Comparison of corneal tomography using a novel swept-source optical coherence tomographer and rotating Scheimpflug system in normal and keratoconus eyes: repeatability and agreement analysis

Robert Herber, Janine Lenk, Lutz E Pillunat, Frederik Raiskup, Robert Herber, Janine Lenk, Lutz E Pillunat, Frederik Raiskup

Abstract

Background: To determine the repeatability and agreement using corneal tomography of a swept-source optical coherence tomographer (SS-OCT) compared to a rotating Scheimpflug camera (RSC) in normal eyes and keratoconus (KC) eyes.

Methods: This prospective repeatability analysis was performed at the Department of Ophthalmology of University Hospital Carl Gustav Carus, Dresden, Germany. Forty-three normal and 57 KC eyes were enrolled in the study. Three consecutive measurements were performed by the same operator on each device. Corneal parameters of anterior and posterior corneal surface, such as simulated keratometry (SimK), as well as central and thinnest corneal thickness were evaluated. Repeatability and agreement were assessed by using the coefficient of repeatability and Bland-Altman analysis.

Results: The repeatability of anterior corneal parameters was comparable between RSC and SS-OCT in normal eyes (repeatability < 0.5 D). Repeatability was increased in mild and moderate KC for all parameters using both devices. In moderate KC, repeatability of Kmax was 1.33 D and 0.78 D for RSC and SS-OCT, respectively. Repeatability of posterior corneal parameters was consistently better for SS-OCT. Significant offsets and wide ranges of limits of agreement were found between the devices for SimK and corneal thickness values.

Conclusions: SS-OCT showed highly repeatable measurements of anterior and posterior corneal parameters in normal and KC eyes. Compared to RSC, the SS-OCT had a better repeatability of anterior corneal parameters in mild and moderate KC as well as posterior corneal parameters in all groups. Both devices should not be used interchangeably in the diagnostic process of patients. Trial registration NCT04251143 at Clinicaltrials.gov, registered on 12 March 2018, https://ichgcp.net/clinical-trials-registry/NCT04251143?cond=Keratoconus&cntry=DE&city=Dresden&draw=2&rank=1.

Keywords: ANTERION; Cornea; Keratoconus; OCT; Pentacam; Scheimpflug; Swept-source; Tomography; Topography.

Conflict of interest statement

All authors have no conflicts of interests to be declared. There are no financial interests to disclose.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Comparison of topography maps of RSC (left) and SS-OCT (right) of a keratoconus with corresponding Scheimpflug image (left) and OCT scan (right). Color scaling is set to 0.5 D
Fig. 2
Fig. 2
Bland-Altman plots of steep SimK (anterior), average SimK (anterior) of each subgroup
Fig. 3
Fig. 3
Bland-Altman plots of Kmax (anterior) of each subgroup
Fig. 4
Fig. 4
Bland-Altman plots of central corneal thickness (CCT), and minimal corneal thickness (MCT) of each subgroup

References

    1. Dave T. Current developments in measurement of corneal topography. Cont Lens Anterior Eye. 1998;21(Suppl 1):S13–30. doi: 10.1016/S1367-0484(98)80034-9.
    1. Ambrosio R, Jr, Belin MW. Imaging of the cornea: topography vs tomography. J Refract Surg. 2010;26(11):847–849. doi: 10.3928/1081597X-20101006-01.
    1. Rabinowitz YS. Keratoconus. Surv Ophthalmol. 1998;42(4):297–319. doi: 10.1016/S0039-6257(97)00119-7.
    1. Downie LE, Lindsay RG. Contact lens management of keratoconus. Clin Exp Optom. 2015;98(4):299–311. doi: 10.1111/cxo.12300.
    1. Baudin F, Chemaly A, Arnould L, Barrenechea E, Lestable L, Bron AM, et al. Quality-of-life improvement after scleral lens fitting in patients with keratoconus. Eye Contact Lens. 2021;47(9):520–525. doi: 10.1097/ICL.0000000000000821.
    1. Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-A-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135(5):620–627. doi: 10.1016/S0002-9394(02)02220-1.
    1. Raiskup F, Theuring A, Pillunat LE, Spoerl E. Corneal collagen crosslinking with riboflavin and ultraviolet-A light in progressive keratoconus: ten-year results. J Cataract Refract Surg. 2015;41(1):41–46. doi: 10.1016/j.jcrs.2014.09.033.
    1. Hersh PS, Stulting RD, Muller D, Durrie DS, Rajpal RK, United States Crosslinking Study Group United States multicenter clinical trial of corneal collagen crosslinking for keratoconus treatment. Ophthalmology. 2017;124(9):1259–1270. doi: 10.1016/j.ophtha.2017.03.052.
    1. Vinciguerra P, Albe E, Trazza S, Rosetta P, Vinciguerra R, Seiler T, et al. Refractive, topographic, tomographic, and aberrometric analysis of keratoconic eyes undergoing corneal cross-linking. Ophthalmology. 2009;116(3):369–378. doi: 10.1016/j.ophtha.2008.09.048.
    1. Gomes JA, Tan D, Rapuano CJ, Belin MW, Ambrosio R, Jr, Guell JL, et al. Global consensus on keratoconus and ectatic diseases. Cornea. 2015;34(4):359–369. doi: 10.1097/ICO.0000000000000408.
    1. Kreps EO, Jimenez-Garcia M, Issarti I, Claerhout I, Koppen C, Rozema JJ. Repeatability of the Pentacam HR in various grades of keratoconus. Am J Ophthalmol. 2020;219:154–162. doi: 10.1016/j.ajo.2020.06.013.
    1. Hashemi H, Yekta A, Khabazkhoob M. Effect of keratoconus grades on repeatability of keratometry readings: comparison of 5 devices. J Cataract Refract Surg. 2015;41(5):1065–1072. doi: 10.1016/j.jcrs.2014.08.043.
    1. Flynn TH, Sharma DP, Bunce C, Wilkins MR. Differential precision of corneal Pentacam HR measurements in early and advanced keratoconus. Br J Ophthalmol. 2016;100(9):1183–1187. doi: 10.1136/bjophthalmol-2015-307201.
    1. de Luis Eguileor B, Arriola-Villalobos P, Pijoan Zubizarreta JI, Feijoo Lera R, Santamaria Carro A, Diaz-Valle D, et al. Multicentre study: reliability and repeatability of Scheimpflug system measurement in keratoconus. Br J Ophthalmol. 2021;105(1):22–26. doi: 10.1136/bjophthalmol-2019-314954.
    1. Toprak I, Vega A, Alio Del Barrio JL, Espla E, Cavas F, Alió JL. Diagnostic value of corneal epithelial and stromal thickness distribution profiles in forme fruste keratoconus and subclinical keratoconus. Cornea. 2021;40(1):61–72. doi: 10.1097/ICO.0000000000002435.
    1. Asam JS, Polzer M, Tafreshi A, Hirnschall N, Findl O. Anterior Segment OCT. In: Bille JF, editor. High resolution imaging in microscopy and ophthalmology. Cham (CH): Springer; 2019. pp. 285–99.
    1. McAlinden C, Khadka J, Pesudovs K. A Comprehensive Evaluation of the Precision (repeatability and reproducibility) of the Oculus Pentacam HR. Invest Opthalmol Vis Sci. 2011;52(10):7731–7737. doi: 10.1167/iovs.10-7093.
    1. Vaz S, Falkmer T, Passmore AE, Parsons R, Andreou P. The case for using the repeatability coefficient when calculating test-retest reliability. PLoS One. 2013;8(9):e73990. doi: 10.1371/journal.pone.0073990.
    1. Belin MW, Khachikian SS, Ambrósio R, Jr, Salomao M. Keratoconus / ectasia detection with the oculus pentacam: Belin / Ambrósio Enhanced Ectasia Display. Highlights Ophthalmol. 2007;35:5–12.
    1. Belin MW, Duncan JK. Keratoconus: the ABCD Grading System. Klin Monbl Augenheilkd. 2016;233(6):701–707. doi: 10.1055/s-0042-100626.
    1. Duncan JK, Belin MW, Borgstrom M. Assessing progression of keratoconus: novel tomographic determinants. Eye Vis (Lond) 2016;3:6. doi: 10.1186/s40662-016-0038-6.
    1. Tañá-Sanz P, Aguilar-Córcoles S, Ruiz-Mesa R, Montés-Micó R. Repeatability of whole-cornea measurements using a new swept-source optical coherence tomographer. Eur J Ophthalmol. 2021;31(4):1709–1719. doi: 10.1177/1120672120944022.
    1. Kosekahya P, Koc M, Caglayan M, Kiziltoprak H, Atilgan CU, Yilmazbas P. Repeatability and reliability of ectasia display and topometric indices with the Scheimpflug system in normal and keratoconic eyes. J Cataract Refract Surg. 2018;44(1):63–70. doi: 10.1016/j.jcrs.2017.10.042.
    1. Flockerzi E, Elzer B, Daas L, Xanthopoulou K, Eppig T, Langenbucher A, et al. The reliability of successive Scheimpflug imaging and anterior segment optical coherence tomography measurements decreases with increasing keratoconus severity. Cornea. 2021;40(11):1433–1439.
    1. Shetty R, Pahuja NK, Nuijts RM, Ajani A, Jayadev C, Sharma C, et al. Current protocols of corneal collagen cross-linking: visual, refractive, and tomographic outcomes. Am J Ophthalmol. 2015;160(2):243–249. doi: 10.1016/j.ajo.2015.05.019.
    1. Wittig-Silva C, Whiting M, Lamoureux E, Lindsay RG, Sullivan LJ, Snibson GR. A randomized controlled trial of corneal collagen cross-linking in progressive keratoconus: preliminary results. J Refract Surg. 2008;24(7):S720–S725.
    1. Soeters N, Wisse RP, Godefrooij DA, Imhof SM, Tahzib NG. Transepithelial versus epithelium-off corneal cross-linking for the treatment of progressive keratoconus: a randomized controlled trial. Am J Ophthalmol. 2015;159(5):821–8.e3. doi: 10.1016/j.ajo.2015.02.005.
    1. Belin MW, Khachikian SS. An introduction to understanding elevation-based topography: how elevation data are displayed—a review. Clin Exp Ophthalmol. 2009;37(1):14–29. doi: 10.1111/j.1442-9071.2008.01821.x.
    1. Belin MW, Jang HS, Borgstrom M. Keratoconus: diagnosis and staging. Cornea. 2021;41(1):1–11. doi: 10.1097/ICO.0000000000002781.
    1. Tellouck J, Touboul D, Santhiago MR, Tellouck L, Paya C, Smadja D. Evolution profiles of different corneal parameters in progressive keratoconus. Cornea. 2016;35(6):807–813. doi: 10.1097/ICO.0000000000000833.
    1. Fujimoto H, Maeda N, Shintani A, Nakagawa T, Fuchihata M, Higashiura R, et al. Quantitative evaluation of the natural progression of keratoconus using three-dimensional optical coherence tomography. Invest Ophthalmol Vis Sci. 2016;57(9):OCT169–OCT175. doi: 10.1167/iovs.15-18650.
    1. Szalai E, Berta A, Hassan Z, Módis L., Jr Reliability and repeatability of swept-source Fourier-domain optical coherence tomography and Scheimpflug imaging in keratoconus. J Cataract Refract Surg. 2012;38(3):485–494. doi: 10.1016/j.jcrs.2011.10.027.
    1. Vinciguerra R, Romano MR, Camesasca FI, Azzolini C, Trazza S, Morenghi E, et al. Corneal cross-linking as a treatment for keratoconus: four-year morphologic and clinical outcomes with respect to patient age. Ophthalmology. 2013;120(5):908–916. doi: 10.1016/j.ophtha.2012.10.023.
    1. Caporossi A, Mazzotta C, Paradiso AL, Baiocchi S, Marigliani D, Caporossi T. Transepithelial corneal collagen crosslinking for progressive keratoconus: 24-month clinical results. J Cataract Refract Surg. 2013;39(8):1157–1163. doi: 10.1016/j.jcrs.2013.03.026.
    1. Aramberri J, Araiz L, Garcia A, Illarramendi I, Olmos J, Oyanarte I, et al. Dual versus single Scheimpflug camera for anterior segment analysis: precision and agreement. J Cataract Refract Surg. 2012;38(11):1934–1949. doi: 10.1016/j.jcrs.2012.06.049.
    1. Shetty R, Arora V, Jayadev C, Nuijts RM, Kumar M, Puttaiah NK, et al. Repeatability and agreement of three Scheimpflug-based imaging systems for measuring anterior segment parameters in keratoconus. Invest Ophthalmol Vis Sci. 2014;55(8):5263–5268. doi: 10.1167/iovs.14-15055.
    1. Meyer JJ, Gokul A, Vellara HR, Prime Z, McGhee CN. Repeatability and agreement of orbscan II, pentacam HR, and Galilei tomography systems in corneas with keratoconus. Am J Ophthalmol. 2017;175:122–128. doi: 10.1016/j.ajo.2016.12.003.
    1. Kanellopoulos AJ, Asimellis G. Comparison of high-resolution Scheimpflug and high-frequency ultrasound biomicroscopy to anterior-segment OCT corneal thickness measurements. Clin Ophthalmol. 2013;7:2239–2247. doi: 10.2147/OPTH.S53718.
    1. Chan TCY, Biswas S, Yu M, Jhanji V. Comparison of corneal measurements in keratoconus using swept-source optical coherence tomography and combined Placido-Scheimpflug imaging. Acta Ophthalmol. 2017;95(6):e486–e494. doi: 10.1111/aos.13298.
    1. Biswas S, Biswas P. Agreement and repeatability of corneal thickness and radius among three different corneal measurement devices. Optom Vis Sci. 2021;98(10):1196–1202. doi: 10.1097/OPX.0000000000001785.
    1. Pillunat KR, Waibel S, Spoerl E, Herber R, Pillunat LE. Comparison of central corneal thickness measurements using optical and ultrasound pachymetry in glaucoma patients and elderly and young controls. J Glaucoma. 2019;28(6):540–545. doi: 10.1097/IJG.0000000000001231.
    1. Matar C, Daas L, Suffo S, Langenbucher A, Seitz B, Eppig T. Reliability of corneal tomography after implantation of intracorneal ring segments for keratoconus. Ophthalmologe. 2020;117(11):1092–1099. doi: 10.1007/s00347-020-01074-w.
    1. Augustin VA, Koppe MK, Son HS, Meis J, Yildirim TM, Khoramnia R, et al. Scheimpflug versus optical coherence tomography to detect subclinical corneal edema in Fuchs endothelial corneal dystrophy. Cornea. 2021 doi: 10.1097/ICO.0000000000002925.

Source: PubMed

3
Abonnere