Cytokine Profiling of Amniotic Fluid from Congenital Cytomegalovirus Infection

Nicolas Bourgon, Wendy Fitzgerald, Hugues Aschard, Jean-François Magny, Tiffany Guilleminot, Julien Stirnemann, Roberto Romero, Yves Ville, Leonid Margolis, Marianne Leruez-Ville, Nicolas Bourgon, Wendy Fitzgerald, Hugues Aschard, Jean-François Magny, Tiffany Guilleminot, Julien Stirnemann, Roberto Romero, Yves Ville, Leonid Margolis, Marianne Leruez-Ville

Abstract

Background: Congenital cytomegalovirus (cCMV) infection is frequent and potentially severe. The immunobiology of cCMV infection is poorly understood, involving cytokines that could be carried within or on the surface of extracellular vesicles (EV). We investigated intra-amniotic cytokines, mediated or not by EV, in cCMV infection.

Methods: Forty infected fetuses following early maternal primary infection and forty negative controls were included. Infected fetuses were classified according to severity at birth: asymptomatic, moderately or severely symptomatic. Following the capture of EV in amniotic fluid (AF), the concentrations of 38 cytokines were quantified. The association with infection and its severity was determined using univariate and multivariate analysis. A prediction analysis based on principal component analysis was conducted.

Results: cCMV infection was nominally associated with an increase in six cytokines, mainly soluble (IP-10, IL-18, ITAC, and TRAIL). EV-associated IP-10 was also increased in cases of fetal infection. Severity of fetal infection was nominally associated with an increase in twelve cytokines, including five also associated with fetal infection. A pattern of specific increase in six proteins fitted severely symptomatic infection, including IL-18soluble, TRAILsoluble, CRPsoluble, TRAILsurface, MIGinternal, and RANTESinternal.

Conclusion: Fetal infection and its severity are associated with an increase in pro-inflammatory cytokines involved in Th1 immune response.

Trial registration: ClinicalTrials.gov NCT03090841 NCT01651585.

Keywords: amniotic fluid; congenital cytomegalovirus infection; cytokines; extracellular vesicles.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Concentrations of relevant cytokines according to fetal infection. Boxplots represent variations in cytokines’ concentrations (median). UF: uninfected fetuses, IF: infected fetuses.
Figure 2
Figure 2
Concentrations of relevant cytokines according to symptomatic state at birth and severity. Boxplots representing represent variations in cytokines’ concentrations (median). UF: unifected fetuses, AIF: asymptomatic infected fetuses, SNSIF: symptomatic and non-severe infected fetuses, SSIF: symptomatic and severe infected fetuses.
Figure 2
Figure 2
Concentrations of relevant cytokines according to symptomatic state at birth and severity. Boxplots representing represent variations in cytokines’ concentrations (median). UF: unifected fetuses, AIF: asymptomatic infected fetuses, SNSIF: symptomatic and non-severe infected fetuses, SSIF: symptomatic and severe infected fetuses.
Figure 3
Figure 3
Prediction accuracy of fetal infection (a) and of severity (b).
Figure 4
Figure 4
Immunobiology of cCMV: focus on cytokines identified in this study and interactions with infected and immune cells. NKC: natural-killer cell, MP: macrophage, Lc Th1: T-cell involved in Th1 immune response, Lc Th2: T-cell involved in Th2 immune response, DC: dendritic cell, TLR: Toll-like receptor, PAMPS/DAMPs: pathogen-associated molecular patterns/damage-associated molecular patterns.

References

    1. Kenneson A., Cannon M.J. Review and Meta-Analysis of the Epidemiology of Congenital Cytomegalovirus (CMV) Infection. Rev. Med. Virol. 2007;17:253–276. doi: 10.1002/rmv.535.
    1. Leruez-Ville M., Foulon I., Pass R., Ville Y. Cytomegalovirus Infection during Pregnancy: State of the Science. Am. J. Obstet. Gynecol. 2020;223:330–349. doi: 10.1016/j.ajog.2020.02.018.
    1. Smithers-Sheedy H., Raynes-Greenow C., Badawi N., Fernandez M.A., Kesson A., McIntyre S., Leung K.-C., Jones C.A. Congenital Cytomegalovirus among Children with Cerebral Palsy. J. Pediatr. 2017;181:267–271.e1. doi: 10.1016/j.jpeds.2016.10.024.
    1. Korver A.M.H., de Vries J.J.C., Konings S., de Jong J.W., Dekker F.W., Vossen A.C.T.M., Frijns J.H.M., Oudesluys-Murphy A.M., DECIBEL collaborative study group DECIBEL Study: Congenital Cytomegalovirus Infection in Young Children with Permanent Bilateral Hearing Impairment in the Netherlands. J. Clin. Virol. 2009;46((Suppl. 4)):S27–S31. doi: 10.1016/j.jcv.2009.09.007.
    1. Goderis J., De Leenheer E., Smets K., Van Hoecke H., Keymeulen A., Dhooge I. Hearing Loss and Congenital CMV Infection: A Systematic Review. Pediatrics. 2014;134:972–982. doi: 10.1542/peds.2014-1173.
    1. Avettand-Fenoël V., Marlin S., Vauloup-Fellous C., Loundon N., François M., Couloigner V., Rouillon I., Drouin-Garraud V., Laccourreye L., Denoyelle F., et al. Congenital Cytomegalovirus Is the Second Most Frequent Cause of Bilateral Hearing Loss in Young French Children. J. Pediatr. 2013;162:593–599. doi: 10.1016/j.jpeds.2012.08.009.
    1. Nance W.E., Lim B.G., Dodson K.M. Importance of Congenital Cytomegalovirus Infections as a Cause for Pre-Lingual Hearing Loss. J. Clin. Virol. 2006;35:221–225. doi: 10.1016/j.jcv.2005.09.017.
    1. Faure-Bardon V., Millischer A.-E., Deloison B., Sonigo P., Grévent D., Salomon L., Stirnemann J., Nicloux M., Magny J.-F., Leruez-Ville M., et al. Refining the Prognosis of Fetuses Infected with Cytomegalovirus in the First Trimester of Pregnancy by Serial Prenatal Assessment: A Single-Centre Retrospective Study. BJOG Int. J. Obstet. Gynaecol. 2020;127:355–362. doi: 10.1111/1471-0528.15935.
    1. Rawlinson W.D., Boppana S.B., Fowler K.B., Kimberlin D.W., Lazzarotto T., Alain S., Daly K., Doutré S., Gibson L., Giles M.L., et al. Congenital Cytomegalovirus Infection in Pregnancy and the Neonate: Consensus Recommendations for Prevention, Diagnosis, and Therapy. Lancet Infect. Dis. 2017;17:e177–e188. doi: 10.1016/S1473-3099(17)30143-3.
    1. Dollard S.C., Grosse S.D., Ross D.S. New Estimates of the Prevalence of Neurological and Sensory Sequelae and Mortality Associated with Congenital Cytomegalovirus Infection. Rev. Med. Virol. 2007;17:355–363. doi: 10.1002/rmv.544.
    1. Goderis J., Keymeulen A., Smets K., Van Hoecke H., De Leenheer E., Boudewyns A., Desloovere C., Kuhweide R., Muylle M., Royackers L., et al. Hearing in Children with Congenital Cytomegalovirus Infection: Results of a Longitudinal Study. J. Pediatr. 2016;172:110–115.e2. doi: 10.1016/j.jpeds.2016.01.024.
    1. Foulon I., Naessens A., Foulon W., Casteels A., Gordts F. A 10-Year Prospective Study of Sensorineural Hearing Loss in Children with Congenital Cytomegalovirus Infection. J. Pediatr. 2008;153:84–88. doi: 10.1016/j.jpeds.2007.12.049.
    1. Foulon I., De Brucker Y., Buyl R., Lichtert E., Verbruggen K., Piérard D., Camfferman F.A., Gucciardo L., Gordts F. Hearing Loss With Congenital Cytomegalovirus Infection. Pediatrics. 2019;144:e20183095. doi: 10.1542/peds.2018-3095.
    1. Grosse S.D., Ross D.S., Dollard S.C. Congenital Cytomegalovirus (CMV) Infection as a Cause of Permanent Bilateral Hearing Loss: A Quantitative Assessment. J. Clin. Virol. 2008;41:57–62. doi: 10.1016/j.jcv.2007.09.004.
    1. Fowler K.B., McCollister F.P., Dahle A.J., Boppana S., Britt W.J., Pass R.F. Progressive and Fluctuating Sensorineural Hearing Loss in Children with Asymptomatic Congenital Cytomegalovirus Infection. J. Pediatr. 1997;130:624–630. doi: 10.1016/S0022-3476(97)70248-8.
    1. Dahle A.J., Fowler K.B., Wright J.D., Boppana S.B., Britt W.J., Pass R.F. Longitudinal Investigation of Hearing Disorders in Children with Congenital Cytomegalovirus. J. Am. Acad. Audiol. 2000;11:283–290. doi: 10.1055/s-0042-1748054.
    1. Ross S.A., Fowler K.B., Ashrith G., Stagno S., Britt W.J., Pass R.F., Boppana S.B. Hearing Loss in Children with Congenital Cytomegalovirus Infection Born to Mothers with Preexisting Immunity. J. Pediatr. 2006;148:332–336. doi: 10.1016/j.jpeds.2005.09.003.
    1. Leruez-Ville M., Magny J.-F., Couderc S., Pichon C., Parodi M., Bussières L., Guilleminot T., Ghout I., Ville Y. Risk Factors for Congenital Cytomegalovirus Infection Following Primary and Nonprimary Maternal Infection: A Prospective Neonatal Screening Study Using Polymerase Chain Reaction in Saliva. Clin. Infect. Dis. 2017;65:398–404. doi: 10.1093/cid/cix337.
    1. Mussi-Pinhata M.M., Yamamoto A.Y., Brito R.M.M., de Lima Isaac M., de Carvalhoe Oliveira P.F., Boppana S., Britt W.J. Birth Prevalence and Natural History of Congenital Cytomegalovirus Infection in a Highly Seroimmune Population. Clin. Infect. Dis. 2009;49:522–528. doi: 10.1086/600882.
    1. Benoist G., Salomon L., Jacquemard F., Daffos F., Ville Y. The Prognostic Value of Ultrasound Abnormalities and Biological Parameters in Blood of Fetuses Infected with Cytomegalovirus. BJOG Int. J. Obstet. Gynaecol. 2008;115:823–829. doi: 10.1111/j.1471-0528.2008.01714.x.
    1. Cannie M.M., Devlieger R., Leyder M., Claus F., Leus A., De Catte L., Cossey V., Foulon I., Van der valk E., Foulon W., et al. Congenital Cytomegalovirus Infection: Contribution and Best Timing of Prenatal MR Imaging. Eur. Radiol. 2016;26:3760–3769. doi: 10.1007/s00330-015-4187-0.
    1. Picone O., Simon I., Benachi A., Brunelle F., Sonigo P. Comparison between Ultrasound and Magnetic Resonance Imaging in Assessment of Fetal Cytomegalovirus Infection. Prenat. Diagn. 2008;28:753–758. doi: 10.1002/pd.2037.
    1. Lipitz S., Hoffmann C., Feldman B., Tepperberg-Dikawa M., Schiff E., Weisz B. Value of Prenatal Ultrasound and Magnetic Resonance Imaging in Assessment of Congenital Primary Cytomegalovirus Infection. Ultrasound Obstet. Gynecol. 2010;36:709–717. doi: 10.1002/uog.7657.
    1. Leruez-Ville M., Stirnemann J., Sellier Y., Guilleminot T., Dejean A., Magny J.-F., Couderc S., Jacquemard F., Ville Y. Feasibility of Predicting the Outcome of Fetal Infection with Cytomegalovirus at the Time of Prenatal Diagnosis. Am. J. Obstet. Gynecol. 2016;215:342.e1–342.e9. doi: 10.1016/j.ajog.2016.03.052.
    1. Guerra B., Simonazzi G., Puccetti C., Lanari M., Farina A., Lazzarotto T., Rizzo N. Ultrasound Prediction of Symptomatic Congenital Cytomegalovirus Infection. Am. J. Obstet. Gynecol. 2008;198:380.e1–380.e7. doi: 10.1016/j.ajog.2007.09.052.
    1. Leyder M., Vorsselmans A., Done E., Berkel K.V., Faron G., Foulon I., Naessens A., Jansen A., Foulon W., Gucciardo L. Primary Maternal Cytomegalovirus Infections: Accuracy of Fetal Ultrasound for Predicting Sequelae in Offspring. Am. J. Obstet. Gynecol. 2016;215:638.e1–638.e8. doi: 10.1016/j.ajog.2016.06.003.
    1. Fabbri E., Revello M.G., Furione M., Zavattoni M., Lilleri D., Tassis B., Quarenghi A., Rustico M., Nicolini U., Ferrazzi E., et al. Prognostic Markers of Symptomatic Congenital Human Cytomegalovirus Infection in Fetal Blood. BJOG Int. J. Obstet. Gynaecol. 2011;118:448–456. doi: 10.1111/j.1471-0528.2010.02822.x.
    1. Griffiths P., Reeves M. Pathogenesis of Human Cytomegalovirus in the Immunocompromised Host. Nat. Rev. Microbiol. 2021;19:759–773. doi: 10.1038/s41579-021-00582-z.
    1. Faure-Bardon V., Magny J.-F., Parodi M., Couderc S., Garcia P., Maillotte A.-M., Benard M., Pinquier D., Astruc D., Patural H., et al. Sequelae of Congenital Cytomegalovirus Following Maternal Primary Infections Are Limited to Those Acquired in the First Trimester of Pregnancy. Clin. Infect. Dis. 2019;69:1526–1532. doi: 10.1093/cid/ciy1128.
    1. Bhatti G., Romero R., Rice G.E., Fitzgerald W., Pacora P., Gomez-Lopez N., Kavdia M., Tarca A.L., Margolis L. Compartmentalized Profiling of Amniotic Fluid Cytokines in Women with Preterm Labor. PLoS ONE. 2020;15:e0227881. doi: 10.1371/journal.pone.0227881.
    1. Romero R., Grivel J.-C., Tarca A.L., Chaemsaithong P., Xu Z., Fitzgerald W., Hassan S.S., Chaiworapongsa T., Margolis L. Evidence of Perturbations of the Cytokine Network in Preterm Labor. Am. J. Obstet. Gynecol. 2015;213:836.e1–836.e18. doi: 10.1016/j.ajog.2015.07.037.
    1. Fitzgerald W., Freeman M.L., Lederman M.M., Vasilieva E., Romero R., Margolis L. A System of Cytokines Encapsulated in ExtraCellular Vesicles. Sci. Rep. 2018;8:8973. doi: 10.1038/s41598-018-27190-x.
    1. Schleiss M.R. Cytomegalovirus in the Neonate: Immune Correlates of Infection and Protection. Clin. Dev. Immunol. 2013;2013:501801. doi: 10.1155/2013/501801.
    1. Scott G.M., Chow S.S.W., Craig M.E., Pang C.N.I., Hall B., Wilkins M.R., Jones C.A., Lloyd A.R., Rawlinson W.D. Cytomegalovirus Infection during Pregnancy with Maternofetal Transmission Induces a Proinflammatory Cytokine Bias in Placenta and Amniotic Fluid. J. Infect. Dis. 2012;205:1305–1310. doi: 10.1093/infdis/jis186.
    1. Van Niel G., D’Angelo G., Raposo G. Shedding Light on the Cell Biology of Extracellular Vesicles. Nat. Rev. Mol. Cell Biol. 2018;19:213–228. doi: 10.1038/nrm.2017.125.
    1. Tkach M., Théry C. Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell. 2016;164:1226–1232. doi: 10.1016/j.cell.2016.01.043.
    1. Tetta C., Ghigo E., Silengo L., Deregibus M.C., Camussi G. Extracellular Vesicles as an Emerging Mechanism of Cell-to-Cell Communication. Endocrine. 2013;44:11–19. doi: 10.1007/s12020-012-9839-0.
    1. Keller S., Sanderson M.P., Stoeck A., Altevogt P. Exosomes: From Biogenesis and Secretion to Biological Function. Immunol. Lett. 2006;107:102–108. doi: 10.1016/j.imlet.2006.09.005.
    1. Costa A., Quarto R., Bollini S. Small Extracellular Vesicles from Human Amniotic Fluid Samples as Promising Theranostics. Int. J. Mol. Sci. 2022;23:590. doi: 10.3390/ijms23020590.
    1. Sheller-Miller S., Menon R. Chapter Ten—Isolation and Characterization of Human Amniotic Fluid-Derived Exosomes. In: Spada S., Galluzzi L., editors. Methods in Enzymology. Volume 645. Academic Press; Cambridge, MA, USA: 2020. pp. 181–194. Extracellular Vesicles.
    1. Sidhom K., Obi P.O., Saleem A. A Review of Exosomal Isolation Methods: Is Size Exclusion Chromatography the Best Option? Int. J. Mol. Sci. 2020;21:6466. doi: 10.3390/ijms21186466.
    1. Zhao B., Zhang Y., Han S., Zhang W., Zhou Q., Guan H., Liu J., Shi J., Su L., Hu D. Exosomes Derived from Human Amniotic Epithelial Cells Accelerate Wound Healing and Inhibit Scar Formation. J. Mol. Histol. 2017;48:121–132. doi: 10.1007/s10735-017-9711-x.
    1. Farhadihosseinabadi B., Farahani M., Tayebi T., Jafari A., Biniazan F., Modaresifar K., Moravvej H., Bahrami S., Redl H., Tayebi L., et al. Amniotic Membrane and Its Epithelial and Mesenchymal Stem Cells as an Appropriate Source for Skin Tissue Engineering and Regenerative Medicine. Artif. Cells Nanomed. Biotechnol. 2018;46:431–440. doi: 10.1080/21691401.2018.1458730.
    1. Tan J.L., Lau S.N., Leaw B., Nguyen H.P.T., Salamonsen L.A., Saad M.I., Chan S.T., Zhu D., Krause M., Kim C., et al. Amnion Epithelial Cell-Derived Exosomes Restrict Lung Injury and Enhance Endogenous Lung Repair. Stem Cells Transl. Med. 2018;7:180–196. doi: 10.1002/sctm.17-0185.
    1. Sheller S., Papaconstantinou J., Urrabaz-Garza R., Richardson L., Saade G., Salomon C., Menon R. Amnion-Epithelial-Cell-Derived Exosomes Demonstrate Physiologic State of Cell under Oxidative Stress. PLoS ONE. 2016;11:e0157614. doi: 10.1371/journal.pone.0157614.
    1. Keller S., Rupp C., Stoeck A., Runz S., Fogel M., Lugert S., Hager H.-D., Abdel-Bakky M.S., Gutwein P., Altevogt P. CD24 Is a Marker of Exosomes Secreted into Urine and Amniotic Fluid. Kidney Int. 2007;72:1095–1102. doi: 10.1038/sj.ki.5002486.
    1. Asea A., Jean-Pierre C., Kaur P., Rao P., Linhares I.M., Skupski D., Witkin S.S. Heat Shock Protein-Containing Exosomes in Mid-Trimester Amniotic Fluids. J. Reprod. Immunol. 2008;79:12–17. doi: 10.1016/j.jri.2008.06.001.
    1. Mellows B., Mitchell R., Antonioli M., Kretz O., Chambers D., Zeuner M.-T., Denecke B., Musante L., Ramachandra D.L., Debacq-Chainiaux F., et al. Protein and Molecular Characterization of a Clinically Compliant Amniotic Fluid Stem Cell-Derived Extracellular Vesicle Fraction Capable of Accelerating Muscle Regeneration Through Enhancement of Angiogenesis. Stem Cells Dev. 2017;26:1316–1333. doi: 10.1089/scd.2017.0089.
    1. Bellio M.A., Young K.C., Milberg J., Santos I., Abdullah Z., Stewart D., Arango A., Chen P., Huang J., Williams K., et al. Amniotic Fluid-Derived Extracellular Vesicles: Characterization and Therapeutic Efficacy in an Experimental Model of Bronchopulmonary Dysplasia. Cytotherapy. 2021;23:1097–1107. doi: 10.1016/j.jcyt.2021.07.011.
    1. Tavanasefat H., Li F., Koyano K., Gourtani B.K., Marty V., Mulpuri Y., Lee S.H., Shin K.-H., Wong D.T.W., Xiao X., et al. Molecular Consequences of Fetal Alcohol Exposure on Amniotic Exosomal MiRNAs with Functional Implications for Stem Cell Potency and Differentiation. PLoS ONE. 2020;15:e0242276. doi: 10.1371/journal.pone.0242276.
    1. Dixon C.L., Sheller-Miller S., Saade G.R., Fortunato S.J., Lai A., Palma C., Guanzon D., Salomon C., Menon R. Amniotic Fluid Exosome Proteomic Profile Exhibits Unique Pathways of Term and Preterm Labor. Endocrinology. 2018;159:2229–2240. doi: 10.1210/en.2018-00073.
    1. Fabietti I., Nardi T., Favero C., Dioni L., Cantone L., Pergoli L., Hoxha M., Pinatel E., Mosca F., Bollati V., et al. Extracellular Vesicles and Their MiRNA Content in Amniotic and Tracheal Fluids of Fetuses with Severe Congenital Diaphragmatic Hernia Undergoing Fetal Intervention. Cells. 2021;10:1493. doi: 10.3390/cells10061493.
    1. Clement M., Humphreys I.R. Cytokine-Mediated Induction and Regulation of Tissue Damage During Cytomegalovirus Infection. Front. Immunol. 2019;10:78. doi: 10.3389/fimmu.2019.00078.
    1. Pitti R.M., Marsters S.A., Ruppert S., Donahue C.J., Moore A., Ashkenazi A. Induction of Apoptosis by Apo-2 Ligand, a New Member of the Tumor Necrosis Factor Cytokine Family. J. Biol. Chem. 1996;271:12687–12690. doi: 10.1074/jbc.271.22.12687.
    1. Sheridan J., Marsters S., Pitti R., Gurney A., Skubatch M., Baldwin D., Ramakrishnan L., Gray C., Baker K., Wood W., et al. Control of TRAIL-Induced Apoptosis by a Family of Signaling and Decoy Receptors. Science. 1997;277:818–821. doi: 10.1126/science.277.5327.818.
    1. Verma S., Loewendorf A., Wang Q., McDonald B., Redwood A., Benedict C.A. Inhibition of the TRAIL Death Receptor by CMV Reveals Its Importance in NK Cell-Mediated Antiviral Defense. PLoS Pathog. 2014;10:e1004268. doi: 10.1371/journal.ppat.1004268.
    1. Sedger L.M., Shows D.M., Blanton R.A., Peschon J.J., Goodwin R.G., Cosman D., Wiley S.R. IFN-Gamma Mediates a Novel Antiviral Activity through Dynamic Modulation of TRAIL and TRAIL Receptor Expression. J. Immunol. Baltim. 1999;163:920–926.
    1. Wu Z., Sinzger C., Frascaroli G., Reichel J., Bayer C., Wang L., Schirmbeck R., Mertens T. Human Cytomegalovirus-Induced NKG2Chi CD57hi Natural Killer Cells Are Effectors Dependent on Humoral Antiviral Immunity. J. Virol. 2013;87:7717–7725. doi: 10.1128/JVI.01096-13.
    1. Lopez-Vergès S., Milush J.M., Schwartz B.S., Pando M.J., Jarjoura J., York V.A., Houchins J.P., Miller S., Kang S.-M., Norris P.J., et al. Expansion of a Unique CD57+NKG2Chi Natural Killer Cell Subset during Acute Human Cytomegalovirus Infection. Proc. Natl. Acad. Sci. USA. 2011;108:14725–14732. doi: 10.1073/pnas.1110900108.
    1. Wang D., Bresnahan W., Shenk T. Human Cytomegalovirus Encodes a Highly Specific RANTES Decoy Receptor. Proc. Natl. Acad. Sci. USA. 2004;101:16642–16647. doi: 10.1073/pnas.0407233101.
    1. Mansfield A.S., Nevala W.K., Dronca R.S., Leontovich A.A., Shuster L., Markovic S.N. Normal Ageing Is Associated with an Increase in Th2 Cells, MCP-1 (CCL1) and RANTES (CCL5), with Differences in SCD40L and PDGF-AA between Sexes. Clin. Exp. Immunol. 2012;170:186–193. doi: 10.1111/j.1365-2249.2012.04644.x.
    1. Bernasconi S., Cinque P., Peri G., Sozzani S., Crociati A., Torri W., Vicenzi E., Vago L., Lazzarin A., Poli G., et al. Selective Elevation of Monocyte Chemotactic Protein-1 in the Cerebrospinal Fluid of AIDS Patients with Cytomegalovirus Encephalitis. J. Infect. Dis. 1996;174:1098–1101. doi: 10.1093/infdis/174.5.1098.
    1. Van de Veerdonk F.L., Netea M.G., Dinarello C.A., Joosten L.A.B. Inflammasome Activation and IL-1β and IL-18 Processing during Infection. Trends Immunol. 2011;32:110–116. doi: 10.1016/j.it.2011.01.003.
    1. Guo H., Callaway J.B., Ting J.P.-Y. Inflammasomes: Mechanism of Action, Role in Disease, and Therapeutics. Nat. Med. 2015;21:677–687. doi: 10.1038/nm.3893.
    1. Shi X., Dong Y., Li Y., Zhao Z., Li H., Qiu S., Li Y., Guo W., Qiao Y. Inflammasome Activation in Mouse Inner Ear in Response to MCMV Induced Hearing Loss. J. Otol. 2015;10:143–149. doi: 10.1016/j.joto.2015.12.001.
    1. Hokeness K.L., Deweerd E.S., Munks M.W., Lewis C.A., Gladue R.P., Salazar-Mather T.P. CXCR3-Dependent Recruitment of Antigen-Specific T Lymphocytes to the Liver during Murine Cytomegalovirus Infection. J. Virol. 2007;81:1241–1250. doi: 10.1128/JVI.01937-06.
    1. Basílio-Queirós D., Venturini L., Luther-Wolf S., Dammann E., Ganser A., Stadler M., Falk C.S., Weissinger E.M. Adaptive NK Cells Undergo a Dynamic Modulation in Response to Human Cytomegalovirus and Recruit T Cells in in Vitro Migration Assays. Bone Marrow Transplant. 2022;57:712–720. doi: 10.1038/s41409-022-01603-y.
    1. Van de Berg P.J., Heutinck K.M., Raabe R., Minnee R.C., Young S.L., van Donselaar-van der Pant K.A., Bemelman F.J., van Lier R.A., ten Berge I.J. Human Cytomegalovirus Induces Systemic Immune Activation Characterized by a Type 1 Cytokine Signature. J. Infect. Dis. 2010;202:690–699. doi: 10.1086/655472.
    1. Cheeran M.C., Hu S., Yager S.L., Gekker G., Peterson P.K., Lokensgard J.R. Cytomegalovirus Induces Cytokine and Chemokine Production Differentially in Microglia and Astrocytes: Antiviral Implications. J. Neurovirol. 2001;7:135–147. doi: 10.1080/13550280152058799.
    1. Lee J., Choi J.A., Ju H.-H., Kim J.-E., Paik S.-Y., Rao P.V. Role of MCP-1 and IL-8 in Viral Anterior Uveitis, and Contractility and Fibrogenic Activity of Trabecular Meshwork Cells. Sci. Rep. 2021;11:14950. doi: 10.1038/s41598-021-94391-2.
    1. Rott D., Zhu J., Zhou Y.F., Burnett M.S., Zalles-Ganley A., Epstein S.E. IL-6 Is Produced by Splenocytes Derived from CMV-Infected Mice in Response to CMV Antigens, and Induces MCP-1 Production by Endothelial Cells: A New Mechanistic Paradigm for Infection-Induced Atherogenesis. Atherosclerosis. 2003;170:223–228. doi: 10.1016/S0021-9150(03)00295-8.
    1. Froberg M.K., Dannen D., Adams A., Parker-Thornburg J., Kolattukudy P. Murine Cytomegalovirus Infection Markedly Reduces Serum MCP-1 Levels in MCP-1 Transgenic Mice. Ann. Clin. Lab. Sci. 2006;36:179–184.
    1. Alcendor D.J., Charest A.M., Zhu W.Q., Vigil H.E., Knobel S.M. Infection and Upregulation of Proinflammatory Cytokines in Human Brain Vascular Pericytes by Human Cytomegalovirus. J. Neuroinflamm. 2012;9:95. doi: 10.1186/1742-2094-9-95.
    1. Talaya A., Giménez E., Vinuesa V., Pérez A., Amat P., Piñana J.L., Albert E., Hernández-Boluda J.C., Solano C., Navarro D. Kinetics of Inflammatory Biomarkers in Plasma Predict the Occurrence and Features of Cytomegalovirus DNAemia Episodes in Allogeneic Hematopoietic Stem Cell Transplant Recipients. Med. Microbiol. Immunol. 2019;208:405–414. doi: 10.1007/s00430-019-00594-w.
    1. Karason K., Jernås M., Hägg D.A., Svensson P.-A. Evaluation of CXCL9 and CXCL10 as Circulating Biomarkers of Human Cardiac Allograft Rejection. BMC Cardiovasc. Disord. 2006;6:29. doi: 10.1186/1471-2261-6-29.
    1. Poole E., Neves T.C., Oliveira M.T., Sinclair J., da Silva M.C.C. Human Cytomegalovirus Interleukin 10 Homologs: Facing the Immune System. Front. Cell. Infect. Microbiol. 2020;10:245. doi: 10.3389/fcimb.2020.00245.
    1. Lučin P., Mahmutefendić H., Blagojević Zagorac G., Ilić Tomaš M. Cytomegalovirus Immune Evasion by Perturbation of Endosomal Trafficking. Cell. Mol. Immunol. 2015;12:154–169. doi: 10.1038/cmi.2014.85.
    1. Billstrom M.A., Lehman L.A., Scott Worthen G. Depletion of Extracellular RANTES during Human Cytomegalovirus Infection of Endothelial Cells. Am. J. Respir. Cell Mol. Biol. 1999;21:163–167. doi: 10.1165/ajrcmb.21.2.3673.
    1. Desveaux C., Klein J., Leruez-Ville M., Ramirez-Torres A., Lacroix C., Breuil B., Froment C., Bascands J.-L., Schanstra J.P., Ville Y. Identification of Symptomatic Fetuses Infected with Cytomegalovirus Using Amniotic Fluid Peptide Biomarkers. PLOS Pathog. 2016;12:e1005395. doi: 10.1371/journal.ppat.1005395.
    1. Vorontsov O., Levitt L., Lilleri D., Vainer G.W., Kaplan O., Schreiber L., Arossa A., Spinillo A., Furione M., Alfi O., et al. Amniotic Fluid Biomarkers Predict the Severity of Congenital Cytomegalovirus Infection. J. Clin. Investig. 2022;132:e157415. doi: 10.1172/JCI157415.
    1. Jacquemard F., Yamamoto M., Costa J.-M., Romand S., Jaqz-Aigrain E., Dejean A., Daffos F., Ville Y. Maternal Administration of Valaciclovir in Symptomatic Intrauterine Cytomegalovirus Infection. BJOG Int. J. Obstet. Gynaecol. 2007;114:1113–1121. doi: 10.1111/j.1471-0528.2007.01308.x.
    1. Shahar-Nissan K., Pardo J., Peled O., Krause I., Bilavsky E., Wiznitzer A., Hadar E., Amir J. Valaciclovir to Prevent Vertical Transmission of Cytomegalovirus after Maternal Primary Infection during Pregnancy: A Randomised, Double-Blind, Placebo-Controlled Trial. Lancet. 2020;396:779–785. doi: 10.1016/S0140-6736(20)31868-7.
    1. Faure-Bardon V., Fourgeaud J., Guilleminot T., Magny J.-F., Salomon L.J., Bernard J.-P., Leruez-Ville M., Ville Y. First-Trimester Diagnosis of Congenital Cytomegalovirus Infection after Maternal Primary Infection in Early Pregnancy: Feasibility Study of Viral Genome Amplification by PCR on Chorionic Villi Obtained by CVS. Ultrasound Obstet. Gynecol. 2021;57:568–572. doi: 10.1002/uog.23608.
    1. Schubert S.M., Arendt L.M., Zhou W., Baig S., Walter S.R., Buchsbaum R.J., Kuperwasser C., Walt D.R. Ultra-Sensitive Protein Detection via Single Molecule Arrays towards Early Stage Cancer Monitoring. Sci. Rep. 2015;5:11034. doi: 10.1038/srep11034.

Source: PubMed

3
Abonnere