Electrical impedance tomography in acute respiratory distress syndrome

M Consuelo Bachmann, Caio Morais, Guillermo Bugedo, Alejandro Bruhn, Arturo Morales, João B Borges, Eduardo Costa, Jaime Retamal, M Consuelo Bachmann, Caio Morais, Guillermo Bugedo, Alejandro Bruhn, Arturo Morales, João B Borges, Eduardo Costa, Jaime Retamal

Abstract

Acute respiratory distress syndrome (ARDS) is a clinical entity that acutely affects the lung parenchyma, and is characterized by diffuse alveolar damage and increased pulmonary vascular permeability. Currently, computed tomography (CT) is commonly used for classifying and prognosticating ARDS. However, performing this examination in critically ill patients is complex, due to the need to transfer these patients to the CT room. Fortunately, new technologies have been developed that allow the monitoring of patients at the bedside. Electrical impedance tomography (EIT) is a monitoring tool that allows one to evaluate at the bedside the distribution of pulmonary ventilation continuously, in real time, and which has proven to be useful in optimizing mechanical ventilation parameters in critically ill patients. Several clinical applications of EIT have been developed during the last years and the technique has been generating increasing interest among researchers. However, among clinicians, there is still a lack of knowledge regarding the technical principles of EIT and potential applications in ARDS patients. The aim of this review is to present the characteristics, technical concepts, and clinical applications of EIT, which may allow better monitoring of lung function during ARDS.

Keywords: Acute respiratory distress syndrome; Electrical impedance tomography; Lung imaging; Mechanical ventilation; Ventilation distribution.

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Informed consent was obtained from the patient.

Competing interests

EC, CM, and JBB report personal fees from Timpel S.A. during the conduct of the study. The remaining authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
a Placement of electrode belt on chest. It is recommended to apply electrode belt between fifth and sixth intercostal space. b Computed tomographic axial slice of thorax with 32-electrode belt, and schematic representation of electrical current pathways through thorax. One pair of electrodes injects electrical current while remaining electrodes read voltages produced as a result of the distribution of current density inside thorax. Injection pair is alternated sequentially, and after a full cycle one image will be generated. c Functional image reconstructed by electrical impedance tomography (EIT) using a color scale: the lighter the blue, the greater the regional ventilation. Of note, this color scale is not universal. Image generated by EIT Enlight (TIMPEL SA, São Paulo). A anterior, L left, P posterior, R right
Fig. 2
Fig. 2
a Heterogeneous inflation. Ventral regions inflate first and dorsal regions start inflating halfway to end of inspiration. b Homogeneous inflation. Both ventral and dorsal regions start inflating simultaneously. AU arbitrary units
Fig. 3
Fig. 3
Global (whole image) plethysmogram and airway pressure (PAW) waveforms. (I) Increment in positive end-expiratory pressure (PEEP) increased end-expiratory lung volume (ΔEELZ). (II) Ventilatory cyclical variation (ΔZ) tracks changes in tidal volume (VT). AU arbitrary units
Fig. 4
Fig. 4
Computed tomography (CT) of a patient with pneumonia and corresponding functional image obtained from electrical impedance tomography (EIT). Note absence of ventilation on lower right lung in EIT image and corresponding massive consolidation on right lung assessed by CT
Fig. 5
Fig. 5
Ventilation map divided into two regions of interest in a model of acute respiratory distress syndrome, ventilated with positive end-expiratory pressure (PEEP) of 5 cmH2O (left) and 15 cmH2O (right)
Fig. 6
Fig. 6
Estimation of recruitable lung collapse and overdistension during decremental positive end-expiratory pressure (PEEP) maneuver. a Reduction of end-expiratory lung impedance (blue waves) in each PEEP step (yellow waves). b Respiratory system compliance, collapse, and overdistension at each stage of decremental PEEP maneuver. Note that PEEP of better global compliance (17 cmH2O) does not coincide with PEEP that minimizes collapse and overdistension estimated according to electrical impedance tomography (15 cmH2O). c Maps of overdistension and collapse in each PEEP step. Observe progressive increase of lung collapse with reduction of PEEP, predominantly in dependent region. Images generated by Enlight (Timpel SA, São Paulo, Brazil)
Fig. 7
Fig. 7
Computed tomography (CT), ventilation map, and aeration change map obtained at baseline and after induction of pneumothorax in a pig. Arrows point to accumulation of air in pleural space
Fig. 8
Fig. 8
Global electrical impedance tomography (EIT) plethysmogram and ventilation map during open suction (OS) in model of severe ARDS. Solid and dotted horizontal lines represent end-expiratory lung impedance (EELZ) at baseline and post OS, respectively. Note that EELZ does not return to baseline values (arrows indicating distance between solid and dotted lines), describing reduction of aerated lung. Also note reduction of pulmonary ventilation after OS (ΔZ I – ΔZ II). Ventilation maps I and II (left and right images at top) show decrease of ventilation on posterior region after OS. A anterior (ventral), AU arbitrary units, P posterior (dorsal). Courtesy of Nadja Carvalho
Fig. 9
Fig. 9
Airway pressure (PAW), flow, tidal volume (VT), and EIT waveforms during synchronous cycle (A) and during breath stacking dyssynchrony (B). During breath stacking, plethysmogram shows inspired volume near twice that of a regular cycle. This excessive deformation of lung not detected by currently available waveforms on mechanical ventilators. AU arbitrary units, ∆Z variation of impedance
Fig. 10
Fig. 10
Pendelluft phenomenon. Variation of impedance (∆Z) and airway pressure in assisted and controlled mechanical ventilation (PAW). Blue line: posterior region of lung. Red line: Anterior region of lung. In assisted mechanical ventilation, anterior region of lung decreases its impedance variation (loses air) and at the same time posterior region increases (being aerated). AU arbitrary units, EIT electrical impedance tomography
Fig. 11
Fig. 11
Electrical impedance tomography (EIT) ventilation and perfusion images of patient with community-acquired pneumonia affecting left lower lobe. Color scale adjusted by linear normalization. a Ventilation reduction at lower left quadrant in comparison with lower right quadrant, without changes in perfusion distribution at the lower quadrants. b Ventilation and perfusion decoupling in left lower quadrant represented by low distribution ratio. LL lower left, LR lower right, UL upper left, UR upper right, ZV ventilation estimated by EIT, ZQ perfusion estimated by EIT. Image provided by Fernando Suarez-Sipmann. Red arrow indicates ventilation/perfusion ratio in the LL quadrant
Fig. 12
Fig. 12
Regional ventilation delay (RVD). Ventral region. Patient in mechanical ventilation. Slice 1, ventral region; Slice 2, central ventral; Slice 3, central dorsal; Slice 4, dorsal region. A anterior, AU arbitrary units, C central, P posterior, ROI region of interest, ∆Z variation of impedance. Courtesy of Wildberg Alencar

References

    1. Sweeney Rob Mac, McAuley Daniel F. Acute respiratory distress syndrome. The Lancet. 2016;388(10058):2416–2430. doi: 10.1016/S0140-6736(16)00578-X.
    1. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315:788. doi: 10.1001/jama.2016.0291.
    1. Herridge Margaret S., Cheung Angela M., Tansey Catherine M., Matte-Martyn Andrea, Diaz-Granados Natalia, Al-Saidi Fatma, Cooper Andrew B., Guest Cameron B., Mazer C. David, Mehta Sangeeta, Stewart Thomas E., Barr Aiala, Cook Deborah, Slutsky Arthur S. One-Year Outcomes in Survivors of the Acute Respiratory Distress Syndrome. New England Journal of Medicine. 2003;348(8):683–693. doi: 10.1056/NEJMoa022450.
    1. Ware Lorraine B., Matthay Michael A. The Acute Respiratory Distress Syndrome. New England Journal of Medicine. 2000;342(18):1334–1349. doi: 10.1056/NEJM200005043421806.
    1. Pelosi P, Dandrea L, Vitale G, Pesenti a, Gattinoni L. Vertical gradient of regional lung inflation in adult respiratory distress syndrome. Am J Respir Crit Care Med. 1994;149:8–13. doi: 10.1164/ajrccm.149.1.8111603.
    1. Cressoni M, Cadringher P, Chiurazzi C, Amini M, Gallazzi E, Marino A, et al. Lung inhomogeneity in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2014;189:149–158.
    1. Gattinoni L, Pesenti A. The concept of “baby lung”. Intensive Care Med. 2005;31:776–784. doi: 10.1007/s00134-005-2627-z.
    1. Borges JB, Hansen T, Larsson A, Hedenstierna G. The “normal” ventilated airspaces suffer the most damaging effects of mechanical ventilation. Intensive Care Med. 2017;43:1057–1058. doi: 10.1007/s00134-017-4708-1.
    1. Estenssoro E, Dubin A. Acute respiratory distress syndrome. Med Buenos Aires. 2016;76:235-41.
    1. Retamal J, Hurtado D, Villarroel N, Bruhn A, Bugedo G, Amato MBP, et al. Does regional lung strain correlate with regional inflammation in acute respiratory distress syndrome during nonprotective ventilation? An experimental porcine study. Crit Care Med. 2018;46(6):e591–e599. doi: 10.1097/CCM.0000000000003072.
    1. Borges João Batista, Costa Eduardo L. V., Suarez-Sipmann Fernando, Widström Charles, Larsson Anders, Amato Marcelo, Hedenstierna Göran. Early Inflammation Mainly Affects Normally and Poorly Aerated Lung in Experimental Ventilator-Induced Lung Injury*. Critical Care Medicine. 2014;42(4):e279–e287. doi: 10.1097/CCM.0000000000000161.
    1. Borges JB, Costa ELV, Bergquist M, Lucchetta L, Widström C, Maripuu E, et al. Lung inflammation persists after 27 hours of protective acute respiratory distress syndrome network strategy and is concentrated in the nondependent lung. Crit Care Med. 2015;43:e123–e132. doi: 10.1097/CCM.0000000000000926.
    1. Terragni PP, Rosboch G, Tealdi A, Corno E, Menaldo E, Davini O, et al. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2007;175:160–166. doi: 10.1164/rccm.200607-915OC.
    1. Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med. 2013;369:2126–2136. doi: 10.1056/NEJMra1208707.
    1. Bugedo G, Bruhn A, Regueira T, Romero C, Retamal J, Hernández G. Positive end-expiratory pressure increases strain in patients with ALI/ARDS. Rev Bras Ter Intensiva. 2012;24(1):43–51. doi: 10.1590/S0103-507X2012000100007.
    1. Hurtado DE, Villarroel N, Retamal J, Bugedo G, Bruhn A. Improving the accuracy of registration-based biomechanical analysis: a finite element approach to lung regional strain quantification. IEEE Trans Med Imaging. 2016;35:580–588. doi: 10.1109/TMI.2015.2483744.
    1. Gattinoni Luciano, Caironi Pietro, Cressoni Massimo, Chiumello Davide, Ranieri V. Marco, Quintel Michael, Russo Sebastiano, Patroniti Nicolò, Cornejo Rodrigo, Bugedo Guillermo. Lung Recruitment in Patients with the Acute Respiratory Distress Syndrome. New England Journal of Medicine. 2006;354(17):1775–1786. doi: 10.1056/NEJMoa052052.
    1. Costa EL, Lima RG, Amato MB. Electrical impedance tomography. Curr Opin Crit Care. 2009;15:18–24. doi: 10.1097/MCC.0b013e3283220e8c.
    1. Harris ND, Suggett AJ, Barber DC, Brown BH. Applications of applied potential tomography (APT) in respiratory medicine. Clin Phys Physiol Meas. 1987;8:155. doi: 10.1088/0143-0815/8/4A/020.
    1. Brown BH. Electrical impedance tomography (EIT): a review. J Med Eng Technol. 2003;27:97–108. doi: 10.1080/0309190021000059687.
    1. Frerichs I, Amato MBP, van Kaam AH, Tingay DG, Zhao Z, Grychtol B, et al. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax. 2017;72:83–93. doi: 10.1136/thoraxjnl-2016-208357.
    1. van Genderingen HR, van Vught AJ, Jansen JRC. Estimation of regional lung volume changes by electrical impedance pressures tomography during a pressure-volume maneuver. Intensive Care Med. 2003;29:233–240. doi: 10.1007/s00134-002-1586-x.
    1. Odenstedt H, Lindgren S, Olegård C, Erlandsson K, Lethvall S, Åneman A, et al. Slow moderate pressure recruitment maneuver minimizes negative circulatory and lung mechanic side effects: evaluation of recruitment maneuvers using electric impedance tomography. Intensive Care Med. 2005;31:1706–1714. doi: 10.1007/s00134-005-2799-6.
    1. Luepschen H, Meier T, Grossherr M, Leibecke T, Karsten J, Leonhardt S. Protective ventilation using electrical impedance tomography. Physiological Measurement. 2007;28(7):S247–S260. doi: 10.1088/0967-3334/28/7/S18.
    1. Wolf GK, Gómez-Laberge C, Rettig JS, Vargas SO, Smallwood CD, Prabhu SP, et al. Mechanical ventilation guided by electrical impedance tomography in experimental acute lung injury. Crit Care Med. 2013;41:1296–1304. doi: 10.1097/CCM.0b013e3182771516.
    1. Lowhagen K, Lindgren S, Odenstedt H, Stenqvist O, Lundin S. A new non-radiological method to assess potential lung recruitability: a pilot study in ALI patients. Acta Anaesthesiol Scand. 2011;55:165–174. doi: 10.1111/j.1399-6576.2010.02331.x.
    1. Putensen C, Wrigge H, Zinserling J. Electrical impedance tomography guided ventilation therapy. Curr Opin Crit Care. 2007;13:344–350. doi: 10.1097/MCC.0b013e328136c1e2.
    1. Victorino J a, Borges JB, Okamoto VN, Matos GFJ, Tucci MR, Caramez MPR, et al. Imbalances in regional lung ventilation: a validation study on electrical impedance tomography. Am J Respir Crit Care Med. 2004;169:791–800. doi: 10.1164/rccm.200301-133OC.
    1. Hinz J, Hahn G, Neumann P, Sydow M, Mohrenweiser P, Hellige G, et al. End-expiratory lung impedance change enables bedside monitoring of end-expiratory lung volume change. Intensive Care Med. 2003;29:37–43. doi: 10.1007/s00134-002-1555-4.
    1. Frerichs I, Hinz J, Herrmann P, Weisser G, Hahn G, Dudykevych T, et al. Detection of local lung air content by electrical impedance tomography compared with electron beam CT. J Appl Physiol. 2002;93:660–666. doi: 10.1152/japplphysiol.00081.2002.
    1. Hinz J, Neumann P, Dudykevych T, Andersson LG, Wrigge H, Burchardi H, et al. Regional ventilation by electrical impedance tomography: a comparison with ventilation scintigraphy in pigs. Chest. 2003;124:314–322. doi: 10.1378/chest.124.1.314.
    1. Victorino JA, Borges JB, Okamoto VN, Matos GFJ, Tucci MR, Caramez MPR, et al. Imbalances in regional lung ventilation. Am J Respir Crit Care Med. 2004;169:791–800. doi: 10.1164/rccm.200301-133OC.
    1. Costa ELV, Borges JB, Melo A, Suarez-Sipmann F, Toufen C, Bohm SH, et al. Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography. Intensive Care Med. 2009;35:1132–1137. doi: 10.1007/s00134-009-1447-y.
    1. Beda A, Carvalho AR, Carvalho NC, Hammermüller S, Amato MBP, Muders T, et al. Mapping regional differences of local pressure-volume curves with electrical impedance tomography. Crit Care Med. 2017;45:679–686. doi: 10.1097/CCM.0000000000002233.
    1. Meier T, Luepschen H, Karsten J, Leibecke T, Großherr M, Gehring H, et al. Assessment of regional lung recruitment and derecruitment during a PEEP trial based on electrical impedance tomography. Intensive Care Med. 2008;34:543–550. doi: 10.1007/s00134-007-0786-9.
    1. Chen L, Del Sorbo L, Luca Grieco D, Shklar O, Junhasavasdikul D, Telias I, et al. Airway closure in acute respiratory distress syndrome: an underestimated and misinterpreted phenomenon. Am J Respir Crit Care Med. 2018;197:132–136. doi: 10.1164/rccm.201702-0388LE.
    1. Sun XM, Chen GQ, Zhou YM, Yang YL, Zhou JX. Airway closure could be confirmed by electrical impedance tomography. Am J Respir Crit Care Med. 2018;197:138–141. doi: 10.1164/rccm.201706-1155LE.
    1. Briel M, Meade M, Mercat A, Brower RG, Talmor D, Walter SD, et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome. JAMA. 2010;303:865. doi: 10.1001/jama.2010.218.
    1. Hahn G, Just A, Dudykevych T, Frerichs I, Hinz J, Quintel M, et al. Imaging pathologic pulmonary air and fluid accumulation by functional and absolute EIT. Physiol Meas. 2006;27:S187–S198. doi: 10.1088/0967-3334/27/5/S16.
    1. Costa ELV, Chaves CN, Gomes S, Beraldo MA, Volpe MS, Tucci MR, et al. Real-time detection of pneumothorax using electrical impedance tomography. Crit Care Med. 2008;36:1230–1238. doi: 10.1097/CCM.0b013e31816a0380.
    1. Morais CCA, De Santis Santiago RR, Filho JRB de O, Hirota AS, Pacce PHD, Ferreira JC, et al. Monitoring of pneumothorax appearance with electrical impedance tomography during recruitment maneuvers. Am J Respir Crit Care Med. 2017;195:1070–1073. doi: 10.1164/rccm.201609-1780LE.
    1. Lindgren S, Odenstedt H, Olegård C, Söndergaard S, Lundin S, Stenqvist O. Regional lung derecruitment after endotracheal suction during volume- or pressure-controlled ventilation: a study using electric impedance tomography. Intensive Care Med. 2007;33:172–180. doi: 10.1007/s00134-006-0425-x.
    1. Corley A, Spooner AJ, Barnett AG, Caruana LR, Hammond NE, Fraser JF. End-expiratory lung volume recovers more slowly after closed endotracheal suctioning than after open suctioning: a randomized crossover study. J Crit Care. 2012;27:742.e1–742.e7. doi: 10.1016/j.jcrc.2012.08.019.
    1. Blanch L, Villagra A, Sales B, Montanya J, Lucangelo U, Luján M, et al. Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med. 2015;41:633–641. doi: 10.1007/s00134-015-3692-6.
    1. Colombo D, Cammarota G, Alemani M, Carenzo L, Barra FL, Vaschetto R, et al. Efficacy of ventilator waveforms observation in detecting patient-ventilator asynchrony. Crit Care Med. 2011;39:2452–2457. doi: 10.1097/CCM.0b013e318225753c.
    1. Pohlman MC, McCallister KE, Schweickert WD, Pohlman AS, Nigos CP, Krishnan JA, et al. Excessive tidal volume from breath stacking during lung-protective ventilation for acute lung injury. Crit Care Med. 2008;36:3019–3023. doi: 10.1097/CCM.0b013e31818b308b.
    1. Yoshida T, Torsani V, Gomes S, De Santis RR, Beraldo M a, Costa ELV, et al. Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med. 2013;188:1420–1427. doi: 10.1164/rccm.201303-0539OC.
    1. Morais Caio C. A., Koyama Yukiko, Yoshida Takeshi, Plens Glauco M., Gomes Susimeire, Lima Cristhiano A. S., Ramos Ozires P. S., Pereira Sérgio M., Kawaguchi Naomasa, Yamamoto Hirofumi, Uchiyama Akinori, Borges João B., Vidal Melo Marcos F., Tucci Mauro R., Amato Marcelo B. P., Kavanagh Brian P., Costa Eduardo L. V., Fujino Yuji. High Positive End-Expiratory Pressure Renders Spontaneous Effort Noninjurious. American Journal of Respiratory and Critical Care Medicine. 2018;197(10):1285–1296. doi: 10.1164/rccm.201706-1244OC.
    1. Frerichs I, Hinz J, Herrmann P, Weisser G, Hahn G, Quintel M, et al. Regional lung perfusion as determined by electrical impedance tomography in comparison with electron beam CT imaging. IEEE Trans Med Imaging. 2002;21:646–652. doi: 10.1109/TMI.2002.800585.
    1. Borges JB, Suarez-Sipmann F, Bohm SH, Tusman G, Melo A, Maripuu E, et al. Regional lung perfusion estimated by electrical impedance tomography in a piglet model of lung collapse. J Appl Physiol. 2012;112:225–236. doi: 10.1152/japplphysiol.01090.2010.
    1. Deibele J M, Luepschen H, Leonhardt S. Dynamic separation of pulmonary and cardiac changes in electrical impedance tomography. Physiological Measurement. 2008;29(6):S1–S14. doi: 10.1088/0967-3334/29/6/S01.
    1. da Silva Ramos FJ, Hovnanian A, Souza R, Azevedo LCP, Amato MBP, Costa ELV. Estimation of stroke volume and stroke volume changes by electrical impedance tomography. Anesth Analg. 2018;126:102–110. doi: 10.1213/ANE.0000000000002271.
    1. Frerichs I, Pulletz S, Elke G, Reifferscheid F, Schädler D, Scholz J, et al. Assessment of changes in distribution of lung perfusion by electrical impedance tomography. Respiration. 2009;77:282–291. doi: 10.1159/000193994.
    1. Frerichs I, Hahn G, Golisch W, Kurpitz M, Burchardi H, Hellige G. Monitoring perioperative changes in distribution of pulmonary ventilation by functional electrical impedance tomography. Acta Anaesthesiol Scand. 1998;42:721–726. doi: 10.1111/j.1399-6576.1998.tb05308.x.
    1. Frerichs I, Dargaville PA, Van Genderingen H, Morel DR, Rimensberger PC. Lung volume recruitment after surfactant administration modifies spatial distribution of ventilation. Am J Respir Crit Care Med. 2006;174:772–779. doi: 10.1164/rccm.200512-1942OC.
    1. Sobota V, Roubik K. Center of ventilation—methods of calculation using electrical impedance tomography and the influence of image segmentation. XIV Mediterranean conference on medical and biological engineering and computing. IFMBE Proc. 2016;57:1264–1269. doi: 10.1007/978-3-319-32703-7_242.
    1. Zhao Z, Steinmann D, Guttmann J. Global and local inhomogeneity indices of lung ventilation based on electrical impedance tomography. IFMBE proc. 2009;22:256-9.
    1. Zhao Z, Möller K, Steinmann D, Frerichs I, Guttmann J. Evaluation of an electrical impedance tomography-based global inhomogeneity index for pulmonary ventilation distribution. Intensive Care Med. 2009;35:1900–1906. doi: 10.1007/s00134-009-1589-y.
    1. Bickenbach J, Czaplik M, Polier M, Marx G, Marx N, Dreher M. Electrical impedance tomography for predicting failure of spontaneous breathing trials in patients with prolonged weaning. Crit Care. 2017;21:177. doi: 10.1186/s13054-017-1758-2.
    1. Wrigge H, Zinserling J, Muders T, Varelmann D, Gunther U, von der Groeben C, et al. Electrical impedance tomography compared with thoracic computed tomography during a slow inflation maneuver in experimental models of lung injury. Crit Care Med. 2008;36:903–909. doi: 10.1097/CCM.0B013E3181652EDD.
    1. Muders T, Luepschen H, Zinserling J, Greschus S, Fimmers R, Guenther U, et al. Tidal recruitment assessed by electrical impedance tomography and computed tomography in a porcine model of lung injury. Crit Care Med. 2012;40:903–911. doi: 10.1097/CCM.0b013e318236f452.

Source: PubMed

3
Abonnere