Effects of blood flow restricted low-intensity concentric or eccentric training on muscle size and strength

Tomohiro Yasuda, Jeremy P Loenneke, Robert S Thiebaud, Takashi Abe, Tomohiro Yasuda, Jeremy P Loenneke, Robert S Thiebaud, Takashi Abe

Abstract

We investigated the acute and chronic effects of low-intensity concentric or eccentric resistance training with blood flow restriction (BFR) on muscle size and strength. Ten young men performed 30% of concentric one repetition maximal dumbbell curl exercise (four sets, total 75 reps) 3 days/week for 6 weeks. One arm was randomly chosen for concentric BFR (CON-BFR) exercise only and the other arm performed eccentric BFR (ECC-BFR) exercise only at the same exercise load. During the exercise session, iEMG for biceps brachii muscles increased progressively during CON-BFR, which was greater (p<0.05) than that of the ECC-BFR. Immediately after the exercise, muscle thickness (MTH) of the elbow flexors acutely increased (p<0.01) with both CON-BFR and ECC-BFR, but was greater with CON-BFR (11.7%) (p<0.01) than ECC-BFR (3.9%) at 10-cm above the elbow joint. Following 6-weeks of training, MRI-measured muscle cross-sectional area (CSA) at 10-cm position and mid-upper arm (12.0% and 10.6%, respectively) as well as muscle volume (12.5%) of the elbow flexors were increased (p<0.01) with CON-BFR. Increases in muscle CSA and volume were lower in ECC-BFR (5.1%, 0.8% and 2.9%, respectively) than in the CON-BFR and only muscle CSA at 10-cm position increased significantly (p<0.05) after the training. Maximal voluntary isometric strength of elbow flexors was increased (p<0.05) in CON-BFR (8.6%), but not in ECC (3.8%). These results suggest that CON-BFR training leads to pronounced acute changes in muscle size, an index of muscle cell swelling, the response to which may be an important factor for promoting muscle hypertrophy with BFR resistance training.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Muscle activation of biceps brachii…
Figure 1. Muscle activation of biceps brachii muscles during concentric or eccentric BFR exercise for each set performed.
Average for each 5-repetitions was represented as a single data point. Values are means and SD. **Different from first 5-reps, P

Figure 2. Muscle thickness (MTH) of the…

Figure 2. Muscle thickness (MTH) of the elbow flexors before and immediately after exercise session.

Figure 2. Muscle thickness (MTH) of the elbow flexors before and immediately after exercise session.
Values are means and SD. *Different from before, P

Figure 3. Distribution of muscle cross-sectional area…

Figure 3. Distribution of muscle cross-sectional area (CSA) in elbow flexors pre- and post-training period.

Figure 3. Distribution of muscle cross-sectional area (CSA) in elbow flexors pre- and post-training period.
Values are means and SD.

Figure 4. Maximum isometric strength (MVC) of…

Figure 4. Maximum isometric strength (MVC) of the elbow flexors pre- and post- training period.

Figure 4. Maximum isometric strength (MVC) of the elbow flexors pre- and post- training period.
Values are means and SD. *Different from pre-training, P
Similar articles
Cited by
References
    1. Takarada Y, Takazawa H, Sato Y, Takebayashi S, Tanaka Y, et al. (2000) Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol 88: 2097–2106. - PubMed
    1. Abe T, Yasuda T, Midorikawa T, Sato Y, Kearns CF, et al. (2005) Skeletal muscle size and circulating IGF-1 are increased after two weeks of twice daily “KAATSU” resistance training. Int J KAATSU Training Res 1: 6–12.
    1. Karabulut M, Abe T, Sato Y, Bemben MG (2010) The effects of low-intensity resistance training with vascular restriction on leg muscle strength in older men. Eur J Appl Physiol 108: 147–55. - PubMed
    1. Loenneke JP, Wilson JM, Marin PJ, Zourdos MC, Bemben MG (2012a) Low intensity blood flow restriction training: a meta-analysis. Eur J Appl Physiol 112: 1849–1859. - PubMed
    1. Fujita S, Abe T, Drummond MJ, Cadenas JG, Dreyer HC, et al. (2007) Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. J Appl Physiol 103: 903–910. - PubMed
Show all 38 references
Publication types
MeSH terms
Related information
Grant support
This study was supported, in part, by Grant-­in‐aid (#23700713 to TY) from the Japan Ministry of Education, Culture, Sports, Science, and Technology. No additional external funding was received for this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Follow NCBI
Figure 2. Muscle thickness (MTH) of the…
Figure 2. Muscle thickness (MTH) of the elbow flexors before and immediately after exercise session.
Values are means and SD. *Different from before, P

Figure 3. Distribution of muscle cross-sectional area…

Figure 3. Distribution of muscle cross-sectional area (CSA) in elbow flexors pre- and post-training period.

Figure 3. Distribution of muscle cross-sectional area (CSA) in elbow flexors pre- and post-training period.
Values are means and SD.

Figure 4. Maximum isometric strength (MVC) of…

Figure 4. Maximum isometric strength (MVC) of the elbow flexors pre- and post- training period.

Figure 4. Maximum isometric strength (MVC) of the elbow flexors pre- and post- training period.
Values are means and SD. *Different from pre-training, P
Similar articles
Cited by
References
    1. Takarada Y, Takazawa H, Sato Y, Takebayashi S, Tanaka Y, et al. (2000) Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol 88: 2097–2106. - PubMed
    1. Abe T, Yasuda T, Midorikawa T, Sato Y, Kearns CF, et al. (2005) Skeletal muscle size and circulating IGF-1 are increased after two weeks of twice daily “KAATSU” resistance training. Int J KAATSU Training Res 1: 6–12.
    1. Karabulut M, Abe T, Sato Y, Bemben MG (2010) The effects of low-intensity resistance training with vascular restriction on leg muscle strength in older men. Eur J Appl Physiol 108: 147–55. - PubMed
    1. Loenneke JP, Wilson JM, Marin PJ, Zourdos MC, Bemben MG (2012a) Low intensity blood flow restriction training: a meta-analysis. Eur J Appl Physiol 112: 1849–1859. - PubMed
    1. Fujita S, Abe T, Drummond MJ, Cadenas JG, Dreyer HC, et al. (2007) Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. J Appl Physiol 103: 903–910. - PubMed
Show all 38 references
Publication types
MeSH terms
Related information
Grant support
This study was supported, in part, by Grant-­in‐aid (#23700713 to TY) from the Japan Ministry of Education, Culture, Sports, Science, and Technology. No additional external funding was received for this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Figure 3. Distribution of muscle cross-sectional area…
Figure 3. Distribution of muscle cross-sectional area (CSA) in elbow flexors pre- and post-training period.
Values are means and SD.
Figure 4. Maximum isometric strength (MVC) of…
Figure 4. Maximum isometric strength (MVC) of the elbow flexors pre- and post- training period.
Values are means and SD. *Different from pre-training, P

References

    1. Takarada Y, Takazawa H, Sato Y, Takebayashi S, Tanaka Y, et al. (2000) Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol 88: 2097–2106.
    1. Abe T, Yasuda T, Midorikawa T, Sato Y, Kearns CF, et al. (2005) Skeletal muscle size and circulating IGF-1 are increased after two weeks of twice daily “KAATSU” resistance training. Int J KAATSU Training Res 1: 6–12.
    1. Karabulut M, Abe T, Sato Y, Bemben MG (2010) The effects of low-intensity resistance training with vascular restriction on leg muscle strength in older men. Eur J Appl Physiol 108: 147–55.
    1. Loenneke JP, Wilson JM, Marin PJ, Zourdos MC, Bemben MG (2012a) Low intensity blood flow restriction training: a meta-analysis. Eur J Appl Physiol 112: 1849–1859.
    1. Fujita S, Abe T, Drummond MJ, Cadenas JG, Dreyer HC, et al. (2007) Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. J Appl Physiol 103: 903–910.
    1. Fry CS, Glynn EL, Drummond MJ, Timmerman KL, Fujita S, et al. (2010) Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men. J Appl Physiol 108: 1199–209.
    1. Gundermann DM, Fry CS, Dickinson JM, Walker DK, Timmerman KL, et al. (2012) Reactive hyperemia is not responsible for stimulating muscle protein synthesis following blood flow restriction exercise. J Appl Physiol 112: 1520–1528.
    1. Manini TM, Vincent KR, Leeuwenburgh CL, Lees HA, Kavazis AN, et al. (2011) Myogenic and proteolytic mRNA expression following blood flow restricted exercise. Acta Physiol 201: 255–63.
    1. Manini TM, Clark BC (2009) Blood flow restricted exercise and skeletal muscle health. Exerc Sport Sci Rev 37: 78–85.
    1. Loenneke JP, Wilson GJ, Wilson JM (2010) A mechanistic approach to blood flow occlusion. Int J Sports Med 31: 1–4.
    1. Abe T, Loenneke JP, Fahs CA, Rossow LM, Thiebaud RS, et al. (2012) Exercise intensity and muscle hypertrophy in blood flow restricted limbs and non-restricted muscles: a brief review. Clin Physiol Funct Imaging 32: 247–252.
    1. Berneis K, Ninnis R, Haussinger D, Keller U (1999) Effects of hyper- and hypoosmolality on whole body protein and glucose kinetics in humans. Am J Physiol 276: E188–E195.
    1. Häussinger D, Roth E, Lang F, Gerok W (1993) Cellular hydration state: an important determinant of protein catabolism in health and disease. Lancet 22: 1330–1332.
    1. Yasuda T, Ogasawara R, Sakamaki M, Ozaki H, Sato Y, et al. (2011) Combined effects of low-intensity blood flow restriction training and high-intensity resistance training on muscle strength and size. Eur J Appl Physiol 111: 2525–2533.
    1. Loenneke JP, Fahs CA, Rossow LM, Abe T, Bemben MG (2012b) The anabolic benefits of venous blood flow restriction training may be induced by muscle cell swelling. Med Hypotheses 78: 151–154.
    1. Ogawa M, Loenneke JP, Yasuda T, Fahs CA, Rossow LM, et al. (2012) Time course changes in muscle size and fatigue during walking with restricted leg blood flow in young men. J Phys Educ Sport Manag 3: 14–19.
    1. Umbel JD, Hoffman RL, Dearth DJ, Cheboun GS, Manini TM, et al. (2009) Delayed-onset muscle soreness induced by low-load blood flow-restricted exercise. Eur J Appl Physiol 107: 687–695.
    1. Farthing JP, Chilibeck PD (2003) The effects of eccentric and concentric training at different velocities on muscle hypertrophy. Eur J Appl Physiol 89: 578–86.
    1. Higbie EJ, Cureton KJ, Warren GL 3rd, Prior BM (1996) Effects of concentric and eccentric training on muscle strength, cross-sectional area, and neural activation. J Appl Physiol 81: 2173–81.
    1. Seger JY, Arvidsson B, Thorstensson A (1988) Specific effects of eccentric and concentric training on muscle strength and morphology in humans. Eur J Appl Physiol Occup Physiol 79: 49–57.
    1. Yasuda T, Fujita S, Ogasawara R, Sato Y, Abe T (2010) Effects of low-intensity bench press training with restricted arm muscle blood flow on chest muscle hypertrophy: a pilot study. Clin Physiol Funct Imaging 30: 338–343.
    1. Yasuda T, Abe T, Brechue WF, Iida H, Takano H, et al. (2010) Venous blood gas and metabolite responses to low-intensity muscle contractions with external limb compression. Metabolism 59: 1510–1519.
    1. Yasuda T, Brechue WF, Fujita T, Sato Y, Abe T (2008) Muscle activation during low-intensity muscle contractions with varying levels of external limb compression. J Sports Sci Med 7: 467–474.
    1. Yasuda T, Brechue WF, Fujita T, Shirakawa J, Sato Y, et al. (2009) Muscle activation during low-intensity muscle contractions with restricted blood flow. J Sports Sci 27: 479–489.
    1. Yasuda T, Fukumura K, Fukuda T, Iida H, Imuta H, et al... (2012) Effects of low-intensity, elastic band resistance exercise combined with blood flow restriction on muscle activation. Scand J Med Sci Sports, in press.
    1. Borg GA (1973) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14: 377–381.
    1. Cohen J (1988) Statistical power analysis for the behavioral sciences. 2nd Ed. Hillsdale, NJ: Lawrence Erlbaum Associates Inc.; p. 19–39.
    1. Keller U, Szinnai G, Bilz S, Berneis K (2003) Effects of changes in hydration on protein, glucose and lipid metabolism in man: impact on health. Eur J Clin Nutr 57 Suppl 2S69–74.
    1. Grant AC, Gow IF, Zammit VA, Shennan DB (2000) Regulation of protein synthesis in lactating rat mammary tissue by cell volume. Biochim Biophys Acta 1475: 39–46.
    1. Millar ID, Barber MC, Lomax MA, Travers MT, Shennan DB (1997) Mammary protein synthesis is acutely regulated by the cellular hydration state. Biochem Biophys Res Commun 230: 351–355.
    1. Dalton PA, Stokes MJ (1991) Acoustic myography reflects force changes during dynamic concentric and eccentric contractions of the human biceps brachii muscle. Eur J Appl Physiol 63: 412–416.
    1. Durand RJ, Castracane VD, Hollander DB, Tryniecki JL, Bamman MM, et al. (2003) Hormonal responses from concentric and eccentric muscle contractions. Med Sci Sports Exerc 35: 937–943.
    1. Kraemer RR, Hollander DB, Reeves GV, Francois M, Ramadan ZG, et al. (2006) Similar hormonal responses to concentric and eccentric muscle actions using relative loading. Eur J Appl Physiol 96: 551–557.
    1. Bigland-Ritchie B, Cafarelli E, Vollestad NK (1986) Fatigue of submaximal static contractions. Acta Physiol Scand (Suppl) 556: 137–148.
    1. Moritani T, Muro M, Nagata A (1986) Intramuscular and surface electromyogram changes during muscle fatigue. J Appl Physiol 60: 1179–1185.
    1. Roig M, O'Brien K, Kirk G, Murray R, McKinnon P, et al. (2009) The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: a systematic review with meta-analysis. Br J Sports Med 43: 556–68.
    1. Enoka RM (1996) Eccentric contractions require unique activation strategies by the nervous system. J Appl Physiol 81: 2339–46.
    1. Nosaka K, Sakamoto K (2001) Effect of elbow joint angle on the magnitude of muscle damage to the elbow flexors. Med Sci Sports Exerc 33: 22–29.

Source: PubMed

3
Abonnere