Computational neurorehabilitation: modeling plasticity and learning to predict recovery

David J Reinkensmeyer, Etienne Burdet, Maura Casadio, John W Krakauer, Gert Kwakkel, Catherine E Lang, Stephan P Swinnen, Nick S Ward, Nicolas Schweighofer, David J Reinkensmeyer, Etienne Burdet, Maura Casadio, John W Krakauer, Gert Kwakkel, Catherine E Lang, Stephan P Swinnen, Nick S Ward, Nicolas Schweighofer

Abstract

Despite progress in using computational approaches to inform medicine and neuroscience in the last 30 years, there have been few attempts to model the mechanisms underlying sensorimotor rehabilitation. We argue that a fundamental understanding of neurologic recovery, and as a result accurate predictions at the individual level, will be facilitated by developing computational models of the salient neural processes, including plasticity and learning systems of the brain, and integrating them into a context specific to rehabilitation. Here, we therefore discuss Computational Neurorehabilitation, a newly emerging field aimed at modeling plasticity and motor learning to understand and improve movement recovery of individuals with neurologic impairment. We first explain how the emergence of robotics and wearable sensors for rehabilitation is providing data that make development and testing of such models increasingly feasible. We then review key aspects of plasticity and motor learning that such models will incorporate. We proceed by discussing how computational neurorehabilitation models relate to the current benchmark in rehabilitation modeling - regression-based, prognostic modeling. We then critically discuss the first computational neurorehabilitation models, which have primarily focused on modeling rehabilitation of the upper extremity after stroke, and show how even simple models have produced novel ideas for future investigation. Finally, we conclude with key directions for future research, anticipating that soon we will see the emergence of mechanistic models of motor recovery that are informed by clinical imaging results and driven by the actual movement content of rehabilitation therapy as well as wearable sensor-based records of daily activity.

Keywords: Computational modeling; Motor control; Motor learning; Neurorehabilitation; Plasticity; Stroke recovery.

Figures

Fig. 1
Fig. 1
a General framework of computational neurorehabilitation models. Such models predict patient functional outcomes by driving computational representations of plasticity and learning with sensorimotor activity achieved in rehabilitation therapy and/or throughout the course of daily life. b Computational neurorehabilitation models presume that rehabilitation modulates both spontaneous biological recovery and motor learning, leading to improvements in both impaired limb motor control and compensatory movement strategies. Shown here is an estimate of the dose-response effect arising from additional therapy time, obtained by plotting effect sizes of 30 studies of upper and lower extremity rehabilitation therapy after stroke involving 1750 total participants as a function of the number of additional training hours ΔΤime. Note in this study there was no significant effect of the time the therapy was delivered after stroke (i.e. soon after stroke or in the chronic state). From [9]. Used with permission. c Computational neurorehabilitation models are becoming increasingly feasible in part because of a large influx of detailed kinematic data characterizing the content and outcomes of therapy, which is being obtained from robotic devices, such as Pneu-WREX shown here [218] and wearable sensors. Both individuals consented to the publication of this image. d Example of a computational neurorehabilitation model [112]. This model simplified neurorehabilitation dynamics by assuming that a reward-based learning mechanism determines the probabilities of using the impaired or unimpaired arms after stroke, and that a separate, error-based learning mechanism accounts for improvements in motor control through practice. The model predicts that if a patient reaches a threshold of recovery, then he or she will enter a positive cycle of using and further retraining their impaired arm through spontaneous activity in daily life, a prediction supported by data from the EXCITE clinical trial. Used with permission
Fig. 2
Fig. 2
Example of wearable sensing for quantifying the daily sensorimotor activity that stimulates plasticity. a The Manumeter is an example of a device that monitors arm, wrist, and finger movements during daily activities [77]. The wristband is equipped with a tri-axial accelerometer to quantify movement of the arm, and thus could be used to produce data such as that shown in b. The wristband also contains a pair of magnetometers that quantify movement of the wrist and fingers by sensing the magnetic field changes due to a magnetic ring worn on the finger. From: [219]; Used with permission. b Bilateral upper limb daily activity from one individual with a stroke (ARAT score = 10) who wore a commercial accelerometer on each wrist for a 24 h period. The y-axis shows the magnitude of bilateral activity obtained by summing at each time point the vector magnitude of the acceleration of each upper limb, when each was moving over a threshold value. The x-axis shows the ratio of these two values, quantifying the contribution of each limb to the activity. Each point represents data from a one second time period throughout the day. For individuals without a stroke, these plots are symmetrical, like evergreen trees, indicating the bimanual nature of most functional activity. From [74]; Used with permission
Fig. 3
Fig. 3
Example of the predictive power of a prognostic regression model, the proportional recovery model [171] (see Eq. 2). The model accurately predicts the change in upper extremity Fugl-Meyer score from 2 days to 3 months post stroke for 70–80 % of the patients, who all received rehabilitation. The subgroup of patients who did not fit the model experienced less recovery than predicted. To our knowledge, there are no computational rehabilitation models that can predict which patients will fit this prognostic regression model, or explain the variance in those who do not. Modified from [173]; Used with permission
Fig. 4
Fig. 4
Examples of computational neurorehabilitation approaches and results. a A key output of the Han et al. model [112] is the predicted spontaneous use of the impaired hand, shown here as a percent of all movement trials in a bimanual choice task. Each curve represents the evolution of spontaneous use given the number of rehabilitation practice trials, shown as a number on the far right of each curve. Spontaneous use increases only when enough rehabilitation practice trials are performed to reach a threshold. From [112]; used with permission. b A key output of the Casadio et al. model [56], which used data from a robotic therapy trial, is that the retention parameter in the model, measured through a trial-to-trial analysis, predicts the change in Fugl-Meyer score at 3 months for these chronic stroke participants. c The Reinkensmeyer et al. model [136] assumes that wrist force is produced by the summed effect of corticospinal cells targeting motor neuronal pools. Each cell contributes an incremental force proportional to its firing rate, up to a saturation level. Cell firing rate changes by a random amount from trial to trial; activation patterns that produce more force are remembered for future use, thus implementing a reinforcement learning paradigm. d In the Reinkensmeyer et al. model, the probability that a single neuron will contribute to an increase in force on a new trial depends on whether the neuron is strongly or weakly connected to the motor neuronal pool. Strongly connected cells have a greater probability of producing a larger increase. In addition, when cells become saturated, they can only decrease force production. Thus, an increasing number of saturated cells increasingly blocks further optimization, leaving a residual capacity for further increases in force

References

    1. Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett DA, Moran AE, Sacco RL, Anderson L, Truelsen T, O’Donnell M, Venketasubramanian N, Barker-Collo S, Lawes CMM, Wang W, Shinohara Y, Witt E, Ezzati M, Naghavi M, Murray C. Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet. 2014;383(9913):245–55. doi: 10.1016/S0140-6736(13)61953-4.
    1. Miller EL, Murray L, Richards L, Zorowitz RD, Bakas T, Clark P, Billinger SA. Comprehensive overview of nursing and interdisciplinary rehabilitation care of the stroke patient: a scientific statement from the American Heart Association. Stroke. 2010;41(10):2402–48. doi: 10.1161/STR.0b013e3181e7512b.
    1. Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. Lancet. 2011;377(9778):1693–702. doi: 10.1016/S0140-6736(11)60325-5.
    1. Levin MF, Kleim JA, Wolf SL. What do motor ‘recovery’ and ‘compensation’ mean in patients following stroke? Neurorehabil Neural Repair. 2009;23(4):313–9. doi: 10.1177/1545968308328727.
    1. Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol. 2009;8(8):741–54. doi: 10.1016/S1474-4422(09)70150-4.
    1. Buma F, Kwakkel G, Ramsey N. Understanding upper limb recovery after stroke. Restor Neurol Neurosci. 2013;31(6):707–22.
    1. van Kordelaar J, van Wegen EEH, Nijland RHM, Daffertshofer A, Kwakkel G. Understanding adaptive motor control of the paretic upper limb early poststroke: the EXPLICIT-stroke program. Neurorehabil Neural Repair. 2013;27(9):854–63. doi: 10.1177/1545968313496327.
    1. Kitago T, Goldsmith J, Harran M, Kane L, Berard J, Huang S, Ryan SL, Mazzoni P, Krakauer JW, Huang VS. Robotic therapy for chronic stroke: general recovery of impairment or improved task-specific skill? J Neurophysiol. 2015;114(3):1885–94. doi: 10.1152/jn.00336.2015.
    1. Lohse KR, Lang CE, Boyd LA. Is more better? Using metadata to explore dose-response relationships in stroke rehabilitation. Stroke. 2014;45(7):2053–8. doi: 10.1161/STROKEAHA.114.004695.
    1. Krakauer JW, Carmichael ST, Corbett D, Wittenberg GF. Getting neurorehabilitation right: what can be learned from animal models? Neurorehabil Neural Repair. 2012;26(8):923–31. doi: 10.1177/1545968312440745.
    1. Milot MH, Spencer SJ, Chan V, Allington JP, Klein J, Chou C, Bobrow JE, Cramer SC, Reinkensmeyer DJ. Re-training upper extremity movement with the robotic exoskeleton BONES after chronic stroke: a crossover pilot study evaluating the functional outcomes of more naturalistic robotic movement training. J Neuroeng Rehabil. 2013;10:112. doi: 10.1186/1743-0003-10-112.
    1. Awad LN, Reisman DS, Pohlig RT, and S. A. Binder-Macleod. Reducing The Cost of Transport and Increasing Walking Distance After Stroke: A Randomized Controlled Trial on Fast Locomotor Training Combined With Functional Electrical Stimulation. Neurorehabil. Neural Repair. 2015. pii: 1545968315619696. [Epub ahead of print]
    1. Clark DJ, Neptune RR, Behrman AL, Kautz SA. Locomotor Adaptability Task Promotes Intense and Task-Appropriate Output From the Paretic Leg During Walking. Arch Phys Med Rehabil. 2016;97(3):493–6. doi: 10.1016/j.apmr.2015.10.081.
    1. Jones TA, Adkins DL. Motor System Reorganization After Stroke: Stimulating and Training Toward Perfection. Physiology (Bethesda) 2015;30(5):358–70.
    1. Chollet F, Tardy J, Albucher J-F, Thalamas C, Berard E, Lamy C, et al. Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial. Lancet Neurol. 2011;10(2):123–30.
    1. Ng KL, Gibson EM, Hubbard R, Yang J, Caffo B, O’Brien RJ, Krakauer JW, Zeiler SR. Fluoxetine Maintains a State of Heightened Responsiveness to Motor Training Early After Stroke in a Mouse Model. Stroke. 2015;46(10):2951–60. doi: 10.1161/STROKEAHA.115.010471.
    1. Janssen H, Bernhardt J, Collier JM, Sena ES, McElduff P, Attia J, Pollack M, Howells DW, Nilsson M, Calford MB, Spratt NJ. An enriched environment improves sensorimotor function post-ischemic stroke. Neurorehabil Neural Repair. 2010;24(9):802–13. doi: 10.1177/1545968310372092.
    1. Tiozzo E, Youbi M, Dave K, Perez-Pinzon M, Rundek T, Sacco RL, Loewenstein D, Lewis JE, Wright CB. Aerobic, Resistance, and Cognitive Exercise Training Poststroke. Stroke. 2015;46(7):2012–6. doi: 10.1161/STROKEAHA.114.006649.
    1. Veerbeek JM, Kwakkel G, van Wegen EEH, Ket JCF, Heymans MW. Early Prediction of Outcome of Activities of Daily Living After Stroke: A Systematic Review. Stroke. 2011;42(5):1482–8. doi: 10.1161/STROKEAHA.110.604090.
    1. Kwakkel G, Kollen BJ. Predicting activities after stroke: what is clinically relevant? Int J Stroke. 2013;8(1):25–32. doi: 10.1111/j.1747-4949.2012.00967.x.
    1. Robertson IH, Murre JM. Rehabilitation of brain damage: brain plasticity and principles of guided recovery. Psychol Bull. 1999;125(5):544–75. doi: 10.1037/0033-2909.125.5.544.
    1. Goodall S, Reggia JA, Chen Y, Ruppin E, Whitney C. A computational model of acute focal cortical lesions. Stroke. 1997;28(1):101–9. doi: 10.1161/01.STR.28.1.101.
    1. Reggia JA. Neurocomputational models of the remote effects of focal brain damage. Med Eng Phys. 2004;26(9):711–22. doi: 10.1016/j.medengphy.2004.06.010.
    1. Levitan S, Reggia JA. Interhemispheric effects on map organization following simulated cortical lesions. Artif Intell Med. 1999;17(1):59–85. doi: 10.1016/S0933-3657(99)00012-3.
    1. Casadio M, Tamagnone I, Summa S, Sanguineti V. Neuromotor recovery from stroke: computational models at central, functional, and muscle synergy level. Front Comput Neurosci. 2013;7:97. doi: 10.3389/fncom.2013.00097.
    1. Aimone JB, Weick JP. Perspectives for computational modeling of cell replacement for neurological disorders. Front Comput Neurosci. 2013;7:150. doi: 10.3389/fncom.2013.00150.
    1. Kwakkel G, van Peppen R, Wagenaar RC, Wood Dauphinee S, Richards C, Ashburn A, Miller K, Lincoln N, Partridge C, Wellwood I, Langhorne P. Effects of augmented exercise therapy time after stroke: a meta-analysis. Stroke. 2004;35(11):2529–39. doi: 10.1161/01.STR.0000143153.76460.7d.
    1. Langhorne P, Wagenaar R, Partridge C. Physiotherapy after stroke: more is better? Physiother Res Int. 1996;1(2):75–88. doi: 10.1002/pri.6120010204.
    1. Veerbeek JM, Koolstra M, Ket JCF, van Wegen EEH, Kwakkel G. Effects of augmented exercise therapy on outcome of gait and gait-related activities in the first 6 months after stroke: a meta-analysis. Stroke. 2011;42(11):3311–5. doi: 10.1161/STROKEAHA.111.623819.
    1. Veerbeek JM, van Wegen E, van Peppen R, van der Wees PJ, Hendriks E, Rietberg M, Kwakkel G. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One. 2014;9(2):e87987. doi: 10.1371/journal.pone.0087987.
    1. Krakauer JW. Oxford Textbook of Neurorehabilitation. 2015. The applicability of motor learning to neurorehabilitation; p. 55.
    1. Tan WY, Ye Z. Estimation of HIV infection and incubation via state space models. Math Biosci. 2000;167(1):31–50. doi: 10.1016/S0025-5564(00)00023-7.
    1. Cazelles B, Chau NP. Using the Kalman filter and dynamic models to assess the changing HIV/AIDS epidemic. Math Biosci. 1997;140(2):131–54. doi: 10.1016/S0025-5564(96)00155-1.
    1. Venkatakrishnan K, Friberg LE, Ouellet D, Mettetal JT, Stein A, Trocóniz IF, Bruno R, Mehrotra N, Gobburu J, Mould DR. Optimizing oncology therapeutics through quantitative translational and clinical pharmacology: challenges and opportunities. Clin Pharmacol Ther. 2015;97(1):37–54. doi: 10.1002/cpt.7.
    1. Emken JL, Reinkensmeyer DJ. Robot-enhanced motor learning: accelerating internal model formation during locomotion by transient dynamic amplification. IEEE Trans Neural Sys Rehab Eng. 2005;13(1):33–9. doi: 10.1109/TNSRE.2004.843173.
    1. Wolf SL, Kwakkel G, Bayley M, McDonnell MN. Best practice for arm recovery post stroke: an international application. Physiotherapy. 2016;102(1):1–4. doi: 10.1016/j.physio.2015.08.007.
    1. Ramos-Murguialday A, Broetz D, Rea M, Läer L, Yilmaz O, Brasil FL, Liberati G, Curado MR, Garcia-Cossio E, Vyziotis A, Cho W, Agostini M, Soares E, Soekadar S, Caria A, Cohen LG, Birbaumer N. Brain-machine interface in chronic stroke rehabilitation: a controlled study. Ann Neurol. 2013;74(1):100–8. doi: 10.1002/ana.23879.
    1. Bernhardt J, Chan J, Nicola I, Collier JM. Little therapy, little physical activity: rehabilitation within the first 14 days of organized stroke unit care. J Rehabil Med. 2007;39(1):43–8. doi: 10.2340/16501977-0013.
    1. Harris JE, Eng JJ, Miller WC, Dawson AS. A self-administered Graded Repetitive Arm Supplementary Program (GRASP) improves arm function during inpatient stroke rehabilitation: a multi-site randomized controlled trial. Stroke. 2009;40(6):2123–8. doi: 10.1161/STROKEAHA.108.544585.
    1. Lang CE, Macdonald JR, Reisman DS, Boyd L, Jacobson KT, Schindler-Ivens SM, et al. Observation of amounts of movement practice provided during stroke rehabilitation. Arch Phys Med Rehabil. 2009;90(10):1692–8.
    1. Birkenmeier RL, Prager EM, Lang CE. Translating animal doses of task-specific training to people with chronic stroke in 1-hour therapy sessions: a proof-of-concept study. Neurorehabil Neural Repair. 2010;24(7):620–35. doi: 10.1177/1545968310361957.
    1. Waddell KJ, Birkenmeier RL, Moore JL, Hornby TG, Lang CE. Feasibility of high-repetition, task-specific training for individuals with upper-extremity paresis. Am J Occup Ther. 2014;68(4):444–53. doi: 10.5014/ajot.2014.011619.
    1. Park H, Kim S, Winstein CJ, Gordon J, Schweighofer N. Short-Duration and Intensive Training Improves Long-Term Reaching Performance in Individuals With Chronic Stroke. Neurorehabil Neural Repair. 2015. pii: 1545968315606990. [Epub ahead of print].
    1. Turolla A, Dam M, Ventura L, Tonin P, Agostini M, Zucconi C, Kiper P, Cagnin A, Piron L. Virtual reality for the rehabilitation of the upper limb motor function after stroke: a prospective controlled trial. J Neuroeng Rehabil. 2013;10:85. doi: 10.1186/1743-0003-10-85.
    1. Molina KI, Ricci NA, de Moraes SA, Perracini MR. Virtual reality using games for improving physical functioning in older adults: a systematic review. J Neuroeng Rehabil. 2014;11(1):156. doi: 10.1186/1743-0003-11-156.
    1. van Diest M, Lamoth CJC, Stegenga J, Verkerke GJ, Postema K. Exergaming for balance training of elderly: state of the art and future developments. J Neuroeng Rehabil. 2013;10:101. doi: 10.1186/1743-0003-10-101.
    1. Kwakkel G, Kollen BJ, Krebs HI. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair. 2008;22(2):111–21. doi: 10.1177/1545968307305457.
    1. Levin MF, Weiss PL, Keshner EA. Emergence of Virtual Reality as a Tool for Upper Limb Rehabilitation: Incorporation of Motor Control and Motor Learning Principles. Phys Ther. 2014;95(3):415–25. doi: 10.2522/ptj.20130579.
    1. Reinkensmeyer DJ, Boninger ML. Technologies and combination therapies for enhancing movement training for people with a disability. J Neuroeng Rehabil. 2012;9:17. doi: 10.1186/1743-0003-9-17.
    1. Balasubramanian S, Klein J, Burdet E. Robot-assisted rehabilitation of hand function. Curr Opin Neurol. 2010;23(6):661–70. doi: 10.1097/WCO.0b013e32833e99a4.
    1. Maciejasz P, Eschweiler J, Gerlach-Hahn K, Jansen-Troy A, Leonhardt S. A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehabil. 2014;11:3. doi: 10.1186/1743-0003-11-3.
    1. Basteris A, Nijenhuis SM, Stienen AHA, Buurke JH, Prange GB, Amirabdollahian F. Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. J Neuroeng Rehabil. 2014;11:111. doi: 10.1186/1743-0003-11-111.
    1. Chen CC, Bode RK. Factors influencing therapist’s decision-making in the acceptance of new technology devices in stroke rehabilitation. Am J Phys Med Rehabil. 2011;90:415–25. doi: 10.1097/PHM.0b013e318214f5d8.
    1. Schmidt RA. Motor control and learning: A behavioral emphasis. Champaign, Il USA: Human Kinetics Publishers; 2005.
    1. Giggins OM, Persson UM, Caulfield B. Biofeedback in rehabilitation. J Neuroeng Rehabil. 2013;10:60. doi: 10.1186/1743-0003-10-60.
    1. Casadio M, Sanguineti V. Learning, retention, and slacking: a model of the dynamics of recovery in robot therapy. IEEE Trans Neural Syst Rehabil Eng. 2012;20(4):286–96. doi: 10.1109/TNSRE.2012.2190827.
    1. Reinkensmeyer DJ, Maier MA, Guigon E, Chan V, Akoner OM, Wolbrecht ET, Cramer SC, Bobrow JE. Do Robotic and Non-Robotic Arm Movement Training Drive Motor Recovery after Stroke by a Common Neural Mechanism? Experimental Evidence and a Computational Model. Proc. IEEE Eng. Med. Biol. Conf. 2009;2009:2439–41.
    1. Ellis MD, Sukal-Moulton TM, Dewald JPA. Impairment-Based 3-D Robotic Intervention Improves Upper Extremity Work Area in Chronic Stroke: Targeting Abnormal Joint Torque Coupling With Progressive Shoulder Abduction Loading. IEEE Trans Robot. 2009;25(3):549–55. doi: 10.1109/TRO.2009.2017111.
    1. Lum PS, Burgar CG, Kenney DE, Van der Loos HF. Quantification of force abnormalities during passive and active-assisted upper-limb reaching movements in post-stroke hemiparesis. Ieee Trans Biomed Eng. 1999;46(6):652–62. doi: 10.1109/10.764942.
    1. Lum PS, Burgar CG, Shor PC. Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. IEEE Trans Neural Syst Rehabil Eng. 2004;12(2):186–94. doi: 10.1109/TNSRE.2004.827225.
    1. Galvez JA, Budovitch A, Harkema SJ, Reinkensmeyer DJ. Trainer variability during step training after spinal cord injury: Implications for robotic gait training device design. J Rehabil Res Dev. 2011;48(2):147–59. doi: 10.1682/JRRD.2010.04.0067.
    1. Formaggio E, Storti SF, Boscolo Galazzo I, Gandolfi M, Geroin C, Smania N, Spezia L, Waldner A, Fiaschi A, Manganotti P. Modulation of event-related desynchronization in robot-assisted hand performance: brain oscillatory changes in active, passive and imagined movements. J Neuroeng Rehabil. 2013;10(1):24. doi: 10.1186/1743-0003-10-24.
    1. Zimmermann R, Marchal-Crespo L, Edelmann J, Lambercy O, Fluet M-C, Riener R, Wolf M, Gassert R. Detection of motor execution using a hybrid fNIRS-biosignal BCI: a feasibility study. J Neuroeng Rehabil. 2013;10(1):4. doi: 10.1186/1743-0003-10-4.
    1. Gassert R, Burdet E, Chinzei K. Opportunities and challenges in MR-compatible robotics: reviewing the history, mechatronic components, and future directions of this technology. IEEE Eng Med Biol Mag. 2008;27(3):15–22. doi: 10.1109/EMB.2007.910265.
    1. Schweighofer N, Han CE, Wolf SL, Arbib MA, Winstein CJ. A functional threshold for long-term use of hand and arm function can be determined: predictions from a computational model and supporting data from the Extremity Constraint-Induced Therapy Evaluation (EXCITE) Trial. Phys Ther. 2009;89(12):1327–36. doi: 10.2522/ptj.20080402.
    1. Patel S, Park H, Bonato P, Chan L, Rodgers M. A review of wearable sensors and systems with application in rehabilitation. J Neuroeng Rehabil. 2012;9:21. doi: 10.1186/1743-0003-9-21.
    1. Steins D, Dawes H, Esser P, Collett J. Wearable accelerometry-based technology capable of assessing functional activities in neurological populations in community settings: a systematic review. J Neuroeng Rehabil. 2014;11:36. doi: 10.1186/1743-0003-11-36.
    1. van der Lee JH, Beckerman H, Knol DL, de Vet HCW, Bouter LM. Clinimetric properties of the Motor Activity Log for the assessment of arm use in hemiparetic patients. Stroke. 2004;35(6):1404–10. doi: 10.1161/01.STR.0000127785.73065.34.
    1. Lang CE, Wagner JM, Edwards DF, Dromerick AW. Upper Extremity Use in People with Hemiparesis in the First Few Weeks After Stroke. J Neurol Phys Ther. 2007;31(2):56–63. doi: 10.1097/NPT.0b013e31806748bd.
    1. Bailey RR, Birkenmeier RL, Lang CE. Real-world affected upper limb activity in chronic stroke: an examination of potential modifying factors. Top Stroke Rehabil. 2015;22:26–33. doi: 10.1179/1074935714Z.0000000040.
    1. Uswatte G, Miltner WH, Foo B, Varma M, Moran S, Taub E. Objective measurement of functional upper-extremity movement using accelerometer recordings transformed with a threshold filter. Stroke. 2000;31(3):662–7. doi: 10.1161/01.STR.31.3.662.
    1. Rand D, Eng JJ. Predicting daily use of the affected upper extremity 1 year after stroke. J Stroke Cerebrovasc Dis. 2015;24(2):274–83. doi: 10.1016/j.jstrokecerebrovasdis.2014.07.039.
    1. van der Pas SC, Verbunt JA, Breukelaar DE, van Woerden R, Seelen HA. Assessment of arm activity using triaxial accelerometry in patients with a stroke. Arch Phys Med Rehabil. 2011;92(9):1437–42. doi: 10.1016/j.apmr.2011.02.021.
    1. Bailey RR, Klaesner JW, Lang CE. Quantifying Real-World Upper-Limb Activity in Nondisabled Adults and Adults With Chronic Stroke. Neurorehabil Neural Repair. 2015;29(10):969–78. doi: 10.1177/1545968315583720.
    1. Swinnen SP. Intermanual coordination: from behavioural principles to neural-network interactions. Nat Rev Neurosci. 2002;3(5):348–59. doi: 10.1038/nrn807.
    1. Kortier HG, Sluiter VI, Roetenberg D, Veltink PH. Assessment of hand kinematics using inertial and magnetic sensors. J Neuroeng Rehabil. 2014;11:70. doi: 10.1186/1743-0003-11-70.
    1. N. Friedman, J. B. Rowe, D. J. Reinkensmeyer, M. Bachman. The manumeter: A wearable device for monitoring daily use of the wrist and fingers. J Biomed Heal Informatics. epub ahead, 2014.
    1. Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19(1):84–90. doi: 10.1097/.
    1. Kitago T, Krakauer JW. Motor learning principles for neurorehabilitation. Handb Clin Neurol. 2013;110:93–103. doi: 10.1016/B978-0-444-52901-5.00008-3.
    1. Huang VSC, Krakauer JW. Robotic neurorehabilitation: a computational motor learning perspective. J Neuroeng Rehabil. 2009;6(1):5. doi: 10.1186/1743-0003-6-5.
    1. Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10(12):861–72. doi: 10.1038/nrn2735.
    1. Duncan PW, Goldstein LB, Matchar D, Divine GW, Feussner J. Measurement of motor recovery after stroke. Stroke. 1992;23:1084–9. doi: 10.1161/01.STR.23.8.1084.
    1. Feldman DE, Brecht M. Map plasticity in somatosensory cortex. Science. 2005;310(5749):810–5. doi: 10.1126/science.1115807.
    1. Clarkson AN, Huang BS, Macisaac SE, Mody I, Carmichael ST. Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke. Nature. 2010;468(7321):305–9. doi: 10.1038/nature09511.
    1. Schiene K, Bruehl C, Zilles K, Qü M, Hagemann G, Kraemer M, Witte OW. Neuronal hyperexcitability and reduction of GABAA-receptor expression in the surround of cerebral photothrombosis. J Cereb Blood Flow Metab. 1996;16(5):906–14. doi: 10.1097/00004647-199609000-00014.
    1. Qü M, Mittmann T, Luhmann HJ, Schleicher A, Zilles K. Long-term changes of ionotropic glutamate and GABA receptors after unilateral permanent focal cerebral ischemia in the mouse brain. Neuroscience. 1998;85(1):29–43. doi: 10.1016/S0306-4522(97)00656-8.
    1. Liepert J, Storch P, Fritsch A, Weiller C. Motor cortex disinhibition in acute stroke. Clin Neurophysiol. 2000;111(4):671–6. doi: 10.1016/S1388-2457(99)00312-0.
    1. Witte OW, Buchkremer-Ratzmann I, Schiene K, Neumann-Haefelin T, Hagemann G, Kraemer M, Zilles K, Freund HJ. Lesion-induced network plasticity in remote brain areas. Trends Neurosci. 1997;20(8):348–9. doi: 10.1016/S0166-2236(97)89937-7.
    1. Bains AS, Schweighofer N. Time-sensitive reorganization of the somatosensory cortex poststroke depends on interaction between Hebbian and homeoplasticity: a simulation study. J Neurophysiol. 2014;112(12):3240–50. doi: 10.1152/jn.00433.2013.
    1. Schmidt A, Wellmann J, Schilling M, Strecker J-K, Sommer C, Schäbitz W-R, Diederich K, Minnerup J. Meta-analysis of the efficacy of different training strategies in animal models of ischemic stroke. Stroke. 2014;45(1):239–47. doi: 10.1161/STROKEAHA.113.002048.
    1. Cramer SC, Chopp M. Recovery recapitulates ontogeny. Trends Neurosci. 2000;23(6):265–71. doi: 10.1016/S0166-2236(00)01562-9.
    1. Li S, Overman JJ, Katsman D, Kozlov SV, Donnelly CJ, Twiss JL, Giger RJ, Coppola G, Geschwind DH, Carmichael ST. An age-related sprouting transcriptome provides molecular control of axonal sprouting after stroke. Nat Neurosci. 2010;13(12):1496–504. doi: 10.1038/nn.2674.
    1. Nudo RJ, Wise BM, SiFuentes F, Milliken GW. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science (80-) 1996;272:1791–4. doi: 10.1126/science.272.5269.1791.
    1. Zeiler SR, Krakauer JW. The interaction between training and plasticity in the poststroke brain. Curr Opin Neurol. 2013;26(6):609–16. doi: 10.1097/WCO.0000000000000025.
    1. Nudo RJ. Recovery after damage to motor cortical areas. Curr Opin Neurobiol. 1999;9(6):740–7. doi: 10.1016/S0959-4388(99)00027-6.
    1. Lytton WW, Stark JM, Yamasaki DS, Sober SJ. Computer models of stroke recovery: implications for neurorehabilitation. Neuroscientist. 1999;5:100–11. doi: 10.1177/107385849900500214.
    1. Sober SJ, Stark JM, Yamasaki DS, Lytton WW. Receptive field changes after strokelike cortical ablation: a role for activation dynamics. J Neurophysiol. 1997;78(6):3438–43.
    1. Alstott J, Breakspear M, Hagmann P, Cammoun L, Sporns O. Modeling the impact of lesions in the human brain. PLoS Comput Biol. 2009;5(6):e1000408. doi: 10.1371/journal.pcbi.1000408.
    1. Honey CJ, Sporns O. Dynamical consequences of lesions in cortical networks. Hum Brain Mapp. 2008;29(7):802–9. doi: 10.1002/hbm.20579.
    1. Rubinov M, McIntosh AR, Valenzuela MJ, Breakspear M. Simulation of neuronal death and network recovery in a computational model of distributed cortical activity. Am J Geriatr Psychiatry. 2009;17(3):210–7. doi: 10.1097/JGP.0b013e318187137a.
    1. Reinkensmeyer DJ, Iobbi MG, Kahn LE, Kamper DG, Takahashi CD. Modeling reaching impairment after stroke using a population vector model of movement control that incorporates neural firing rate variability. Neural Comput. 2003;15(11):2619–42. doi: 10.1162/089976603322385090.
    1. Winstein CJ. Knowledge of results and motor learning--implications for physical therapy. Phys Ther. 1991;71(2):140–9.
    1. Wolpert DM, Diedrichsen J, Flanagan JR. Principles of sensorimotor learning. Nat Rev Neurosci. 2011;12:739–51.
    1. Rioult-Pedotti MS, Friedman D, Donoghue JP. Learning-induced LTP in neocortex. Science (80-) 2000;290(5491):533–6. doi: 10.1126/science.290.5491.533.
    1. Schweighofer N, Doya K, Kuroda S. Cerebellar aminergic neuromodulation: towards a functional understanding. Brain Res Brain Res Rev. 2004;44(2–3):103–16. doi: 10.1016/j.brainresrev.2003.10.004.
    1. Kawato M, Kuroda S, Schweighofer N. Cerebellar supervised learning revisited: biophysical modeling and degrees-of-freedom control. Curr Opin Neurobiol. 2011;21(5):791–800. doi: 10.1016/j.conb.2011.05.014.
    1. Schultz W. Predictive reward signal of dopamine neurons. J Neurophysiol. 1998;80(1):1–27.
    1. Doya K. Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr Opin Neurobiol. 2000;10(6):732–9. doi: 10.1016/S0959-4388(00)00153-7.
    1. Fee MS, Goldberg JH. A hypothesis for basal ganglia-dependent reinforcement learning in the songbird. Neuroscience. 2011;198:152–70. doi: 10.1016/j.neuroscience.2011.09.069.
    1. Kelley AE, Smith-Roe SL, Holahan MR. Response-reinforcement learning is dependent on N-methyl-D-aspartate receptor activation in the nucleus accumbens core. Proc Natl Acad Sci U S A. 1997;94(22):12174–9. doi: 10.1073/pnas.94.22.12174.
    1. Bains A, Schweighofer N. “Robust Use-Dependent Learning in Arm Movements,” TCMC proceedings, Chicago. 2015. Accessed at: .
    1. Han CE, Arbib MA, Schweighofer N. Stroke Rehabilitation Reaches a Threshold. PLoS Comput Biol. 2008;4(8):e1000133. doi: 10.1371/journal.pcbi.1000133.
    1. Abdollahi F, Case ED, Listenberger M, Kenyon RV, Kovic M, Bogey R, Hedeker D, Jovanovic B, Patton JL. Error augmentation enhancing arm recovery in individuals with chronic hemiparetic stroke: a randomized crossover design. Neurorehabili Neural Repair (NNR) 2014;28(2):120–8. doi: 10.1177/1545968313498649.
    1. Reisman DS, Wityk R, Silver K, Bastian AJ. Locomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke. Brain. 2007;130(Pt 7):1861–72. doi: 10.1093/brain/awm035.
    1. Takahashi CD, Reinkensmeyer DJ. Hemiparetic stroke impairs anticipatory control of arm movement. Exp Brain Res. 2003;149(2):131–40.
    1. Patton JL, Kovic M, Mussa-Ivaldi FA. Custom-designed haptic training for restoring reaching ability to individuals with poststroke hemiparesis. J Rehabil Res Dev. 2006;43(5):643–56. doi: 10.1682/JRRD.2005.05.0088.
    1. Takahashi CD, Nemet D, Rose-Gottron CM, Larson JK, Cooper DM, Reinkensmeyer DJ. Effect of muscle fatigue on internal model formation and retention during reaching with the arm. J Appl Physiol. 2006;100(2):695–706. doi: 10.1152/japplphysiol.00140.2005.
    1. Emken JL, Benitez R, Sideris A, Bobrow JE, Reinkensmeyer DJ. Motor adaptation as a greedy optimization of error and effort. J Neurophysiol. 2007;97:3997–4006. doi: 10.1152/jn.01095.2006.
    1. Franklin DW, Burdet E, Tee KP, Osu R, Chew CM, Milner TE, Kawato M. CNS learns stable, accurate, and efficient movements using a simple algorithm. J Neurosci. 2008;28(44):11165–73. doi: 10.1523/JNEUROSCI.3099-08.2008.
    1. Franklin DW, Osu R, Burdet E, Kawato M, Milner TE. Adaptation to stable and unstable dynamics achieved by combined impedance control and inverse dynamics model. J Neurophysiol. 2003;90:3270–82. doi: 10.1152/jn.01112.2002.
    1. Rigoux L, Guigon E. A model of reward- and effort-based optimal decision making and motor control. PLoS Comput Biol. 2012;8(10):e1002716. doi: 10.1371/journal.pcbi.1002716.
    1. Smith MA, Ghazizadeh A, Shadmehr R. Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biol. 2006;4(6):e179. doi: 10.1371/journal.pbio.0040179.
    1. Kording KP, Tenenbaum JB, Shadmehr R. The dynamics of memory as a consequence of optimal adaptation to a changing body. Nat Neurosci. 2007;10(6):779–86. doi: 10.1038/nn1901.
    1. Cahill L, McGaugh JL, Weinberger NM. The neurobiology of learning and memory: some reminders to remember. Trends Neurosci. 2001;24(10):578–81. doi: 10.1016/S0166-2236(00)01885-3.
    1. Lee J-Y, Schweighofer N. Dual adaptation supports a parallel architecture of motor memory. J Neurosci. 2009;29(33):10396–404. doi: 10.1523/JNEUROSCI.1294-09.2009.
    1. Zarahn E, Weston GD, Liang J, Mazzoni P, Krakauer JW. Explaining savings for visuomotor adaptation: linear time-invariant state-space models are not sufficient. J Neurophysiol. 2008;100(5):2537–48. doi: 10.1152/jn.90529.2008.
    1. S. S. Kim, K. Ogawa, J. Lv, N. Schweighofer, H. Imamizu. Multiple time constants in sensorimotor adaptation: a model-based fMRI study. PLOS Biol. in press, 2015.
    1. Huberdeau DM, Krakauer JW, Haith AM. Dual-process decomposition in human sensorimotor adaptation. Curr Opin Neurobiol. 2015;33:71–7. doi: 10.1016/j.conb.2015.03.003.
    1. Huang V, Haith A, Mazzoni P, Krakauer J. Rethinking motor learning and savings in adaptation paradigms: model-free memory for successful actions combines with internal models. Neuron. 2011;70:787–801. doi: 10.1016/j.neuron.2011.04.012.
    1. Shmuelof L, Huang VS, Haith AM, Delnicki RJ, Mazzoni P, Krakauer JW. Overcoming motor ‘forgetting’ through reinforcement of learned actions. J Neurosci. 2012;32(42):14617–21. doi: 10.1523/JNEUROSCI.2184-12.2012.
    1. Galea JM, Mallia E, Rothwell J, Diedrichsen J. The dissociable effects of punishment and reward on motor learning. Nat Neurosc. 2015;18:597–602. doi: 10.1038/nn.3956.
    1. Schweighofer N, Lee J-Y, Goh H-T, Choi Y, Kim SS, Stewart JC, Lewthwaite R, Winstein CJ. Mechanisms of the contextual interference effect in individuals poststroke. J Neurophysiol. 2011;106(5):2632–41. doi: 10.1152/jn.00399.2011.
    1. Scheidt RA, Stoeckmann T. Reach adaptation and final position control amid environmental uncertainty after stroke. J Neurophysiol. 2007;97(4):2824–36. doi: 10.1152/jn.00870.2006.
    1. Duarte JE, Reinkensmeyer DJ. Effects of robotically modulating kinematic variability on motor skill learning and motivation. J Neurophysiol. 2015;113(7):2682–91. doi: 10.1152/jn.00163.2014.
    1. Sutton RS, Barto AG. Reinforcement learning: An introduction. Cambridge: MIT Press; 1998.
    1. Reinkensmeyer DJ, Guigon E, Maier MA. A computational model of use-dependent motor recovery following stroke: optimizing corticospinal activations via reinforcement learning can explain residual capacity and other strength recovery dynamics. Neural Netw. 2012;29–30:60–9. doi: 10.1016/j.neunet.2012.02.002.
    1. Izawa J, Shadmehr R. Learning from sensory and reward prediction errors during motor adaptation. PLoS Comput Biol. 2011;7(3):e1002012. doi: 10.1371/journal.pcbi.1002012.
    1. Salmoni AW, Schmidt RA, Walter CB. Knowledge of results and motor learning: a review and critical reappraisal. Psychol Bull. 1984;95(3):355–86. doi: 10.1037/0033-2909.95.3.355.
    1. Ganesh G, Haruno M, Kawato M, Burdet E. Motor memory and local minimization of error and effort, not global optimization, determine motor behavior. J Neurophysiol. 2010;104(1):382–90. doi: 10.1152/jn.01058.2009.
    1. de Rugy A, Loeb GE, Carroll TJ. Muscle coordination is habitual rather than optimal. J Neurosci. 2012;32(21):7384–91. doi: 10.1523/JNEUROSCI.5792-11.2012.
    1. Kistemaker DA, Wong JD, Gribble PL. The cost of moving optimally: kinematic path selection. J Neurophysiol. 2014;112(8):1815–24. doi: 10.1152/jn.00291.2014.
    1. Kistemaker DA, Wong JD, Gribble PL. The central nervous system does not minimize energy cost in arm movements. J Neurophysiol. 2010;104(6):2985–94. doi: 10.1152/jn.00483.2010.
    1. Rohrer B, Fasoli S, Krebs HI, Hughes R, Volpe B, Frontera WR, et al. Movement smoothness changes during stroke recovery. J Neurosci. 2002;22(18):8297–304.
    1. Gandolfo F, Mussa-Ivaldi FA, Bizzi E. Motor learning by field approximation. Proc Natl Acad Sci U S A. 1996;93(9):3843–6. doi: 10.1073/pnas.93.9.3843.
    1. Shadmehr R, Mussa-Ivaldi FA. Adaptive representation of dynamics during learning of a motor task. J Neurosci. 1994;14(5):3208–24.
    1. French B, Thomas LH, Leathley MJ, Sutton CJ, McAdam J, Forster A, Langhorne P, Price CI, Walker A, Watkins CL. Repetitive task training for improving functional ability after stroke. Cochrane Database Syst Rev. 2007;4(4):CD006073.
    1. Schmidt RA. A schema theory of discrete motor skill learning. Psychol Rev. 1975;82(4):225–60. doi: 10.1037/h0076770.
    1. Brashers-Krug T, Shadmehr R, Bizzi E. Consolidation in human motor memory. Nature. 1996;382(6588):252–5. doi: 10.1038/382252a0.
    1. Zariffa J, Kapadia N, Kramer JL, Taylor P, Alizadeh-Meghrazi M, Zivanovic V, Albisser U, Willms R, Townson A, Curt A, Popovic MR, Steeves JD. Relationship between clinical assessments of function and measurements from an upper-limb robotic rehabilitation device in cervical spinal cord injury. IEEE Trans Neural Syst Rehabil Eng. 2012;20(3):341–50. doi: 10.1109/TNSRE.2011.2181537.
    1. Dromerick AW, Lang CE, Birkenmeier RL, Wagner JM, Miller JP, Videen TO, Powers WJ, Wolf SL, Edwards DF. Very Early Constraint-Induced Movement during Stroke Rehabilitation (VECTORS): A single-center RCT. Neurology. 2009;73(3):195–201. doi: 10.1212/WNL.0b013e3181ab2b27.
    1. Wagner JM, Dromerick AW, Sahrmann SA, Lang CE. Upper extremity muscle activation during recovery of reaching in subjects with post-stroke hemiparesis. Clin Neurophysiol. 2007;118(1):164–76. doi: 10.1016/j.clinph.2006.09.022.
    1. Lang CE, Wagner JM, Bastian AJ, Hu Q, Edwards DF, Sahrmann SA, Dromerick AW. Deficits in grasp versus reach during acute hemiparesis. Exp Brain Res. 2005;166(1):126–36. doi: 10.1007/s00221-005-2350-6.
    1. Lang CE, DeJong SL, Beebe JA. Recovery of thumb and finger extension and its relation to grasp performance after stroke. J Neurophysiol. 2009;102(1):451–9. doi: 10.1152/jn.91310.2008.
    1. Cheung VCK, Turolla A, Agostini M, Silvoni S, Bennis C, Kasi P, Paganoni S, Bonato P, Bizzi E. Muscle synergy patterns as physiological markers of motor cortical damage. Proc Natl Acad Sci U S A. 2012;109(36):14652–6. doi: 10.1073/pnas.1212056109.
    1. Ellis MD, Kottink AIR, Prange GB, Rietman JS, Buurke JH, Dewald JPA. Quantifying loss of independent joint control in acute stroke with a robotic evaluation of reaching workspace. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:8231–4.
    1. van Kordelaar J, van Wegen E, Kwakkel G. Impact of time on quality of motor control of the paretic upper limb after stroke. Arch Phys Med Rehabil. 2014;95(2):338–44. doi: 10.1016/j.apmr.2013.10.006.
    1. Michaelsen SM, Dannenbaum R, Levin MF. Task-specific training with trunk restraint on arm recovery in stroke: randomized control trial. Stroke. 2006;37(1):186–92. doi: 10.1161/01.STR.0000196940.20446.c9.
    1. Roby-Brami A, Feydy A, Combeaud M, Biryukova EV, Bussel B, Levin MF. Motor compensation and recovery for reaching in stroke patients. Acta Neurol Scand. 2003;107(5):369–81. doi: 10.1034/j.1600-0404.2003.00021.x.
    1. DeJong SL, Birkenmeier RL, Lang CE. Person-specific changes in motor performance accompany upper extremity functional gains after stroke. J Appl Biomech. 2012;28(3):304–16.
    1. Del Din S, Patel S, Cobelli C, Bonato P. Estimating Fugl-Meyer clinical scores in stroke survivors using wearable sensors. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:5839–42.
    1. Friedman N, Chan V, Reinkensmeyer AN, Beroukhim A, Zambrano G, Bachman M, Reinkensmeyer DJ. Retraining and assessing hand movement after stroke using the MusicGlove: Comparison with conventional hand therapy and isometric grip training. J Neuroeng Rehabil Res. 2014;11:76. doi: 10.1186/1743-0003-11-76.
    1. Krebs HI, Krams M, Agrafiotis DK, DiBernardo A, Chavez JC, Littman GS, Yang E, Byttebier G, Dipietro L, Rykman A, McArthur K, Hajjar K, Lees KR, Volpe BT. Robotic measurement of arm movements after stroke establishes biomarkers of motor recovery. Stroke. 2014;45(1):200–4. doi: 10.1161/STROKEAHA.113.002296.
    1. van Dokkum L, Hauret I, Mottet D, Froger J, Métrot J, Laffont I. The contribution of kinematics in the assessment of upper limb motor recovery early after stroke. Neurorehabil Neural Repair. 2014;28(1):4–12. doi: 10.1177/1545968313498514.
    1. Sunderland A, Tinson DJ, Bradley EL, Fletcher D, Langton Hewer R, Wade DT. Enhanced physical therapy improves recovery of arm function after stroke. A randomized controlled trial. J Neurol Neurosurgery Psychiatry. 1992;55:530–5. doi: 10.1136/jnnp.55.7.530.
    1. Wade DT, Langton-Hewer R, Wood VA, Skilbeck CE, Ismail HM. The hemiplegic arm after stroke: measurement and recovery. J Neurol Neurosurg Psychiatry. 1983;46(6):521–4. doi: 10.1136/jnnp.46.6.521.
    1. Stinear C. Prediction of recovery of motor function after stroke. Lancet Neurol. 2010;9(12):1228–32. doi: 10.1016/S1474-4422(10)70247-7.
    1. Nijland RHM, van Wegen EEH, Harmeling-van der Wel BC, Kwakkel G. Presence of finger extension and shoulder abduction within 72 hours after stroke predicts functional recovery: early prediction of functional outcome after stroke: the EPOS cohort study. Stroke. 2010;41(4):745–50. doi: 10.1161/STROKEAHA.109.572065.
    1. Stinear CM, Barber PA, Petoe M, Anwar S, Byblow WD. The PREP algorithm predicts potential for upper limb recovery after stroke. Brain A J Neurol. 2012;135(Pt 8):2527–35. doi: 10.1093/brain/aws146.
    1. Kwakkel G, Veerbeek JM, van Wegen EEH, Nijland R, Harmeling-van der Wel BC, Dippel DWJ. Predictive value of the NIHSS for ADL outcome after ischemic hemispheric stroke: does timing of early assessment matter? J Neurol Sci. 2010;294(1–2):57–61. doi: 10.1016/j.jns.2010.04.004.
    1. Kwakkel G, Veerbeek JM, Harmeling-van der Wel BC, van Wegen E, Kollen BJ. Diagnostic accuracy of the Barthel Index for measuring activities of daily living outcome after ischemic hemispheric stroke: does early poststroke timing of assessment matter? Stroke. 2011;42(2):342–6. doi: 10.1161/STROKEAHA.110.599035.
    1. Prabhakaran S, Zarahn E, Riley C, Speizer A, Chong JY, Lazar RM, Marshall RS, Krakauer JW. Inter-individual variability in the capacity for motor recovery after ischemic stroke. Neurorehabil Neural Repair. 2007;22(1):64–71. doi: 10.1177/1545968307305302.
    1. Zarahn E, Alon L, Ryan SL, Lazar RM, Vry M-S, Weiller C, Marshall RS, Krakauer JW. Prediction of motor recovery using initial impairment and fMRI 48 h poststroke. Cereb Cortex (New York, NY 1991) 2011;21(12):2712–21. doi: 10.1093/cercor/bhr047.
    1. Winters C, van Wegen EEH, Daffertshofer A, Kwakkel G. Generalizability of the Proportional Recovery Model for the Upper Extremity After an Ischemic Stroke. Neurorehabil Neural Repair. 2015;29(7):614–22. doi: 10.1177/1545968314562115.
    1. Kwakkel G, Kollen B, Twisk J. Impact of time on improvement of outcome after stroke. Stroke. 2006;37(9):2348–53. doi: 10.1161/01.STR.0000238594.91938.1e.
    1. Kwakkel G, Veerbeek JM, van Wegen EEH, Wolf SL. Constraint-induced movement therapy after stroke. Lancet Neurol. 2015;14(2):224–34. doi: 10.1016/S1474-4422(14)70160-7.
    1. Ward NS. Does neuroimaging help to deliver better recovery of movement after stroke? Curr Opin Neurol. 2015;28(4):323–9. doi: 10.1097/WCO.0000000000000223.
    1. Radlinska B, Ghinani S, Leppert IR, Minuk J, Pike GB, Thiel A. Diffusion tensor imaging, permanent pyramidal tract damage, and outcome in subcortical stroke. Neurology. 2010;75(12):1048–54. doi: 10.1212/WNL.0b013e3181f39aa0.
    1. Puig J, Pedraza S, Blasco G, Daunis-I-Estadella J, Prados F, Remollo S, Prats-Galino A, Soria G, Boada I, Castellanos M, Serena J. Acute damage to the posterior limb of the internal capsule on diffusion tensor tractography as an early imaging predictor of motor outcome after stroke. AJNR Am J Neuroradiol. 2011;32(5):857–63. doi: 10.3174/ajnr.A2400.
    1. Schulz R, Park C-H, Boudrias M-H, Gerloff C, Hummel FC, Ward NS. Assessing the integrity of corticospinal pathways from primary and secondary cortical motor areas after stroke. Stroke. 2012;43(8):2248–51. doi: 10.1161/STROKEAHA.112.662619.
    1. Park C-H, Kou N, Boudrias M-H, Playford ED, Ward NS. Assessing a standardised approach to measuring corticospinal integrity after stroke with DTI. NeuroImage Clin. 2013;2:521–33. doi: 10.1016/j.nicl.2013.04.002.
    1. Kou N, Park C, Seghier ML, Leff AP, Ward NS. Can fully automated detection of corticospinal tract damage be used in stroke patients? Neurology. 2013;80(24):2242–5. doi: 10.1212/WNL.0b013e318296e977.
    1. Price CJ, Seghier ML, Leff AP. Predicting language outcome and recovery after stroke: the PLORAS system. Nat Rev Neurol. 2010;6(4):202–10. doi: 10.1038/nrneurol.2010.15.
    1. Hope TMH, Seghier ML, Leff AP, Price CJ. Predicting outcome and recovery after stroke with lesions extracted from MRI images. NeuroImage Clin. 2013;2:424–33. doi: 10.1016/j.nicl.2013.03.005.
    1. Atluri G, Padmanabhan K, Fang G, Steinbach M, Petrella JR, Lim K, Macdonald A, Samatova NF, Doraiswamy PM, Kumar V. Complex biomarker discovery in neuroimaging data: Finding a needle in a haystack. NeuroImage Clin. 2013;3:123–31. doi: 10.1016/j.nicl.2013.07.004.
    1. Ward NS. Getting lost in translation. Curr Opin Neurol. 2008;21(6):625–7. doi: 10.1097/WCO.0b013e32831997af.
    1. Saur D, Ronneberger O, Kümmerer D, Mader I, Weiller C, Klöppel S. Early functional magnetic resonance imaging activations predict language outcome after stroke. Brain A J Neurol. 2010;133(Pt 4):1252–64. doi: 10.1093/brain/awq021.
    1. Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK, Byblow WD. Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain. 2007;130(Pt 1):170–80.
    1. Riley JD, Le V, Der-Yeghiaian L, See J, Newton JM, Ward NS, Cramer SC. Anatomy of stroke injury predicts gains from therapy. Stroke. 2011;42(2):421–6. doi: 10.1161/STROKEAHA.110.599340.
    1. Cramer SC, Parrish TB, Levy RM, Stebbins GT, Ruland SD, Lowry DW, Trouard TP, Squire SW, Weinand ME, Savage CR, Wilkinson SB, Juranek J, Leu SYY, Himes DM. Predicting functional gains in a stroke trial. Stroke. 2007;38(7):2108–14.
    1. Gerloff C, Hallett M. Big news from small world networks after stroke. Brain A J Neurol. 2010;133(Pt 4):952–5. doi: 10.1093/brain/awq062.
    1. Friston KJ, Harrison L, Penny W. Dynamic causal modelling. Neuroimage. 2003;19(4):1273–302. doi: 10.1016/S1053-8119(03)00202-7.
    1. Chen C-C, Kiebel SJ, Kilner JM, Ward NS, Stephan KE, Wang W-J, Friston KJ. A dynamic causal model for evoked and induced responses. Neuroimage. 2012;59(1):340–8. doi: 10.1016/j.neuroimage.2011.07.066.
    1. Friston KJ. The labile brain. I. Neuronal transients and nonlinear coupling. Philos Trans R Soc Lond B Biol Sci. 2000;355(1394):215–36. doi: 10.1098/rstb.2000.0560.
    1. Falcon MI, Riley JD, Jirsa V, McIntosh AR, Shereen AD, Chen EE, Solodkin A. The Virtual Brain: Modeling Biological Correlates of Recovery after Chronic Stroke. Front Neurol. 2015;6:228. doi: 10.3389/fneur.2015.00228.
    1. Yamawaki N, Stanford IM, Hall SD, Woodhall GL. Pharmacologically induced and stimulus evoked rhythmic neuronal oscillatory activity in the primary motor cortex in vitro. Neuroscience. 2008;151(2):386–95. doi: 10.1016/j.neuroscience.2007.10.021.
    1. Traub RD, Bibbig A, LeBeau FEN, Buhl EH, Whittington MA. Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro. Annu Rev Neurosci. 2004;27:247–78. doi: 10.1146/annurev.neuro.27.070203.144303.
    1. Moran RJ, Stephan KE, Kiebel SJ, Rombach N, O’Connor WT, Murphy KJ, Reilly RB, Friston KJ. Bayesian estimation of synaptic physiology from the spectral responses of neural masses. Neuroimage. 2008;42(1):272–84. doi: 10.1016/j.neuroimage.2008.01.025.
    1. Moran RJ, Jung F, Kumagai T, Endepols H, Graf R, Dolan RJ, Friston KJ, Stephan KE, Tittgemeyer M. Dynamic causal models and physiological inference: a validation study using isoflurane anaesthesia in rodents. PLoS One. 2011;6(8):e22790. doi: 10.1371/journal.pone.0022790.
    1. Muthukumaraswamy SD, Carhart-Harris RL, Moran RJ, Brookes MJ, Williams TM, Errtizoe D, Sessa B, Papadopoulos A, Bolstridge MK, Singh D, Feilding A, Friston KJ, Nutt DJ. Broadband cortical desynchronization underlies the human psychedelic state. J Neurosci Off J Soc Neurosci. 2013;33(38):15171–83.
    1. Takiyama K, Okada M. Recovery in stroke rehabilitation through the rotation of preferred directions induced by bimanual movements: a computational study. PLoS One. 2012;7(5):e37594. doi: 10.1371/journal.pone.0037594.
    1. Patten C, Condliffe EG, Dairaghi CA, Lum PS. Concurrent neuromechanical and functional gains following upper-extremity power training post-stroke. J Neuroeng Rehabil. 2013;10:1. doi: 10.1186/1743-0003-10-1.
    1. Page SJ, Gater DR, Bach-Y-Rita P. Reconsidering the motor recovery plateau in stroke rehabilitation. Arch Phys Med Rehabil. 2004;85(8):1377–81. doi: 10.1016/j.apmr.2003.12.031.
    1. Brouwer BJ. Hand function and motor cortical output poststroke: are they related? Arch Phys Med Rehabil. 2006;87(5):627–34. doi: 10.1016/j.apmr.2006.02.006.
    1. Ward NS, Newton JM, Swayne OB, Lee L, Frackowiak RS, Thompson AJ, Greenwood RJ, Rothwell JC. The relationship between brain activity and peak grip force is modulated by corticospinal system integrity after subcortical stroke. Eur J Neurosci. 2007;25(6):1865–73. doi: 10.1111/j.1460-9568.2007.05434.x.
    1. Noskin O, Krakauer JW, Lazar RM, Festa JR, Handy C, O’Brien KA, Marshall RS. Ipsilateral motor dysfunction from unilateral stroke: implications for the functional neuroanatomy of hemiparesis. J Neurol Neurosurg Psychiatry. 2008;79(4):401–6. doi: 10.1136/jnnp.2007.118463.
    1. Hidaka Y, Han CE, Wolf SL, Winstein CJ, Schweighofer N. Use it and improve it or lose it: interactions between arm function and use in humans post-stroke. PLoS Comput Biol. 2012;8(2):e1002343. doi: 10.1371/journal.pcbi.1002343.
    1. Reinkensmeyer DJ. How to Retrain Movement after Neurologic Injury: A Computational Rationale for Incorporating Robot (or Therapist) Assistance. Proc IEEE Eng Med Biol Soc Meet. 2003;2:1479–1482. doi: 10.1109/IEMBS.2003.1279616.
    1. Tee KP, Franklin DW, Kawato M, Milner TE, Burdet E. “Concurrent adaptation of force and impedance in the redundant muscle system. Biol Cybern. 2010;102:31–44. doi: 10.1007/s00422-009-0348-z.
    1. Emken JL, Benitez R, Reinkensmeyer DJ. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed. J Neuroeng Rehabil. 2007;4:8. doi: 10.1186/1743-0003-4-8.
    1. Jarrassé N, Charalambous T, Burdet E. A framework to describe, analyze and generate interactive motor behaviors. PLoS One. 2012;7(11):e49945. doi: 10.1371/journal.pone.0049945.
    1. Hu XL, Tong K-YY, Song R, Zheng XJ, Leung WWF. A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke. Neurorehabil Neural Repair. 2009;23(8):837–46. doi: 10.1177/1545968309338191.
    1. Grefkes C, Fink GR. Connectivity-based approaches in stroke and recovery of function. Lancet Neurol. 2014;13(2):206–16. doi: 10.1016/S1474-4422(13)70264-3.
    1. Bland MD, Beebe JA, Hardwick DD, Lang CE. Restricted active range of motion at the elbow, forearm, wrist, or fingers decreases hand function. J Hand Ther. 2008;21(3):268–74. doi: 10.1197/j.jht.2008.01.003.
    1. C. E. Lang, M. D. Bland, R. R. Bailey, S. Y. Schaefer, and R. L. Birkenmeier. Assessment of upper extremity impairment, function, and activity after stroke: foundations for clinical decision making. J. Hand Ther. 26 (2): 104–14. quiz 115.
    1. Nahmani M, Turrigiano GG. Adult cortical plasticity following injury: Recapitulation of critical period mechanisms? Neuroscience. 2014;283:4–16. doi: 10.1016/j.neuroscience.2014.04.029.
    1. Reis J, Schambra HM, Cohen LG, Buch ER, Fritsch B, Zarahn E, Celnik PA, Krakauer JW. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci U S A. 2009;106(5):1590–5. doi: 10.1073/pnas.0805413106.
    1. Hummel F, Celnik P, Giraux P, Floel A, Wu W-H, Gerloff C, Cohen LG. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain. 2005;128(Pt 3):490–9. doi: 10.1093/brain/awh369.
    1. Reinkensmeyer DJ, Wolbrecht ET, Chan V, Chou C, Cramer SC, Bobrow JE. Comparison of 3D, assist-as-needed robotic arm/hand movement training provided with Pneu-WREX to conventional table top therapy following chronic stroke. Am J Phys Med Rehabil. 2012;91(11 Suppl 3):S232–41. doi: 10.1097/PHM.0b013e31826bce79.
    1. J. Rowe, N. Friedman, V. Chan, S. Cramer, M. Bachman, D. J. Reinkensmeyer. The Variable Relationship between Arm and Hand Use: A Rationale for Using Finger Magnetometry to Complement Wrist Accelerometry When Measuring Daily Use of the Upper Extremity. Proc. 36th Annu. Int. IEEE EMBS Conf. 2014.

Source: PubMed

3
Abonnere