barrier defects in irritable bowel syndrome. Who left the door open? Am. J. Gastroenterol. 2006;101(6):1295–1298. doi: 10.1038/ajg2006242.
    1. Piche T. Tight junctions and IBS—the link between epithelial permeability, low-grade inflammation, and symptom generation? Neurogastroenterol. Motil. 2014;26(3):296–302. doi: 10.1111/nmo.12315.
    1. Peeters M, Ghoos Y, Maes B, Hiele M, Geboes K, Vantrappen G, et al. Increased permeability of macroscopically normal small bowel in Crohn’s disease. Dig. Dis. Sci. 1994;39(10):2170–2176. doi: 10.1007/BF02090367.
    1. Katz KD, Hollander D, Vadheim CM, McElree C, Delahunty T, Dadufalza VD, et al. Intestinal permeability in patients with Crohn’s disease and their healthy relatives. Gastroenterology. 1989;97(4):927–931. doi: 10.1016/0016-5085(89)91499-6.
    1. Clairembault T, Leclair-Visonneau L, Coron E, Bourreille A, Le Dily S, Vavasseur F, et al. Structural alterations of the intestinal epithelial barrier in Parkinson’s disease. Acta Neuropathol. Commun. 2015;3:12. doi: 10.1186/s40478-015-0196-0.
    1. Van Spaendonk H, Ceuleers H, Witters L, Patteet E, Joossens J, Augustyns K, et al. Regulation of intestinal permeability: The role of proteases. World J. Gastroenterol. 2017;23(12):2106–2123. doi: 10.3748/wjg.v23.i12.2106.
    1. Meir M, Flemming S, Burkard N, Wagner J, Germer C-T, Schlegel N. The glial cell-line derived neurotrophic factor: A novel regulator of intestinal barrier function in health and disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2016;310(11):G1118–1123. doi: 10.1152/ajpgi.00125.2016.
    1. Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer R-J. Review article: The role of butyrate on colonic function. Aliment Pharmacol. Ther. 2008;27(2):104–119. doi: 10.1111/j.1365-2036.2007.03562.x.
    1. Lewis SJ, Heaton KW. Stool form scale as a useful guide to intestinal transit time. Scand. J. Gastroenterol. 1997;32(9):920–924. doi: 10.3109/00365529709011203.
    1. Knowles CH, Eccersley AJ, Scott SM, Walker SM, Reeves B, Lunniss PJ. Linear discriminant analysis of symptoms in patients with chronic constipation: Validation of a new scoring system (KESS) Dis. Colon Rectum. 2000;43(10):1419–1426. doi: 10.1007/BF02236639.
    1. Jorge JM, Wexner SD. Etiology and management of fecal incontinence. Dis. Colon Rectum. 1993;36(1):77–97. doi: 10.1007/BF02050307.
    1. Krogh K, Christensen P, Sabroe S, Laurberg S. Neurogenic bowel dysfunction score. Spinal Cord. 2006;44(10):625–631. doi: 10.1038/sj.sc.3101887.
    1. Rullier E, Zerbib F, Marrel A, Amouretti M, Lehur P-A. Validation of the French version of the Fecal Incontinence Quality-of-Life (FIQL) scale. Gastroentérol. Clin. Biol. 2004;28(6–7 Pt 1):562–568. doi: 10.1016/S0399-8320(04)95012-9.
    1. Rothbarth J, Bemelman WA, Meijerink WJ, Stiggelbout AM, Zwinderman AH, Buyze-Westerweel ME, et al. What is the impact of fecal incontinence on quality of life? Dis. Colon Rectum. 2001;44(1):67–71. doi: 10.1007/BF02234823.
    1. Brochard C, Siproudhis L, Ropert A, Mallak A, Bretagne J-F, Bouguen G. Anorectal dysfunction in patients with ulcerative colitis: Impaired adaptation or enhanced perception? Neurogastroenterol. Motil. 2015;27(7):1032–1037. doi: 10.1111/nmo.12580.
    1. Musquer N, Coquenlorge S, Bourreille A, Aubert P, Matysiak-Budnik T, des Varannes SB, et al. Probe-based confocal laser endomicroscopy: A new method for quantitative analysis of pit structure in healthy and Crohn’s disease patients. Dig. Liver Dis. 2013;45(6):487–492. doi: 10.1016/j.dld.2013.01.018.
    1. Eypasch E, Williams JI, Wood-Dauphinee S, Ure BM, Schmülling C, Neugebauer E, et al. Gastrointestinal Quality of Life Index: Development, validation and application of a new instrument. Br. J. Surg. 1995;82(2):216–222. doi: 10.1002/bjs.1800820229.
    1. Knowles CH, Eccersley AJ, Scott SM, Walker SM, Reeves B, Lunniss PJ. Linear discriminant analysis of symptoms in patients with chronic constipation: Validation of a new scoring system (KESS) Dis. Colon Rectum. 2000;43(10):1419–1426. doi: 10.1007/BF02236639.
    1. MacDonagh R, Sun WM, Thomas DG, Smallwood R, Read NW. Anorectal function in patients with complete supraconal spinal cord lesions. Gut. 1992;33(11):1532–1538. doi: 10.1136/gut.33.11.1532.
    1. Sun WM, MacDonagh R, Forster D, Thomas DG, Smallwood R, Read NW. Anorectal function in patients with complete spinal transection before and after sacral posterior rhizotomy. Gastroenterology. 1995;108(4):990–998. doi: 10.1016/0016-5085(95)90194-9.
    1. Krogh K, Mosdal C, Gregersen H, Laurberg S. Rectal wall properties in patients with acute and chronic spinal cord lesions. Dis. Colon Rectum. 2002;45(5):641–649. doi: 10.1007/s10350-004-6261-6.
    1. Garcia-Hernandez V, Quiros M, Nusrat A. Intestinal epithelial claudins: Expression and regulation in homeostasis and inflammation. Ann. N Y Acad. Sci. 2017;1397(1):66–79. doi: 10.1111/nyas.13360.
    1. He W-Q, Wang J, Sheng J-Y, Zha J-M, Graham WV, Turner JR. Contributions of myosin light chain kinase to regulation of epithelial paracellular permeability and mucosal homeostasis. Int. J. Mol. Sci. 2020;21(3):E993. doi: 10.3390/ijms21030993.
    1. Bai X, Bai G, Tang L, Liu L, Li Y, Jiang W. Changes in MMP-2, MMP-9, inflammation, blood coagulation and intestinal mucosal permeability in patients with active ulcerative colitis. Exp. Ther. Med. 2020;20(1):269–274. doi: 10.3892/etm.2020.8710.
    1. Woznicki JA, Saini N, Flood P, Rajaram S, Lee CM, Stamou P, et al. TNF-α synergises with IFN-γ to induce caspase-8-JAK1/2-STAT1-dependent death of intestinal epithelial cells. Cell Death Dis. 2021;12(10):864. doi: 10.1038/s41419-021-04151-3.
    1. Gordon IO, Agrawal N, Willis E, Goldblum JR, Lopez R, Allende D, et al. Fibrosis in ulcerative colitis is directly linked to severity and chronicity of mucosal inflammation. Aliment Pharmacol. Ther. 2018;47(7):922–939. doi: 10.1111/apt.14526.
    1. Ishizuya-Oka A. Epithelial-connective tissue cross-talk is essential for regeneration of intestinal epithelium. J. Nippon Med. Sch. Nippon Ika Daigaku Zasshi. 2005;72(1):13–18. doi: 10.1272/jnms.72.13.
    1. Visser JTJ, Lammers K, Hoogendijk A, Boer MW, Brugman S, Beijer-Liefers S, et al. Restoration of impaired intestinal barrier function by the hydrolysed casein diet contributes to the prevention of type 1 diabetes in the diabetes-prone BioBreeding rat. Diabetologia. 2010;53(12):2621–2628. doi: 10.1007/s00125-010-1903-9.
    1. Zhang DK, He FQ, Li TK, Pang XH, Cui DJ, Xie Q, et al. Glial-derived neurotrophic factor regulates intestinal epithelial barrier function and inflammation and is therapeutic for murine colitis. J. Pathol. 2010;222(2):213–222. doi: 10.1002/path.2749.
    1. Steinkamp M, Geerling I, Seufferlein T, von Boyen G, Egger B, Grossmann J, et al. Glial-derived neurotrophic factor regulates apoptosis in colonic epithelial cells. Gastroenterology. 2003;124(7):1748–1757. doi: 10.1016/S0016-5085(03)00404-9.
    1. Kinoshita M, Suzuki Y, Saito Y. Butyrate reduces colonic paracellular permeability by enhancing PPARgamma activation. Biochem. Biophys. Res. Commun. 2002;293(2):827–831. doi: 10.1016/S0006-291X(02)00294-2.
    1. Yan H, Ajuwon KM. Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway. PLoS One. 2017;12(6):e0179586. doi: 10.1371/journal.pone.0179586.
    1. Geirnaert A, Calatayud M, Grootaert C, Laukens D, Devriese S, Smagghe G, et al. Butyrate-producing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Sci. Rep. 2017;7(1):11450. doi: 10.1038/s41598-017-11734-8.
    1. Sun Q, Jia Q, Song L, Duan L. Alterations in fecal short-chain fatty acids in patients with irritable bowel syndrome: A systematic review and meta-analysis. Medicine (Baltimore) 2019;98(7):e14513. doi: 10.1097/MD.0000000000014513.
    1. Soret R, Chevalier J, De Coppet P, Poupeau G, Derkinderen P, Segain JP, et al. Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology. 2010;138(5):1772–1782. doi: 10.1053/j.gastro.2010.01.053.
    1. Furuta A, Suzuki Y, Takahashi R, Jakobsen BP, Kimura T, Egawa S, et al. Effects of transanal irrigation on gut microbiota in pediatric patients with spina bifida. J. Clin. Med. 2021;10(2):224. doi: 10.3390/jcm10020224.

Source: PubMed

3
Abonnere