Effects of SGLT2 inhibitor dapagliflozin in patients with type 2 diabetes on skeletal muscle cellular metabolism

Yvo J M Op den Kamp, Anne Gemmink, Marlies de Ligt, Bas Dautzenberg, Esther Kornips, Johanna A Jorgensen, Gert Schaart, Russell Esterline, Diego A Pava, Joris Hoeks, Vera B Schrauwen-Hinderling, Sander Kersten, Bas Havekes, Timothy R Koves, Deborah M Muoio, Matthijs K C Hesselink, Jan Oscarsson, Esther Phielix, Patrick Schrauwen, Yvo J M Op den Kamp, Anne Gemmink, Marlies de Ligt, Bas Dautzenberg, Esther Kornips, Johanna A Jorgensen, Gert Schaart, Russell Esterline, Diego A Pava, Joris Hoeks, Vera B Schrauwen-Hinderling, Sander Kersten, Bas Havekes, Timothy R Koves, Deborah M Muoio, Matthijs K C Hesselink, Jan Oscarsson, Esther Phielix, Patrick Schrauwen

Abstract

Objective: SGLT2 inhibitors increase urinary glucose excretion and have beneficial effects on cardiovascular and renal outcomes; the underlying mechanism may be metabolic adaptations due to urinary glucose loss. Here, we investigated the cellular and molecular effects of 5 weeks of dapagliflozin treatment on skeletal muscle metabolism in type 2 diabetes patients.

Methods: Twenty-six type 2 diabetes mellitus patients were randomized to a 5-week double-blind, cross-over study with 6-8-week wash-out. Skeletal muscle acetylcarnitine levels, intramyocellular lipid (IMCL) content and phosphocreatine (PCr) recovery rate were measured by magnetic resonance spectroscopy (MRS). Ex vivo mitochondrial respiration was measured in skeletal muscle fibers using high resolution respirometry. Intramyocellular lipid droplet and mitochondrial network dynamics were investigated using confocal microscopy. Skeletal muscle levels of acylcarnitines, amino acids and TCA cycle intermediates were measured. Expression of genes involved in fatty acid metabolism were investigated.

Results: Mitochondrial function, mitochondrial network integrity and citrate synthase and carnitine acetyltransferase activities in skeletal muscle were unaltered after dapagliflozin treatment. Dapagliflozin treatment increased intramyocellular lipid content (0.060 (0.011, 0.110) %, p = 0.019). Myocellular lipid droplets increased in size (0.03 μm2 (0.01-0.06), p < 0.05) and number (0.003 μm-2 (-0.001-0.007), p = 0.09) upon dapagliflozin treatment. CPT1A, CPT1B and malonyl CoA-decarboxylase mRNA expression was increased by dapagliflozin. Fasting acylcarnitine species and C4-OH carnitine levels (0.4704 (0.1246, 0.8162) pmoles∗mg tissue-1, p < 0.001) in skeletal muscle were higher after dapagliflozin treatment, while acetylcarnitine levels were lower (-40.0774 (-64.4766, -15.6782) pmoles∗mg tissue-1, p < 0.001). Fasting levels of several amino acids, succinate, alpha-ketoglutarate and lactate in skeletal muscle were significantly lower after dapagliflozin treatment.

Conclusion: Dapagliflozin treatment for 5 weeks leads to adaptive changes in skeletal muscle substrate metabolism favoring metabolism of fatty acid and ketone bodies and reduced glycolytic flux. The trial is registered with ClinicalTrials.gov, number NCT03338855.

Keywords: Acylcarnitines; Dapagliflozin; Mitochondrial function; Myocellular lipid metabolism; SGLT2i; TCA cycle Intermediates.

Copyright © 2022 The Author(s). Published by Elsevier GmbH.. All rights reserved.

Figures

Graphical abstract
Graphical abstract
Figure 1
Figure 1
Effects of dapagliflozin on mitochondrial function and acetylcarnitine levels.(A) Phosphocreatine (PCr) recovery rate (n = 22), (B)ex vivo mitochondrial respiration from vastus lasteralis muscle biopsies taken after an overnight fast (n = 22), (C) Citrate synthase activity (n = 21), (D) average acetylcarnitine levels at rest (n = 21), maximal acetylcarnitine levels after exercise (n = 21), and average acetylcarnitine levels after exercise (n = 21), and (E) plasma lactate levels during exercise (n = 20) after placebo (P) and dapagliflozin (D) treatment. Placebo condition = white bars, dapagliflozin condition = grey bars. Results are given as least squares mean (LSM) and 95% confidence interval (CI), obtained through a linear mixed model. ∗P < 0.05 vs. placebo by Wilcoxon paired signed-rank test.
Figure 2
Figure 2
Increased intramyocellular lipid content after dapagliflozin treatment.(A) intramyocellular lipid (IMCL) content of m. tibialis anterior measured with 1H-MRS and expressed as CH2 intensity relative to water resonance (%), (B) Pearson correlation between change in insulin sensitivity (delta RDhigh-basal) and change in IMCL, and (C) spearman correlation between change in whole-body lipid oxidation and change in skeletal muscle acetylcarnitine (C2 carnitine) levels. Placebo condition = white bars, dapagliflozin condition = grey bars. Results (n = 20) are given as least squares mean (LSM) and 95% confidence interval (CI), obtained through a linear mixed model. ∗P < 0.05 vs. placebo by Wilcoxon paired signed-rank test.
Figure 3
Figure 3
Effects of dapagliflozin on Intramyocellular lipid droplet morphology in vastus lateralis.(A) representative images of LDs stained in green and cell membranes stained in red of type 1 and type 2 muscle fibers after placebo and dapagliflozin treatment. (B)(D) quantification of lipid area fraction, LD number and LD size respectively. Placebo condition = white bars, dapagliflozin condition = grey bars. Results (n = 10) are in least squares mean (LSM) and 95% confidence interval (CI), obtained through a linear mixed model. ∗P < 0.05 vs. placebo by Wilcoxon paired signed-rank test. Muscle biopsies were taken in the overnight fasted state.
Figure 4
Figure 4
Effects of dapagliflozin on fasting acylcarnitine and CrAT activity.(A) Fold change in skeletal muscle levels of carnitine species after an overnight fast (n = 22), and (B) creatine acetyltransferase activity (n = 22). Results in b are in least squares mean (LSM) and 95% confidence interval (CI), obtained through a linear mixed model.
Figure 5
Figure 5
Effects of dapagliflozin on expression of genes involved in fatty acid metabolism. Fold change in expression of genes in skeletal muscle fatty acid metabolism (n = 22).
Figure 6
Figure 6
Amino acids and TCA cycle intermediates levels.(A) Fold change in skeletal muscle levels of amino acids after an overnight fast (n = 22), and (B) fold change in skeletal muscle levels of TCA cycle intermediates (n = 22).

References

    1. Heerspink H.J.L., Stefansson B.V., Correa-Rotter R., Chertow G.M., Greene T., Hou F.F., et al. Dapagliflozin in patients with chronic kidney disease. The New England Journal of Medicine. 2020;383(15):1436–1446.
    1. McMurray J.J.V., Solomon S.D., Inzucchi S.E., Kober L., Kosiborod M.N., Martinez F.A., et al. Dapagliflozin in patients with heart failure and reduced Ejection fraction. The New England Journal of Medicine. 2019;381(21):1995–2008.
    1. Bolinder J., Ljunggren O., Johansson L., Wilding J., Langkilde A.M., Sjostrom C.D., et al. Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes, Obesity and Metabolism. 2014;16(2):159–169.
    1. Chen J., Williams S., Ho S., Loraine H., Hagan D., Whaley J.M., et al. Quantitative PCR tissue expression profiling of the human SGLT2 gene and related family members. Diabetes Therapy. 2010;1(2):57–92.
    1. Zugner E., Yang H.C., Kotzbeck P., Boulgaropoulos B., Sourij H., Hagvall S., et al. Differential in vitro effects of SGLT2 inhibitors on mitochondrial oxidative phosphorylation, glucose uptake and Cell Metabolismism. International Journal of Molecular Sciences. 2022;23(14)
    1. Op den Kamp Y.J.M., de Ligt M., Dautzenberg B., Kornips E., Esterline R., Hesselink M.K.C., et al. Effects of the SGLT2 inhibitor dapagliflozin on energy metabolism in patients with type 2 diabetes: a randomized, double-blind crossover trial. Diabetes Care. 2021;44(6):1334–1343.
    1. Daniele G., Xiong J., Solis-Herrera C., Merovci A., Eldor R., Tripathy D., et al. Dapagliflozin enhances fat oxidation and ketone production in patients with type 2 diabetes. Diabetes Care. 2016;39(11):2036–2041.
    1. Latva-Rasku A., Honka M.J., Kullberg J., Mononen N., Lehtimaki T., Saltevo J., et al. The SGLT2 inhibitor dapagliflozin reduces liver fat but does not affect tissue insulin sensitivity: a randomized, double-blind, placebo-controlled study with 8-week treatment in type 2 diabetes patients. Diabetes Care. 2019;42(5):931–937.
    1. Bolinder J., Ljunggren O., Kullberg J., Johansson L., Wilding J., Langkilde A.M., et al. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. The Journal of Clinical Endocrinology and Metabolism. 2012;97(3):1020–1031.
    1. Civitarese A.E., Carling S., Heilbronn L.K., Hulver M.H., Ukropcova B., Deutsch W.A., et al. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Medicineicine. 2007;4(3):e76.
    1. Phielix E., Meex R., Ouwens D.M., Sparks L., Hoeks J., Schaart G., et al. High oxidative capacity due to chronic exercise training attenuates lipid-induced insulin resistance. Diabetes. 2012;61(10):2472–2478.
    1. Meex R.C., Schrauwen-Hinderling V.B., Moonen-Kornips E., Schaart G., Mensink M., Phielix E., et al. Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity. Diabetes. 2010;59(3):572–579.
    1. Bilet L., Phielix E., van de Weijer T., Gemmink A., Bosma M., Moonen-Kornips E., et al. One-leg inactivity induces a reduction in mitochondrial oxidative capacity, intramyocellular lipid accumulation and reduced insulin signalling upon lipid infusion: a human study with unilateral limb suspension. Diabetologia. 2020;63(6):1211–1222.
    1. Axelrod C.L., Fealy C.E., Erickson M.L., Davuluri G., Fujioka H., Dantas W.S., et al. Lipids activate skeletal muscle mitochondrial fission and quality control networks to induce insulin resistance in humans. Metabolism. 2021;121
    1. Stephens F.B., Constantin-Teodosiu D., Greenhaff P.L. New insights concerning the role of carnitine in the regulation of fuel metabolism in skeletal muscle. The Journal of Physiology. 2007;581(Pt 2):431–444.
    1. Muoio D.M., Noland R.C., Kovalik J.P., Seiler S.E., Davies M.N., DeBalsi K.L., et al. Muscle-specific deletion of carnitine acetyltransferase compromises glucose tolerance and metabolic flexibility. Cell Metabolism. 2012;15(5):764–777.
    1. Muoio D.M. Metabolic inflexibility: when mitochondrial indecision leads to metabolic gridlock. Cell. 2014;159(6):1253–1262.
    1. Lindeboom L., Nabuurs C.I., Hoeks J., Brouwers B., Phielix E., Kooi M.E., et al. Long-echo time MR spectroscopy for skeletal muscle acetylcarnitine detection. Journal of Clinical Investigation. 2014;124(11):4915–4925.
    1. Bruls Y.M., de Ligt M., Lindeboom L., Phielix E., Havekes B., Schaart G., et al. Carnitine supplementation improves metabolic flexibility and skeletal muscle acetylcarnitine formation in volunteers with impaired glucose tolerance: a randomised controlled trial. EBioMedicine. 2019;49:318–330.
    1. Gemmink A., Goodpaster B.H., Schrauwen P., Hesselink M.K.C. Intramyocellular lipid droplets and insulin sensitivity, the human perspective. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids. 2017;1862(10 Pt B):1242–1249.
    1. Daemen S., Gemmink A., Brouwers B., Meex R.C.R., Huntjens P.R., Schaart G., et al. Distinct lipid droplet characteristics and distribution unmask the apparent contradiction of the athlete's paradox. Molecular Metabolism. 2018;17:71–81.
    1. Gemmink A., Bosma M., Kuijpers H.J., Hoeks J., Schaart G., van Zandvoort M.A., et al. Decoration of intramyocellular lipid droplets with PLIN5 modulates fasting-induced insulin resistance and lipotoxicity in humans. Diabetologia. 2016;59(5):1040–1048.
    1. Shepherd S.O., Strauss J.A., Wang Q., Dube J.J., Goodpaster B., Mashek D.G., et al. Training alters the distribution of perilipin proteins in muscle following acute free fatty acid exposure. The Journal of Physiology. 2017;595(16):5587–5601.
    1. Nambu H., Takada S., Fukushima A., Matsumoto J., Kakutani N., Maekawa S., et al. Empagliflozin restores lowered exercise endurance capacity via the activation of skeletal muscle fatty acid oxidation in a murine model of heart failure. European Journal of Pharmacology. 2020;866
    1. Shiraki A., Oyama J.I., Shimizu T., Nakajima T., Yokota T., Node K. Empagliflozin improves cardiac mitochondrial function and survival through energy regulation in a murine model of heart failure. European Journal of Pharmacology. 2022;931
    1. Merovci A., Abdul-Ghani M., Mari A., Solis-Herrera C., Xiong J., Daniele G., et al. Effect of dapagliflozin with and without acipimox on insulin sensitivity and insulin secretion in T2DM males. The Journal of Clinical Endocrinology and Metabolism. 2016;101(3):1249–1256.
    1. Merovci A., Solis-Herrera C., Daniele G., Eldor R., Fiorentino T.V., Tripathy D., et al. Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production. Journal of Clinical Investigation. 2014;124(2):509–514.
    1. World Medical A. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191–2194.
    1. Lindeboom L., Nabuurs C.I., Hesselink M.K., Wildberger J.E., Schrauwen P., Schrauwen-Hinderling V.B. Proton magnetic resonance spectroscopy reveals increased hepatic lipid content after a single high-fat meal with no additional modulation by added protein. The American Journal of Clinical Nutrition. 2015;101(1):65–71.
    1. Schrauwen-Hinderling V.B., Kooi M.E., Hesselink M.K., Jeneson J.A., Backes W.H., van Echteld C.J., et al. Impaired in vivo mitochondrial function but similar intramyocellular lipid content in patients with type 2 diabetes mellitus and BMI-matched control subjects. Diabetologia. 2007;50(1):113–120.
    1. Phielix E., Schrauwen-Hinderling V.B., Mensink M., Lenaers E., Meex R., Hoeks J., et al. Lower intrinsic ADP-stimulated mitochondrial respiration underlies in vivo mitochondrial dysfunction in muscle of male type 2 diabetic patients. Diabetes. 2008;57(11):2943–2949.
    1. Bergstrom J., Hermansen L., Hultman E., Saltin B. Diet, muscle glycogen and physical performance. Acta Physiologica Scandinavica. 1967;71(2):140–150.
    1. Huffman K.M., Koves T.R., Hubal M.J., Abouassi H., Beri N., Bateman L.A., et al. Metabolite signatures of exercise training in human skeletal muscle relate to mitochondrial remodelling and cardiometabolic fitness. Diabetologia. 2014;57(11):2282–2295.
    1. Koves T.R., Ussher J.R., Noland R.C., Slentz D., Mosedale M., Ilkayeva O., et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metabolism. 2008;7(1):45–56.
    1. Haqq A.M., Lien L.F., Boan J., Arlotto M., Slentz C.A., Muehlbauer M.J., et al. The study of the effects of diet on metabolism and Nutrition (STEDMAN) weight loss project: rationale and design. Contemporary Clinical Trials. 2005;26(6):616–625.
    1. Held N.M., Wefers J., van Weeghel M., Daemen S., Hansen J., Vaz F.M., et al. Skeletal muscle in healthy humans exhibits a day-night rhythm in lipid metabolism. Molecular Metabolism. 2020;37
    1. Houzelle A., Jorgensen J.A., Schaart G., Daemen S., van Polanen N., Fealy C.E., et al. Human skeletal muscle mitochondrial dynamics in relation to oxidative capacity and insulin sensitivity. Diabetologia. 2021;64(2):424–436.
    1. Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nature Methods. 2012;9(7):671–675.
    1. Goodwin S., McPherson J.D., McCombie W.R. Coming of age: ten years of next-generation sequencing technologies. Nature Reviews Genetics. 2016;17(6):333–351.
    1. Halling J.F., Jessen H., Nohr-Meldgaard J., Buch B.T., Christensen N.M., Gudiksen A., et al. PGC-1alpha regulates mitochondrial properties beyond biogenesis with aging and exercise training. American Journal of Physiology Endocrinol Metab. 2019;317(3):E513–E525.
    1. Parry H.A., Glancy B. Energy transfer between the mitochondrial network and lipid droplets in insulin resistant skeletal muscle. Current Opinion in Physiology. 2022;24:1–9.
    1. Bak A.M., Vendelbo M.H., Christensen B., Viggers R., Bibby B.M., Rungby J., et al. Prolonged fasting-induced metabolic signatures in human skeletal muscle of lean and obese men. PLoS One. 2018;13(9)
    1. Soeters M.R., Serlie M.J., Sauerwein H.P., Duran M., Ruiter J.P., Kulik W., et al. Characterization of D-3-hydroxybutyrylcarnitine (ketocarnitine): an identified ketosis-induced metabolite. Metabolism. 2012;61(7):966–973.
    1. Collet T.H., Sonoyama T., Henning E., Keogh J.M., Ingram B., Kelway S., et al. A metabolomic signature of acute caloric restriction. The Journal of Clinical Endocrinology and Metabolism. 2017;102(12):4486–4495.
    1. Tuominen J.A., Ebeling P., Bourey R., Koranyi L., Lamminen A., Rapola J., et al. Postmarathon paradox: insulin resistance in the face of glycogen depletion. American Journal of Physiology. 1996;270(2 Pt 1):E336–E343.
    1. Timmers S., Konings E., Bilet L., Houtkooper R.H., van de Weijer T., Goossens G.H., et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metabolism. 2011;14(5):612–622.
    1. Hogild M.L., Gudiksen A., Pilegaard H., Stodkilde-Jorgensen H., Pedersen S.B., Moller N., et al. Redundancy in regulation of lipid accumulation in skeletal muscle during prolonged fasting in obese men. Physics Report. 2019;7(21)
    1. van Polanen N., Zacharewicz E., de Ligt M., Timmers S., Moonen-Kornips E., Schaart G., et al. Resveratrol-induced remodelling of myocellular lipid stores: a study in metabolically compromised humans. Physics Report. 2021;9(2)
    1. Marton A., Kaneko T., Kovalik J.P., Yasui A., Nishiyama A., Kitada K., et al. Organ protection by SGLT2 inhibitors: role of metabolic energy and water conservation. Nature Reviews Nephrology. 2021;17(1):65–77.
    1. Pozefsky T., Tancredi R.G., Moxley R.T., Dupre J., Tobin J.D. Effects of brief starvation on muscle amino acid metabolism in nonobese man. Journal of Clinical Investigation. 1976;57(2):444–449.
    1. Petersen M.C., Shulman G.I. Mechanisms of insulin action and insulin resistance. Physiological Reviews. 2018;98(4):2133–2223.
    1. Dahlmans D., Houzelle A., Schrauwen P., Hoeks J. Mitochondrial dynamics, quality control and miRNA regulation in skeletal muscle: implications for obesity and related metabolic disease. Clinical Science. 2016;130(11):843–852.
    1. Menshikova E.V., Ritov V.B., Dube J.J., Amati F., Stefanovic-Racic M., Toledo F.G.S., et al. Calorie restriction-induced weight loss and exercise have differential effects on skeletal muscle mitochondria despite similar effects on insulin sensitivity. The Journals of Gerontology Series A Biological Sciences and Medical Sciences. 2017;73(1):81–87.
    1. Hoeks J., van Herpen N.A., Mensink M., Moonen-Kornips E., van Beurden D., Hesselink M.K., et al. Prolonged fasting identifies skeletal muscle mitochondrial dysfunction as consequence rather than cause of human insulin resistance. Diabetes. 2010;59(9):2117–2125.

Source: PubMed

3
Abonnere