Terminalia albida treatment improves survival in experimental cerebral malaria through reactive oxygen species scavenging and anti-inflammatory properties

Aissata Camara, Mohamed Haddad, Karine Reybier, Mohamed Sahar Traoré, Mamadou Aliou Baldé, Jade Royo, Alpha Omar Baldé, Philippe Batigne, Mahamane Haidara, Elhadj Saidou Baldé, Agnès Coste, Aliou Mamadou Baldé, Agnès Aubouy, Aissata Camara, Mohamed Haddad, Karine Reybier, Mohamed Sahar Traoré, Mamadou Aliou Baldé, Jade Royo, Alpha Omar Baldé, Philippe Batigne, Mahamane Haidara, Elhadj Saidou Baldé, Agnès Coste, Aliou Mamadou Baldé, Agnès Aubouy

Abstract

Background: The development of Plasmodium resistance to the last effective anti-malarial drugs necessitates the urgent development of new anti-malarial therapeutic strategies. To this end, plants are an important source of new molecules. The objective of this study was to evaluate the anti-malarial effects of Terminalia albida, a plant used in Guinean traditional medicine, as well as its anti-inflammatory and antioxidant properties, which may be useful in treating cases of severe malaria.

Methods: In vitro antiplasmodial activity was evaluated on a chloroquine-resistant strain of Plasmodium falciparum (K-1). In vivo efficacy of the plant extract was measured in the experimental cerebral malaria model based on Plasmodium berghei (strain ANKA) infection. Mice brains were harvested on Day 7-8 post-infection, and T cells recruitment to the brain, expression levels of pro- and anti-inflammatory markers were measured by flow cytometry, RT-qPCR and ELISA. Non-malarial in vitro models of inflammation and oxidative response were used to confirm Terminalia albida effects. Constituents of Terminalia albida extract were characterized by ultra-high performance liquid chromatography coupled with high resolution mass spectrometry. Top ranked compounds were putatively identified using plant databases and in silico fragmentation patterns.

Results: In vitro antiplasmodial activity of Terminalia albida was confirmed with an IC50 of 1.5 μg/mL. In vivo, Terminalia albida treatment greatly increased survival rates in P. berghei-infected mice. Treated mice were all alive until Day 12, and the survival rate was 50% on Day 20. Terminalia albida treatment also significantly decreased parasitaemia by 100% on Day 4 and 89% on Day 7 post-infection. In vivo anti-malarial activity was related to anti-inflammatory properties, as Terminalia albida treatment decreased T lymphocyte recruitment and expression of pro-inflammatory markers in brains of treated mice. These properties were confirmed in vitro in the non-malarial model. In vitro, Terminalia albida also demonstrated a remarkable dose-dependent neutralization activity of reactive oxygen species. Twelve compounds were putatively identified in Terminalia albida stem bark. Among them, several molecules already identified may be responsible for the different biological activities observed, especially tannins and triterpenoids.

Conclusion: The traditional use of Terminalia albida in the treatment of malaria was validated through the combination of in vitro and in vivo studies.

Keywords: Experimental cerebral malaria; Inflammatory response; Malaria; Oxidative stress; Terminalia albida; UHPLC-HRMS.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Antiplasmodial activity of Terminalia albida treatment in ECM model. C57BL/6 mice were infected with P. berghei ANKA and treated 2 h later with chloroquine (5 mg/kg), Terminalia albida crude extract (100 mg/kg) or water (25 mL/kg) from Day 0 to Day 3. a Mean parasite densities during infection. b Percentages of parasite suppression according to the treatment, calculated by comparison to H2O treated mice. **P < 0.005, ***P < 0.0005 compared Terminalia albida to H2O group
Fig. 2
Fig. 2
Effect of Terminalia albida treatment on survival, weight and cerebral symptoms in ECM model. C57BL/6 mice were infected with P. berghei ANKA and treated 2 h later with chloroquine (5 mg/kg), Terminalia albida crude extract (100 mg/kg) or water (25 mL/kg) from Day 0 to Day 4. a Percentage of survival. b Percentage of weight loss at each day compared to Day 0. c Rapid murine cerebral behavior scale (RMCBS) between D3 and D7. *P < 0.05 compared Terminalia albida to H2O groups at D7. *P < 0.05 and **P < 0.005 compared Terminalia albida to H2O groups. §P < 0.05 compared Terminalia albida to chloroquine groups
Fig. 3
Fig. 3
Effect of Terminalia albida on cell infiltration in the brain of Plasmodium berghei-infected mice. C57BL/6 mice were infected with P. berghei and treated 2 h later with chloroquine (5 mg/kg), Terminalia albida crude extract (100 mg/kg) or water (25 mL/kg) from Day 0 to Day 4. Brains were analysed by flow cytometry at D7 post-infection. Percentages of cell populations were compared between groups for CD3+ (a), CD8+ (b) and CD4+ T lymphocytes (c). *P < 0.05, **P < 0.005, ***P < 0.0005
Fig. 4
Fig. 4
Effect of Terminalia albida treatment on the expression of pro- and anti-inflammatory markers in brains of Plasmodium berghei-infected mice. C57BL/6 mice were infected with P. berghei and treated with chloroquine (5 mg/kg), Terminalia albida (100 mg/kg) or water. Brains were harvested at D7 (for P. berghei and VEGF) or D8 post-infection (for the other markers). Gene expression was measured by RT-qPCR and cytokine levels were measured by ELISA. Gene expression levels of (a) P. berghei, VEGF, ICAM and Granzyme B; b pro-inflammatory cytokines, c other pro-inflammatory markers, and d anti-inflammatory markers. e Cytokine levels in pg/mL. *P < 0.05, **P < 0.005, ***P < 0.0005. Data presented are mean ± standard deviation
Fig. 5
Fig. 5
Assessment of in vitro anti-inflammatory properties of Terminalia albida. Murine macrophages were activated by LPS and IFNγ in the presence or not of 10 µg/mL of Terminalia albida. Gene expression levels of a pro-inflammatory cytokines, b other pro-inflammatory markers, c pro-inflammatory signalling pathways, and d anti-inflammatory markers. e Cytokine levels measured in supernatants, in pg/mL. *P < 0.05, **P < 0.005, ***P < 0.0005. Data are presented as mean ± SD
Fig. 6
Fig. 6
LUCS anti-oxidant assay. a Kinetics of fluorescence emission recorded under illumination for different concentrations of extract (7.5 10−3 mg/mL–1.92 mg/mL) using the LUCS assay. b Corresponding antioxidant index calculated from RFU values as follows: AI = 1000–1000 (0∫12 RFUn sample/0∫12 RFUn control)

References

    1. WHO . World malaria report. Geneva: World Health Organization; 2017.
    1. Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:411–423. doi: 10.1056/NEJMoa1314981.
    1. Ikeda M, Kaneko M, Tachibana S-I, Balikagala B, Sakurai-Yatsushiro M, Yatsushiro S, et al. Artemisinin-resistant Plasmodium falciparum with high survival rates, Uganda, 2014–2016. Emerg Infect Dis. 2018;24:718–726. doi: 10.3201/eid2404.170141.
    1. Lu F, Culleton R, Zhang M, Ramaprasad A, von Seidlein L, Zhou H, et al. Emergence of indigenous artemisinin-resistant Plasmodium falciparum in Africa. N Engl J Med. 2017;376:991–993. doi: 10.1056/NEJMc1612765.
    1. Dondorp AM, Fanello CI, Hendriksen ICE, Gomes E, Seni A, Chhaganlal KD, et al. Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial. Lancet. 2010;376:1647–1657. doi: 10.1016/S0140-6736(10)61924-1.
    1. Storm J, Craig AG. Pathogenesis of cerebral malaria-inflammation and cytoadherence. Front Cell Infect Microbiol. 2014;4:100. doi: 10.3389/fcimb.2014.00100.
    1. White NJ, Turner GDH, Day NPJ, Dondorp AM. Lethal malaria: Marchiafava and Bignami were right. J Infect Dis. 2013;208:192–198. doi: 10.1093/infdis/jit116.
    1. Howland SW, Poh CM, Rénia L. Activated brain endothelial cells cross-present malaria antigen. PLoS Pathog. 2015;11:e1004963. doi: 10.1371/journal.ppat.1004963.
    1. Becker K, Tilley L, Vennerstrom JL, Roberts D, Rogerson S, Ginsburg H. Oxidative stress in malaria parasite-infected erythrocytes: host-parasite interactions. Int J Parasitol. 2004;34:163–189. doi: 10.1016/j.ijpara.2003.09.011.
    1. Aguilar R, Marrocco T, Skorokhod OA, Barbosa A, Nhabomba A, Manaca MN, et al. Blood oxidative stress markers and Plasmodium falciparum malaria in non-immune African children. Br J Haematol. 2014;164:438–450. doi: 10.1111/bjh.12636.
    1. Ouji M, Augereau J-M, Paloque L, Benoit-Vical F. Plasmodium falciparum resistance to artemisinin-based combination therapies: a sword of Damocles in the path toward malaria elimination. Parasite. 2018;25:24. doi: 10.1051/parasite/2018021.
    1. Traore MS, Diane S, Diallo MST, Balde ES, Balde MA, Camara A, et al. In Vitro antiprotozoal and cytotoxic activity of ethnopharmacologically selected Guinean plants. Planta Med. 2014;80:1340–1344. doi: 10.1055/s-0034-1383047.
    1. Haidara M, Haddad M, Denou A, Marti G, Bourgeade-Delmas S, Sanogo R, et al. In vivo validation of anti-malarial activity of crude extracts of Terminalia macroptera, a Malian medicinal plant. Malar J. 2018;17:68. doi: 10.1186/s12936-018-2223-7.
    1. Traore MS, Baldé MA, Diallo MST, Baldé ES, Diané S, Camara A, et al. Ethnobotanical survey on medicinal plants used by Guinean traditional healers in the treatment of malaria. J Ethnopharmacol. 2013;150:1145–1153. doi: 10.1016/j.jep.2013.10.048.
    1. Smilkstein M, Sriwilaijaroen N, Kelly JX, Wilairat P, Riscoe M. Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob Agents Chemother. 2004;48:1803–1806. doi: 10.1128/AAC.48.5.1803-1806.2004.
    1. OECD et al. OECD guidelines for the testing of chemicals, Section 4: health effects. Test no. 425: acute oral toxicity: up-and-down procedure. Paris: OECD Publishing; 2008.
    1. Carroll RW, Wainwright MS, Kim K-Y, Kidambi T, Gómez ND, Taylor T, et al. A rapid murine coma and behavior scale for quantitative assessment of murine cerebral malaria. PLoS One. 2010;5(10):e13124. doi: 10.1371/journal.pone.0013124.
    1. Derick S, Gironde C, Perio P, Reybier K, Nepveu F, Jauneau A, et al. LUCS (Light-Up Cell System), a universal high throughput assay for homeostasis evaluation in live cells. Sci Rep. 2017;7:18069. doi: 10.1038/s41598-017-18211-2.
    1. Chassagne F, Haddad M, Amiel A, Phakeovilay C, Manithip C, Bourdy G, et al. A metabolomic approach to identify anti-hepatocarcinogenic compounds from plants used traditionally in the treatment of liver diseases. Fitoterapia. 2018;127:226–236. doi: 10.1016/j.fitote.2018.02.021.
    1. Howland SW, Claser C, Poh CM, Gun SY, Rénia L. Pathogenic CD8 + T cells in experimental cerebral malaria. Semin Immunopathol. 2015;37:221–231. doi: 10.1007/s00281-015-0476-6.
    1. Hintsa G, Sibhat GG, Karim A. Evaluation of antimalarial activity of the leaf latex and TLC isolates from Aloe megalacantha Baker in Plasmodium berghei infected mice. Evid-Based Complement Altern Med. 2019;2019:6459498. doi: 10.1155/2019/6459498.
    1. Mzena T, Swai H, Chacha M. Antimalarial activity of Cucumis metuliferus and Lippia kituiensis against Plasmodium berghei infection in mice. Res Rep Trop Med. 2018;9:81–88.
    1. Nureye D, Assefa S, Nedi T, Engidawork E. In vivo antimalarial activity of the 80% methanolic root bark extract and solvent fractions of Gardenia ternifolia Schumach. & Thonn. (Rubiaceae) against Plasmodium berghei. Evid-Based Complement Altern Med. 2018;2018:9217835. doi: 10.1155/2018/9217835.
    1. Conforti F, Marcotullio MC, Menichini F, Statti GA, Vannutelli L, Burini G, et al. The influence of collection zone on glucosinolates, polyphenols and flavonoids contents and biological profiles of Capparis sicula ssp. sicula. Food Sci Technol Int. 2011;17:87–97. doi: 10.1177/1082013210368583.
    1. Dunst J, Kamena F, Matuschewski K. Cytokines and chemokines in cerebral malaria pathogenesis. Front Cell Infect Microbiol. 2017;7:324. doi: 10.3389/fcimb.2017.00324.
    1. Amante FH, Haque A, Stanley AC, de Rivera F, Randall LM, Wilson YA, et al. Immune-mediated mechanisms of parasite tissue sequestration during experimental cerebral malaria. J Immunol. 2010;185:3632–3642. doi: 10.4049/jimmunol.1000944.
    1. Cahayani WA, Norahmawati E, Budiarti N, Fitri LE. Increased CD11b and hypoxia-inducible factors-1 alpha expressions in the lung tissue and surfactant protein-D levels in serum are related with acute lung injury in severe malaria of C57BL/6 mice. Iran J Parasitol. 2016;11:303–315.
    1. Tripathi AK, Sha W, Shulaev V, Stins MF, Sullivan DJ. Plasmodium falciparum-infected erythrocytes induce NF-kappaB regulated inflammatory pathways in human cerebral endothelium. Blood. 2009;114:4243–4252. doi: 10.1182/blood-2009-06-226415.
    1. McGilvray ID, Serghides L, Kapus A, Rotstein OD, Kain KC. Nonopsonic monocyte/macrophage phagocytosis of Plasmodium falciparum-parasitized erythrocytes: a role for CD36 in malarial clearance. Blood. 2000;96:3231–3240. doi: 10.1182/blood.V96.9.3231.
    1. Percário S, Moreira DR, Gomes BAQ, Ferreira MES, Gonçalves ACM, Laurindo PSOC, et al. Oxidative stress in malaria. Int J Mol Sci. 2012;13:16346–16372. doi: 10.3390/ijms131216346.
    1. Serghides L, Kim H, Lu Z, Kain DC, Miller C, Francis RC, et al. Inhaled nitric oxide reduces endothelial activation and parasite accumulation in the brain, and enhances survival in experimental cerebral malaria. PLoS One. 2011;6:e27714. doi: 10.1371/journal.pone.0027714.
    1. Xu H, Feng Y, Chen G, Zhu X, Pang W, Du Y, et al. L-arginine exacerbates experimental cerebral malaria by enhancing pro-inflammatory responses. Tohoku J Exp Med. 2015;236:21–31. doi: 10.1620/tjem.236.21.
    1. Pamplona A, Ferreira A, Balla J, Jeney V, Balla G, Epiphanio S, et al. Heme oxygenase-1 and carbon monoxide suppress the pathogenesis of experimental cerebral malaria. Nat Med. 2007;13:703–710. doi: 10.1038/nm1586.
    1. Ohashi M, Amoa-Bosompem M, Kwofie KD, Agyapong J, Adegle R, Sakyiamah MM, et al. In vitro antiprotozoan activity and mechanisms of action of selected Ghanaian medicinal plants against Trypanosoma, Leishmania, and Plasmodium parasites. Phytother Res. 2018;32:1617–1630. doi: 10.1002/ptr.6093.
    1. Mbouna CDJ, Kouipou RMT, Keumoe R, Tchokouaha LRY, Fokou PVT, Tali BMT, et al. Potent antiplasmodial extracts and fractions from Terminalia mantaly and Terminalia superba. Malar J. 2018;17:142. doi: 10.1186/s12936-018-2298-1.
    1. Muganga R, Angenot L, Tits M, Frédérich M. In vitro and in vivo antiplasmodial activity of three Rwandan medicinal plants and identification of their active compounds. Planta Med. 2014;80:482–489. doi: 10.1055/s-0034-1368322.
    1. Apel C, Bignon J, Garcia-Alvarez MC, Ciccone S, Clerc P, Grondin I, et al. N-myristoyltransferases inhibitory activity of ellagitannins from Terminalia bentzoë (L.) L. f. subsp. bentzoë. Fitoterapia. 2018;131:91–95. doi: 10.1016/j.fitote.2018.10.014.
    1. Razak MR, Afzan A, Ali R, Jalaluddin NF, Wasiman MI, Zahari SH, Abdullah NR, Ismail Z, et al. Effect of selected local medicinal plants on the asexual blood stage of chloroquine resistant Plasmodium falciparum. BMC Complement Altern Med. 2014;14:492. doi: 10.1186/1472-6882-14-492.
    1. Abiodun O, Gbotosho G, Ajaiyeoba E, Happi T, Falade M, Wittlin S, et al. In vitro antiplasmodial activity and toxicity assessment of some plants from Nigerian ethnomedicine. Pharm Biol. 2011;49:9–14. doi: 10.3109/13880209.2010.490224.
    1. Sanon S, Gansane A, Ouattara LP, Traore A, Ouedraogo IN, Tiono A, et al. In vitro antiplasmodial and cytotoxic properties of some medicinal plants from western Burkina Faso. Afr J Lab Med. 2013;2:81. doi: 10.4102/ajlm.v2i1.81.
    1. Ouattara LP, Sanon S, Mahiou-Leddet V, Gansané A, Baghdikian B, Traoré A, et al. In vitro antiplasmodial activity of some medicinal plants of Burkina Faso. Parasitol Res. 2014;113:405–416. doi: 10.1007/s00436-013-3669-8.
    1. Bagavan A, Rahuman AA, Kamaraj C, Kaushik NK, Mohanakrishnan D, Sahal D. Antiplasmodial activity of botanical extracts against Plasmodium falciparum. Parasitol Res. 2011;108:1099–1109. doi: 10.1007/s00436-010-2151-0.
    1. Soh PN, Witkowski B, Olagnier D, Nicolau M-L, Garcia-Alvarez M-C, Berry A, et al. In vitro and in vivo properties of ellagic acid in malaria treatment. Antimicrob Agents Chemother. 2009;53:1100–1106. doi: 10.1128/AAC.01175-08.
    1. Akanbi OM, Elekofehinti O, Olatokunbo A, Adejuyigbe A, Jegede A. Anti-malarial activity of total saponins from Terminalia avicennioides and its effect on liver and haematological of infected mice. Drug Des. 2018;7:2169.
    1. Haddad M, Laurens V, Lacaille-Dubois M-A. Induction of apoptosis in a leukemia cell line by triterpene saponins from Albizia adianthifolia. Bioorg Med Chem. 2004;12:4725–4734. doi: 10.1016/j.bmc.2004.06.025.
    1. Machumi F, Midiwo JO, Jacob MR, Khan SI, Tekwani BL, Zhang J, et al. Phytochemical, antimicrobial and antiplasmodial investigations of Terminalia brownii. Nat Prod Commun. 2013;8:761–764.
    1. Abiodun OO, Rodríguez-Nogales A, Algieri F, Gomez-Caravaca AM, Segura-Carretero A, Utrilla MP, et al. Antiinflammatory and immunomodulatory activity of an ethanolic extract from the stem bark of Terminalia catappa L. (Combretaceae): in vitro and in vivo evidences. J Ethnopharmacol. 2016;192:309–319. doi: 10.1016/j.jep.2016.07.056.
    1. de Araújo A, Iles B, de Nogueira K, Dias J, Plácido A, Rodrigues A, et al. Antifungal and anti-inflammatory potential of eschweilenol C-rich fraction derived from Terminalia fagifolia Mart. J Ethnopharmacol. 2019;240:111941. doi: 10.1016/j.jep.2019.111941.
    1. Manosroi A, Jantrawut P, Ogihara E, Yamamoto A, Fukatsu M, Yasukawa K, et al. Biological activities of phenolic compounds and triterpenoids from the galls of Terminalia chebula. Chem Biodivers. 2013;10:1448–1463. doi: 10.1002/cbdv.201300149.
    1. Zeb A. Ellagic acid in suppressing in vivo and in vitro oxidative stresses. Mol Cell Biochem. 2018;448:27–41. doi: 10.1007/s11010-018-3310-3.
    1. El-Shitany NA, El-Bastawissy EA, El-desoky K. Ellagic acid protects against carrageenan-induced acute inflammation through inhibition of nuclear factor kappa B, inducible cyclooxygenase and proinflammatory cytokines and enhancement of interleukin-10 via an antioxidant mechanism. Int Immunopharmacol. 2014;19:290–299. doi: 10.1016/j.intimp.2014.02.004.
    1. Zhao L, Zhang SL, Tao JY, Pang R, Jin F, Guo YJ, et al. Preliminary exploration on anti-inflammatory mechanism of corilagin (beta-1-O-galloyl-3,6-(R)-hexahydroxydiphenoyl-d-glucose) in vitro. Int Immunopharmacol. 2008;8:1059–1064. doi: 10.1016/j.intimp.2008.03.003.
    1. Dong XR, Luo M, Fan L, Zhang T, Liu L, Dong JH, et al. Corilagin inhibits the double strand break-triggered NF-kappaB pathway in irradiated microglial cells. Int J Mol Med. 2010;25:531–536.
    1. Li H-R, Liu J, Zhang S-L, Luo T, Wu F, Dong J-H, et al. Corilagin ameliorates the extreme inflammatory status in sepsis through TLR4 signaling pathways. BMC Complement Altern Med. 2017;17:18. doi: 10.1186/s12906-016-1533-y.
    1. Kim M-C, Kim S-J, Kim D-S, Jeon Y-D, Park SJ, Lee HS, et al. Vanillic acid inhibits inflammatory mediators by suppressing NF-κB in lipopolysaccharide-stimulated mouse peritoneal macrophages. Immunopharmacol Immunotoxicol. 2011;33:525–532. doi: 10.3109/08923973.2010.547500.
    1. Calixto-Campos C, Carvalho TT, Hohmann MSN, Pinho-Ribeiro FA, Fattori V, Manchope MF, et al. Vanillic acid inhibits inflammatory pain by inhibiting neutrophil recruitment, oxidative stress, cytokine production, and NFκB activation in mice. J Nat Prod. 2015;78:1799–1808. doi: 10.1021/acs.jnatprod.5b00246.
    1. Yadav VR, Prasad S, Sung B, Kannappan R, Aggarwal BB. Targeting inflammatory pathways by triterpenoids for prevention and treatment of cancer. Toxins. 2010;2:2428–2466. doi: 10.3390/toxins2102428.

Source: PubMed

3
Abonnere