Perspectives on immunoglobulins in colostrum and milk

Walter L Hurley, Peter K Theil, Walter L Hurley, Peter K Theil

Abstract

Immunoglobulins form an important component of the immunological activity found in milk and colostrum. They are central to the immunological link that occurs when the mother transfers passive immunity to the offspring. The mechanism of transfer varies among mammalian species. Cattle provide a readily available immune rich colostrum and milk in large quantities, making those secretions important potential sources of immune products that may benefit humans. Immune milk is a term used to describe a range of products of the bovine mammary gland that have been tested against several human diseases. The use of colostrum or milk as a source of immunoglobulins, whether intended for the neonate of the species producing the secretion or for a different species, can be viewed in the context of the types of immunoglobulins in the secretion, the mechanisms by which the immunoglobulins are secreted, and the mechanisms by which the neonate or adult consuming the milk then gains immunological benefit. The stability of immunoglobulins as they undergo processing in the milk, or undergo digestion in the intestine, is an additional consideration for evaluating the value of milk immunoglobulins. This review summarizes the fundamental knowledge of immunoglobulins found in colostrum, milk, and immune milk.

Keywords: immunoglobulins; bovine; colostrum; human; immunity; milk; passive transfer.

Figures

Figure 1
Figure 1
Relative distribution of IgG, IgA and IgM in colostrum (outer circle) and in milk (inner circle) of five species. The relative size of the circles represents the overall concentration of total immunoglobulins found among the species and the concentrations in colostrum vs. milk. Data compiled and calculated from: cow and sheep [1]; human and pig [3]; and horse [117].

References

    1. Butler J.E., Kehrli M.E., Jr. Immunoglobulins and immunocytes in the mammary gland and its secretions. In: Mestecky J., Lamm M., Strober W., Bienenstock J., McGhee J.R., Mayer L., editors. Mucosal Immunology. 3rd. Elsevier Academic Press; Burlington, MA, USA: 2005.
    1. Wheeler T.T., Hodgkinson A.J., Prosser C.G., Davis S.R. Immune components of colostrum and milk-A historical perspective. J. Mammary Gland Biol. Neoplasia. 2007;12:237–247.
    1. Butler J.E. Immunoglobulins of the mammary secretions. In: Larson B.L., Smith V.R., editors. Lactation: A Comprehensive Treatise. Academic Press; New York, NY, USA: 1974.
    1. McClelland D.B.L. Antibodies in milk. J. Reprod. Fertil. 1982;65:537–543.
    1. Butler J.E. Bovine immunoglobulins: An augmented review. Vet. Immunol. Immunopathol. 1983;4:43–152.
    1. Chernishov V.P., Slukvin I.I. Mucosal immunity of the mammary gland and immunology of mother/newborn interrelation. Arch. Immunol. Ther. Exp. (Warsz.) 1990;38:145–164.
    1. Larson B.L. Immunoglobulins of the mammary secretions. In: Fox P.F., editor. Advanced Dairy Chemistry: Proteins. 2nd. Elsevier Applied Science; London, UK: 1992.
    1. Telemo E., Hanson L.A. Antibodies in milk. J. Mammary Gland Biol. Neoplasia. 1996;1:243–249.
    1. Korhonen H., Marnila P., Gill H.S. Milk immunoglobulins and complement factors. Br. J. Nutr. 2000;84 (Suppl. 1):S75–S80.
    1. Hanson L.Å., Silfverdal S.-A., Stromback L., Erling V., Zaman S., Olcen P., Telemo E. The immunological role of breast feeding. Pediatr. Allergy Immunol. 2001;12 (Suppl. 14):S15–S19.
    1. Lilius E.-M., Marnila P. The role of colostral antibodies in prevention of microbial infections. Curr. Opin. Infect. Dis. 2001;14:295–300.
    1. Tizard I. The protective properties of milk and colostrum in non-human species. In: Woodward B., Draper H.H., editors. Advances in Nutritional Research: Immunological Properties of Milk. Kluwer Academic/Plenum Publishers; New York, NY, USA: 2001.
    1. Uruakpa F.O., Ismond M.A.H., Akobundu E.N.T. Colostrum and its benefits: A review. Nutr. Rev. 2002;22:755–767.
    1. Hurley W.L. Immunoglobulins of the mammary secretions. In: Fox P.F., McSweeney P.L.H., editors. Advanced Dairy Chemistry: Proteins. 3rd. Kluwer Academic/Plenum Publishers; New York, NY, USA: 2003.
    1. Van de Perre P. Transfer of antibody via mother’s milk. Vaccine. 2003;21:3374–3376.
    1. Gapper L.W., Copstake D.E.J., Otter D.E., Indyk H.E. Analysis of bovine immunoglobulin G in milk, colostrum and dietary supplements: A review. Anal. Bioanal. Chem. 2007;389:93–109.
    1. Stelwagen K., Carpenter E., Haugh B., Hodgkinson A., Wheeler T.T. Immune components of bovine colostrum and milk. J. Anim. Sci. 2009;87:3–9.
    1. Brandtzaeg P. The mucosal immune system and its integration with the mammary glands. J. Pediatr. 2010;156:S8–S15.
    1. Campbell B., Petersen W.E. Immune milk-A historical survey. Dairy Sci. Abstr. 1963;25:345–358.
    1. Lascelles A.K. A review of the literature on some aspects of immune milk. Dairy Sci. Abstr. 1963;25:359–364.
    1. Korhonen H., Marnila P., Gill H.S. Bovine milk antibodies for health. Br. J. Nutr. 2000;84 (Suppl. 1):S135–S146.
    1. Struff W.G., Sprotte G. ovine colostrum as a biologic in clinical medicine; a review-Part I: Biotechnological standards, pharmacodynamic and pharmacokinetic characteristics and principles of treatment. Int. J. Clin. Pharmacol. Ther. 2997;45:193–202.
    1. Struff W.G., Sprotte G. Bovine colostrum as a biologic in clinical medicine; a review-Part II: Clinical studies. Int. J. Clin. Pharmacol. Ther. 2008;46:211–225.
    1. Alisky J. Bovine and human-derived passive immunization could help slow a future avian influenza pandemic. Med. Hypotheses. 2009;72:74–75.
    1. Levine M.M. Vaccines and milk immunoglobulin concentrates for prevention of infectious diarrhea. J. Pediatr. 1991;118:S129–S136.
    1. Facon M., Skura B.J., Nakai S. Potential for immunological supplementation of foods. Food Agric. Immunol. 1993;5:85–91.
    1. Davidson G.P. Passive protection against diarrhea disease. J. Pediatr. Gastroenterol. Nutr. 1996;23:207–212.
    1. Mestecky J., Russell M.W. Passive and active protection against disorders of the gut. Vet. Q. 1998;20:S83–S87.
    1. Weiner C., Pan Q., Hurtig M., Borén T., Bostwick E., Hammarstom L. Passive immunity against human pathogens using bovine antibodies. Clin. Exp. Immunol. 1999;116:193–205.
    1. Zeitlin L., Cone R.A., Moench T.R., Whaley K.J. Preventing infectious disease with passive immunization. Microbes Infect. 2000;1:701–708.
    1. Zinkernagel R. Maternal antibodies, childhood infections, and autoimmune disease. N. Engl. J. Med. 2001;345:1331–1335.
    1. McFadden T.B., Besser T.E., Barrington G.M. Regulation of immunoglobulin transfer into mammary secretions of ruminants. In: Welch R.A.S., Burns D.J.W., Davis S.R., Popay A.I., Prosser C.G., editors. Milk Composition, Production and Biotechnology. CAB International; New York, NY, USA: 1997. pp. 133–152.
    1. Bernhisel-Broadbent J., Yolken R.H., Sampson H.A. Allergenicity of orally administered preparations in food-allergic children. Pediatrics. 1991;87:208–214.
    1. Colker C.M., Swain M., Lynch L., Gingerich D.A. Effects of a milk-based bioactive micronutrient beverage on pain symptoms and activity of adults with osteoarthritis: A double-blind, placebo-controlled clinical evaluation. Nutrition. 2002;18:388–392.
    1. Gingerich D.A., McPhillips C.A. Analytical approach to determination of safety of milk ingredients from hyperimmunized cows. Regul. Toxicol. Pharmacol. 2005;41:102–112.
    1. Glass R.I., Svennerholm A.-M., Stoll B.J., Khan M.R., Hossain K.M.B., Huq M.I., Holmgren J. Protection against cholera in breast-fed children by antibodies in breast milk. N. Engl. J. Med. 1983;398:1389–1392.
    1. Ruiz-Palacios G.M., Calva J.J., Pickering L.K., Lopez-Vidal Y., Volkow P., Pezzarossi H., West M.S. Protection of breast-fed infants against Campylobacter diarrhea by antibodies in human milk. J. Pediatr. 1990;116:707–713.
    1. Moon H.W., Bunn T.O. Vaccines for preventing enterotoxigenic Escherichia coli infections in farm animals. Vaccine. 1993;11:213–220.
    1. Wilson M.R., Brown P., Svendsen J. Immunity to Escherichia coli in pigs: Antibody secretion by the mammary gland after intramammary or intramuscular vaccination with E. coli vaccine. Can. J. Comp. Med. 1972;36:44–48.
    1. Kortbeek-Jacobs J.M.C., van Kooten P.J.S., van der Donk J.A., van Dijk J.E., Rutten V.P. The effect of oral immunization on the population of lymphocytes migrating to the mammary gland of the sow. Vet. Microbiol. 1984;9:287–299.
    1. Saif L.J., Smith K.L., Landmeier B.J., Bohl E.H., Theil K.W., Todhunter D.A. Immune response of pregnant cows to bovine rotavirus immunization. Am. J. Vet. Res. 1984;45:49–58.
    1. Lanza I., Shoup D.I., Saif L.J. Lactogenic immunity and milk antibody isotypes to transmissible gastroenteritis virus in sows exposed to porcine respiratory coronavirus during pregnancy. Am. J. Vet. Res. 1995;56:739–748.
    1. Parreño V., Béjar C., Vagnozzi A., Barrandeguy M., Costantini V., Craig M.I., Yuan L., Hodgins D., Saif L., Ferñandez F. Modulation by colostrum-acquired maternal antibodies of systemic and mucosal antibody responses to rotavirus in calves experimentally challenged with bovine rotavirus. Vet. Immunol. Immunopathol. 2004;100:7–24.
    1. Parreño V., Marcoppido G., Vega C., Garaicoechea L., Rodriguez D., Saif L., Ferñandez F. Milk supplemented with immune colostrum: Protection against rotavirus diarrhea and modulatory effect on the systemic and mucosal antibody responses in calves experimentally challenged with bovine rotavirus. Vet. Immunol. Immunopathol. 2010;136:12–27.
    1. Snodgrass D.R., Campbell I., Mwenda J.M., Chege G., Suleman M.A., Morein B., Hart C.A. Stimulation of rotavirus IgA, IgG and neutralizing antibodies in baboon milk by parenteral vaccination. Vaccine. 1995;13:408–413.
    1. Shahid N.S., Steinhoff M.C., Roy E., Begum T., Thompson C.M., Siber G.R. Placental and breast transfer of antibodies after maternal immunization with polysaccharide meningococcal vaccine: A randomized, controlled evaluation. Vaccine. 2002;20:2404–2409.
    1. Schaller J.P., Saif L.J., Cordle C.T., Candler E., Jr., Winship T.R., Smith K.L. Prevention of human rotavirus-induced diarrhea in gnotobiotic piglets using bovine antibody. J. Infect. Dis. 1992;165:623–630.
    1. Jenkins M.C., O’Brien C., Trout J., Guidry A., Fayer R. Hyperimmune bovine colostrum specific for recombinant Cryptosporidium parvum antigen confers partial protection against cryptosporidiosis in immunosuppressed adult mice. Vaccine. 1999;17:2453–2460.
    1. Huang X.H., Chen L., Gao W., Zhang W., Chen S.J., Xu L.B., Zhang S.Q. Specific IgG activity of bovine immune milk against diarrhea bacteria and its protective effects on pathogen-infected intestinal damages. Vaccine. 2008;26:5973–5980.
    1. Stolle R.J., Beck L.R. Prevention and treatment of rheumatoid arthritis. 4,732,757,22. U.S. Patent. 1988 Mar
    1. Golay A., Ferrara J.-M., Felber J.-P., Schneider H. Cholesterol-lowering effect of skim milk from immunized cows in hypercholesterolemic patients. Am. J. Clin. Nutr. 1990;52:1014–1019.
    1. Sharpe S.J., Gamble G.D., Sharpe D.N. Cholesterol-lowering and blood pressure effects of immune milk. Am. J. Clin. Nutr. 1994;59:929–934.
    1. Tai Y.S., Liu B.Y., Wang J.T., Sun A., Kwan H.W., Chiang C.P. Oral administration of milk from cows immunized with human intestinal bacteria leads to significant improvements of symptoms and signs in patients with oral submucous fibrosis. J. Oral Pathol. Med. 2001;30:618–625.
    1. Yolken R.H., Losonsky G.A., Vonderfecht S., Leister F., Wee S.-B. Antibody to human rotavirus in cow’s milk. N. Engl. J. Med. 1985;312:605–610.
    1. Li-Chan E., Kummer A., Losso J.N., Nakai S. Survey of immunoglobulin G content and antibody specificity in cow’s milk from British Columbia. Food Agric. Immunol. 1994;6:443–451.
    1. Ebina T., Sato A., Umezu K., Ishida N., Ohyama S., Oizumi A., Aikawa K., Katagiri S., Katsushima N., Imai A., Kitaoka S., Suzuki H., Konno T. Prevention of rotavirus infection by cow colostrum containing antibody against human rotavirus. Lancet. 1983;322:1029–1030.
    1. Ebina T., Sato A., Umezu K., Ishida N., Ohyama S., Oizumi A., Aikawa K., Katagiri S., Katsushima N., Imai A., Kitaoka S., Suzuki H., Konno T. Prevention of rotavirus infection by oral administration of cow colostrum containing antihumanrotavirus antibody. Med. Microbiol. Immunol. 1985;174:177–185.
    1. Hilpert H., Brussow H., Mietens C., Sidoti J., Lerner L., Werchau H. Use of bovine milk concentrate containing antibody to rotavirus to treat rotavirus gastroenteritis in infants. J. Infect. Dis. 1987;156:158–166.
    1. Mitra A.K., Mahalanabis D., Ashraf H., Unicomb L., Eeckels R., Tzipori S. Hyperimmune cow colostrum reduces diarrhoea due to rotavirus: A double-blind, controlled clinical trial. Acta Paediatr. 1995;84:996–1001.
    1. Davidson G.P., Whyte P.B.D., Daniels E., Franklin K., Nunan H., McCloud P.I., Moore A.G., Moore D.J. Passive immunization of children with bovine colostrum containing antibodies to human rotavirus. Lancet. 1989;334:709–712.
    1. Mietens C., Keinhorst H., Hilpert H., Gerber H., Amster H., Pahud J.J. Treatment of infantile E. coli gastroenteritis with specific bovine anti-E. coli milk immunoglobulins. Eur. J. Pediatr. 1979;132:239–252.
    1. Tacket C.O., Binion S.B., Bostwick E., Losonsky G., Roy M.J., Edelman R. Efficacy of bovine milk immunoglobulin concentrate in preventing illness after Shigella flexneri challenge. Am. J. Trop. Med. Hyg. 1992;47:276–283.
    1. Ashraf H., Mahalanabis D., Mitra A.K., Tzipori S., Fuchs G.J. Hyperimmune bovine colostrum in the treatment of shigellosis in children: A double-blind, randomized, controlled tria. Acta Paediatr. 2001;90:1373–1378.
    1. Tacket C.O., Losonsky G., Link H., Hoang Y., Guesry P., Hilpert H., Levine M.M. Protection by milk immunoglobulin concentrate against oral challenge with enterotoxigenic Escherichia coli. N. Engl. J. Med. 1988;318:1240–1243.
    1. Freedman D.J., Tacket C.O., Delehanty A., Maneval D.R., Nataro J., Crabb J.H. Milk immunoglobulin with specific activity against purified colonization factor antigens can protect against oral challenge with enterotoxigenic Escherichia coli. J. Infect. Dis. 1998;177:662–667.
    1. Tacket C.O., Losonsky G., Livio S., Edelman R., Crabb J., Freedman D. Lack of prophylactic efficacy of an enteric-coated bovine hyperimmune milk product against enterotoxigenic Escherichia coli challenge administered during a standard meal. J. Infect. Dis. 1999;180:2056–2059.
    1. Huppertz H.-I., Rutkowski S., Busch D., Eisebit R., Lissner R., Karch H. Bovine colostrum ameliorates diarrhea in infection with diarrheagenic Escherichia coli, Shiga toxin-producing E.coli, and E. coli expressing intimin and hemolysin. J. Pediatr. Gastroenterol. Nutr. 1999;29:452–456. doi: 10.1097/00005176-199910000-00015.
    1. Stephan W., Dichtelmuller H., Lissner R. Antibodies from colostrum in oral immunotherapy. J. Clin. Chem. Clin. Biochem. 1990;28:19–23.
    1. Koga T., Oho T., Shimazaki Y., Nakano Y. Immunization against dental caries. Vaccine. 2002;20:2027–2044.
    1. Michalek S.M., McGhee J.R. Effective immunity to dental caries: Passive transfer to rats of antibodies to Streptococcus mutans elicits protection. Infect. Immun. 1977;17:644–650.
    1. Loimaranta V., Carlén A., Olsson J., Tenovuo J., Syvaoja E.-L., Korhonen H. Concentrated bovine colostral whey proteins from Streptococcus mutans/Strep. sorbinus immunized cows inhibit the adherence of Strep. mutans and promote the aggregation of mutans streptococci. J. Dairy Res. 1998;65:599–607. doi: 10.1017/S0022029998003069.
    1. Loimaranta V., Tenovuo J., Virtanen S., Marnila P., Syvaoja E.-L., Tupasela T., Korhonen H. Generation of bovine immune colostrum against Streptococcus mutans and Streptococcus sobrinus and its effect on glucose uptake and extracellular polysaccharide formation by mutans streptococci. Vaccine. 1997;15:1261–1268. doi: 10.1016/S0264-410X(97)00027-3.
    1. Loimaranta V., Tenovuo J., Korhonen H. Combined inhibitory effect of bovine immune whey and peroxidase-generated hypothiocyanite against glucose uptake by Streptococcus mutans. Oral Microbiol. Immunol. 1998;13:378–381.
    1. Loimaranta V., Laine M., Soderling E., Vasara E., Rokka S., Marnila P., Tossavainen O., Tenovuo J. Effects of bovine immune and non-immune whey preparations on the composition and pH response of human dental plaque. Eur. J. Oral Sci. 1999;107:244–250.
    1. Wei H., Loimaranta V., Tenovuo J., Rokka S., Syvaoja E.-L., Korhonen H., Joutsjoki V., Marnila P. Stability and activity of specific antibodies against Streptococcus mutans and Streptococcus sobrinus in bovine milk fermented with Lactobacillus rhamnosus strain GG or treated at ultra-high temperature. Oral Microbiol. Immunol. 2002;17:9–15.
    1. Filler S.J., Gregory R.L., Michalek S.M., Katz J., McGhee J.R. Effect of immune bovine milk on Streptococcus mutans in human dental plaque. Archs. Oral Biol. 1991;36:41–47.
    1. Oho T., Shimazaki Y., Mitoma M., Yoshimura M., Yamashita Y., Okano K., Nakano Y., Kawagoe H., Fukuyama M., Fujihara N., Koga T. Bovine milk antibodies against cell surface protein antigen PAc-glucosyltransferase fusion protein suppress cell adhesion and alter glucan synthesis of Streptococcus mutans. J. Nutr. 1999;129:1836–1841.
    1. Shimazaki Y., Mitoma M., Oho T., Nakano Y., Yamashita Y., Okano K., Nakano Y., Fukuyama M., Fujihara N., Nada Y., Koga T. Passive immunization with milk produced from an immunized cow prevents oral recolonization by Streptococcus mutans. Clin. Diagn. Lab. Immunol. 2001;8:1136–1139.
    1. Tzipori S., Roberton D., Chapman C. Remission of diarrhoea due to cryptosporidiosis in an immunodeficient child treated with hyperimmune bovine colostrum. Br. Med. J. 1986;293:1276–1277.
    1. Shield J., Melville C., Novelli V., Anderson G., Scheimberg I., Gibb D., Milla P. Bovine colostrum immunoglobulin concentrate for cryptosporidiosis in AIDS. Arch. Dis. Child. 1993;69:451–453.
    1. Hurley W.L. Mammary gland function during involution. J. Dairy Sci. 1989;72:1637–1646.
    1. Guidry A.J., Butler J.E., Pearson R.E., Weiland B. IgA, IgG1, IgG2, IgM and BSA secretion by the bovine mammary gland throughout lactati. Vet. Immunol. Immunopathol. 1980;1:329–341.
    1. Barkema H.W., Green M.J., Bradley A.J., Zadoks R.N. Invited review: The role of contagious disease in udder health. J. Dairy Sci. 2009;92:4717–4729.
    1. Rinaldi M., Li R.W., Capuco A.V. Mastitis associate transcriptomic disruptions in cattle. Vet. Immunol. Immunopathol. 2010;138:267–279.
    1. Colditz I.G., Watson D.L. The immunophysiological basis for vaccinating ruminants against mastitis. Aust. Vet. J. 1985;62:145–153.
    1. Denis M., Wedlock D.N., Lacy-Hulbert S.J., Hillerton J.E., Buddle B.M. Vaccines against bovine mastitis in the New Zealand context: What is the best way forward? N. Z. Vet. J. 2009;57:132–140. doi: 10.1080/00480169.2009.36892.
    1. Erskine R.J., Brockett A.R., Beeching N.D., Hull R.W., Bartlett P.C. Effect of changes in number of doses and anatomic location for administration of an Escherichia coli bacterin on serum IgG1 and IgG2 concentrations in dairy cows. Am. J. Vet. Res. 2010;71:120–124.
    1. Dosogne H., Vangroenweghe F., Burvenich C. Potential mechanism of action of J5 vaccine in protection against bovine coliform mastitis. Vet. Res. 2002;33:1–12.
    1. Mallard B.A., Wagter L.C., Ireland M.J., Dekkers J.C.M. Effects of growth hormone, insulin-like growth factor-I, and cortisol on periparturient antibody response profiles of dairy cattl. Vet. Immunol. Immunopathol. 1997;60:61–76.
    1. Hogan J., Smith K.L. Coliform mastitis. Vet. Res. 2003;34:507–519.
    1. Hogan J.S., Weiss W.P., Smith K.L., Todhunter D.A., Schoenberger P.S., Sordillo L.M. Effects of an Escherichia coli J5 vaccine on mild clinical coliform mastitis. J. Dairy Sci. 1995;78:285–290.
    1. Hogan J.S., Bogacz V.L., Aslam M., Smith K.L. Efficacy of an Escherichia coli J5 bacterin administered to primigravid heifers. J. Dairy Sci. 1999;82:939–943.
    1. Hogan J.S., Cannon V.B., Smith K.L., Rinehart C., Miller S. Effects of adjuvants on safety and efficacy of an Escherichia coli J5 bacterin. J. Dairy Sci. 2005;88:534–542.
    1. Erskine R.J., vanDyk E.J., Bartlett P.C., Burton J.L., Boyle M.C. Effect of hyperimmunization with an Escherichia coli J5 bacterin in adult lactating dairy cows. J. Am. Vet. Med. Assoc. 2007;231:1092–1097.
    1. Wilson D.J., Mallard B.A., Burton J.L., Schukken Y.H., Grohn Y.T. Milk and serum J5-specific antibody responses, milk production change, and clinical effects following intramammary Escherichia coli challenge for J5 vaccinate and control cow. Clin. Vaccine Immunol. 2007;14:693–699.
    1. Wilson D.J., Mallard B.A., Burton J.L., Schukken Y.H., Grohn Y.T. Association of Escherichia coli J5-specific serum antibody responses with clinical mastitis outcome for J5 vaccinate and control dairy cattle. Clin. Vaccine Immunol. 2009;16:209–217.
    1. Prenafeta A., March R., Foix A., Casals I., Costa L. Study of the humoral immunological response after vaccination with a Staphylococcus aureus biofilm-embedded bacterin in dairy cows: Possible role of the exopolysaccharide specific antibody production in the protection from Staphylococcus aureus induced mastitis. Vet. Immunol. Immunopathol. 2010;134:208–217.
    1. Middleton J.R., Luby C.D., Adams D.S. Efficacy of vaccination against staphylococcal mastitis: A review and new data. Vet. Microbiol. 2009;134:192–198.
    1. Boothby J.T., Schore C.E., Jasper D.E., Osburn B.I., Thomas C.B. Immune responses to Mycoplasma bovis vaccination and experimental infection in the bovine mammary gland. Can. J. Vet. Res. 1988;52:355–359.
    1. Chang C.C., Winter A.J., Norcross N.L. Immune response in the bovine mammary gland after intestinal, local, and systemic immunizatio. Infect. Immun. 1981;31:650–659.
    1. Sheldrake R.F., Husband A.J., Watson D.L., Cripps A.W. The effect of intraperitoneal and intramammary immunization of sheep on the numbers of antibody-containing cells in the mammary gland, and antibody titres in blood serum and mammary secretions. Immunology. 1985;56:605–614.
    1. Finch J.M., Hill A.W., Field T.R., Leigh J.A. Local vaccination with killed Streptococcus uberis protects bovine mammary gland against experimental intramammary challenge with the homologous strain. Infect. Immun. 1994;62:3599–3603.
    1. Takemura K., Hogan J.S., Smith K.L. Efficacy of immunization with ferric citrate receptor FecA from Escherichia coli on induced coliform mastitis. J. Dairy Sci. 2002;85:774–781.
    1. Kelly C.P., Pothoulakis C., Vavva F., Castagliuolo I., Bostwick E.F., O’Keane J.C., Keates S., LaMont J.T. Anti-Clostridium difficile bovine immunoglobulin concentrate inhibits cytotoxicity and enterotoxicity of C. difficile toxins. Antimicrob. Agents Chemother. 1996;40:373–379.
    1. Brüssow H., Hilpert H., Walther I., Sidoti J., Mietens C., Bachman P. Bovine milk immunoglobulins for passive immunity to infantile rotavirus gastroenteritis. J. Clin. Microbiol. 1987;25:982–986.
    1. Hodgkinson A.J., Cannon R.D., Holmes A.R., Fischer F.J., Willix-Payne D.J. Production from dairy cows of semi-industrial quantities of milk-protein concentrate (MPC) containing efficacious anti-Candida albicans IgA antibodies. J. Dairy Res. 2007;74:269–275.
    1. Beck L.R. Method for treating inflammation using bovine milk. 4,284,623,18. U.S. Patent. 1981 Aug
    1. Dorosko S.M., Ayres S.L., Connor R.L. Induction of HIV-1 MPR649-684-specific IgA and IgG antibodies in caprine colostrum using a peptide-based vaccine. Vaccine. 2008;26:5416–5422.
    1. Shkreta L., Talbot B.G., Diarra M.S., Lacasse P. Immune responses to a DNA/protein vaccination strategy against Staphylococcus aureus induced mastitis in dairy cows. Vaccine. 2004;23:114–126.
    1. Castagliuolo I., Piccinini R., Beggiao E., Palu G., Mengoli C., Ditadi F., Vicenzoni G., Zecconi A. Mucosal genetic immunization against four adhesions protects against Staphylococcus aureus-induced mastitis in mice. Vaccine. 2006;24:4393–4402.
    1. O’Brien C.N., Guidry A.J., Douglass L.W., Westhoff D.C. Immunization with Staphylococcus aureus lysate incorporated into microspheres. J. Dairy Sci. 2001;84:1791–1799.
    1. Liu G.L., Wang J.Q., Bu D.P., Cheng J.B., Zhang C.G., Wei H.Y., Zhou L.Y., Liu K.L., Dong X.L. Specific immune milk production of cows implanted with antigen-release devices. J. Dairy Sci. 2009;92:100–108.
    1. Toledo J.R., Sanchez O., Montesino R., Farnos O., Rodriguez M.P., Alfonso P., Oramas N., Rodriguez E., Santana E., Vega E., Ganges L., Frias M.T., Cremata J., Barrera M. Highly protective E2-CSFV vaccine candidate produced in the mammary gland of adenoviral transduced goats. J. Biotechnol. 2008;133:370–376.
    1. Mix E., Goertsches R., Zettl U.K. Immunoglobulins-basic considerations. J. Neurol. 2006;253:9–17.
    1. Woof J.M. The structure of IgA. In: Kaetzel C.S., editor. Mucosal Immune Defense: Immunoglobulin A. Springer; New York, NY, USA: 2007.
    1. Johansen F.E., Braathen R., Brandtzaeg P. Role of J chain in secretory immunoglobulin formation. Scand. J. Immunol. 2000;52:240–248.
    1. Rouse B.T., Ingram D.G. The total protein and immunoglobulin profile of equine colostrum and milk. Immunology. 1970;19:901–907.
    1. Lascelles A.K. The immune system of the ruminant mammary gland and its role in the control of mastitis. J. Dairy Sci. 1979;62:154–160.
    1. Hunziker W., Kraehenbuhl J.-P. Epithelial transcytosis of immunoglobulins. J. Mammary Gland Biol. Neoplasia. 1998;3:287–302.
    1. Cianga P., Medesan C., Richardson J.A., Ghetie V., Ward E.S. Identification and function of neonatal Fc receptor in mammary gland of lactating mice. Eur. J. Immunol. 1999;29:2515–2523.
    1. He W., Ladinsky M.S., Huey-Tubman K.E., Jensen G.J., McIntosh R., Bjorkman P.J. FcRn-mediated antibody transport across epithelial cells revealed by electron tomography. Nature. 2008;455:542–546.
    1. Cervenak J., Kacskovics I. The neonatal Fc receptor plays a crucial role in the metabolism of IgG in livestock animals. Vet. Immunol. Immunopathol. 2009;128:171–177.
    1. Rodewald R., Kraehenbuhl J.P. Receptor-mediated transport of IgG. J. Cell Biol. 1984;99:159s–164s.
    1. Simister N.E., Rees A.R. Isolation and characterization of an Fc receptor from neonatal rat small intestine. Eur. J. Immunol. 1985;15:733–738.
    1. Simister N.E., Story C.M. Human placental Fc receptors and the transmission of antibodies from mother to fetus. J. Reprod. Immunol. 1997;37:1–23.
    1. Simister N.E. Placental transport of immunoglobulin G. Vaccine. 2003;21:3365–3369.
    1. Pentsuk N., van der Laan J.W. An interspecies comparison of placental antibody transfer: New insights into developmental toxicity testing of monoclonal antibodies. Birth Defects Res. B Dev. Reprod. Toxicol. 2009;86:328–344.
    1. Fuchs R., Ellinger I. Endocytic and transcytotic processes in villus syncytiotrophoblast: Role in nutrient transport to the human fetus. Traffic. 2004;5:725–738.
    1. Simister N.E., Mostov K.E. An Fc receptor structurally related to MHC class I antigens. Nature (Lond.) 1989;337:184–187. doi: 10.1038/337184a0.
    1. Junghans R.P., Anderson C.L. The protection receptor for IgG catabolism is the β2-microglobulin-containing neonatal intestinal transport receptor. Proc. Natl. Acad. Sci. USA. 1996;93:5512–5516.
    1. Junghans R.P. Finally! The Brambell receptor (FcRB) Immunol. Res. 1997;16:29–57.
    1. Telleman P., Junghans R.P. The role of the Brambell receptor (FcRB) in liver: Protection of endocytosed immunoglobulin G (IgG) from catabolism in hepatocytes rather than transport of IgG to bile. Immunology. 2000;100:245–251.
    1. Bender B., Bodrogi L., Mayer B., Schneider Z., Zhao Y., Hammarstrom L., Eggen I., Bosze Z. Position independent and copy-number-related expression of the neonatal Fc receptor α-chain in transgenic mice carrying a 102 kb genomic fragment. Transgenic Res. 2007;16:613–627.
    1. Lu W., Zhao Z., Zhao Y., Yu S., Zhao Y., Fan B., Kasckovics I., Hammarstrom L., Li N. Over-expression of the bovine FcRn in the mammary gland results in increased IgG levels in both milk and serum of transgenic mice. Immunology. 2007;122:401–408.
    1. Cervenak J., Bender B., Schneider Z., Magna M., Carstea B.V., Liliom K., Erdei A., Bosze Z., Kacskovics I. Neonatal FcR overexpression boosts humoral immune responses in transgenic mice. J. Immunol. 2010;186:959–968.
    1. Mayer B., Zolnai A., Frenyo L.V., Jancsik V., Szentirmay Z., Hammarstrom L., Kasckovics I. Redistribution of the sheep neonatal Fc receptor in the mammary gland around the time of parturition in ewes and its localization in the small intestine of neonatal lambs. Immunology. 2002;107:288–296.
    1. Mayer B., Zolnai A., Frenyo L.V., Jancsik V., Szentirmay Z., Hammarstrom L., Kasckovics I. Localization of the sheep FcRn in the mammary gland. Vet. Immunol. Immunopathol. 2002;87:327–330.
    1. Mayer B., Doleschall M., Bender B., Bartyik J., Bosze Z., Frenyo L.V., Kacskovics I. Expression of the neonatal Fc receptor (FcRn) in the bovine mammary gland. J. Dairy Sci. 2005;72:107–112.
    1. Sayed-Ahmed A., Kassab M., Abd-Elmaksoud A., Elnasharty M., El-Kirdasy A. Expression and immunohistochemical localization of the neonatal Fc receptor (FcRn) in the mammary gland of the Egyptian water buffalo. Acta Histochem. 2010;112:383–391.
    1. Zou S., Hurley W.L., Hegarty H.M., Larson B.L., Nelson D.R. Immunohistological localization of IgG1, IgA and secretory component in the bovine mammary gland during involution. Cell Tissue Res. 1988;251:81–86.
    1. Laegreid W.W., Heaton M.P., Keen J.E., Grosse W.M., Chitko-McKnown C.G., Smith T.P.L., Keele J.W., Bennett G.J., Besser T.E. Association of bovine neonatal Fc receptor α-chain gene (FCGRT) haplotypes with serum IgG concentration in newborn calves. Mamm. Genome. 2002;13:704–710.
    1. Zhang R., Zhao Z., Zhao Y., Kacskovics I., van der Eijk M., de Groot N. Association of FcRn heavy chain encoding gene (FCGRT) polymorphisms with IgG content in bovine colostrum. Anim. Biotechnol. 2009;20:242–246.
    1. Clawson M.L., Heaton M.P., Chitko-McKnown C.G., Fox J.M., Smith T.P.L., Snelling W.M., Keele J.W., Laegreid W.W. Beta-2-microglobulin haplotypes in U.S. beef cattle and association with failure of passive transfer in newborn calves. Mamm. Genome. 2004;15:228–236.
    1. Baumrucker C.R., Burkett A.M., Magliaro-Macrina A.L., Dechow C.D. Colostrogenesis: Mass transfer of immunoglobulin G1 into colostrum. J. Dairy Sci. 2010;93:3031–3038.
    1. Sasaki M., Davis C.L., Larson B.L. Production and turnover of IgG1 and IgG2 immunoglobulins in the bovine around parturition. J. Dairy Sci. 1976;59:2046–2055.
    1. Ishikawa H., Kanamori Y., Hamada H., Kiyono H. Development and function of organized gut-associated lymphoid tissues. In: Mestecky J., Lamm M., Strober W., Bienenstock J., McGhee J.R., Mayer L., editors. Mucosal Immunology,3rd ed. Elsevier Academic Press; Burlington, MA, USA: 2005.
    1. Spenser J., Boursier L., Edgeworth J.D. IgA plasma cell developmen. In: Kaetzel C.S., editor. Mucosal Immune Defense: Immunoglobulin A. Springer; New York, NY, USA: 2007. pp. 25–42.
    1. Brandtzaeg P. Mucosal immunity: Integration between mother and the breast-fed infant. Vaccine. 2003;21:3382–3388.
    1. Mostov K., Kaetzel C.S. Immunoglobulin transport and the polymeric immunoglobulin receptor. In: Ogra P.L., Mestecky J., Lamm M.E., Strober W., Bienenstock J., McGhee J.R., editors. Mucosal Immunology. 2nd. Academic Press; New York, NY, USA: 1999. pp. 181–211.
    1. Kaetzel C.S., Bruno M.E.C. Epithelial transport of IgA by the polymeric immunoglobulin receptor. In: Kaetzel C.S., editor. Mucosal Immune Defense: Immunoglobulin A. Springer; New York, NY, USA: 2007. pp. 43–89.
    1. Johansen F.E., Braathen R., Brandtzaeg P. The J chain is essential for polymeric Ig receptor-mediated epithelial transport of IgA. J. Immunol. 2001;167:5185–5192.
    1. Braathen R., Hohman V.S., Brandtzaeg P., Johansen F.E. Secretory antibody formation: Conserved binding interactions between J chain and polymeric Ig receptor from humans and amphibians. J. Immunol. 2007;178:1589–1597.
    1. Rincheval-Arnold A., Belair J., Djiane J. Developmental expression of pIgR gene in sheep mammary gland and hormonal regulation. J. Dairy Res. 2002;69:13–26.
    1. Blum J.W. Nutritional physiology of neonatal calves. J. Anim. Physiol. Anim. Nutr. 2006;90:1–11.
    1. Staley T.E., Bush L.J. Receptor mechanisms of the neonatal intestine and their relationship to immunoglobulin absorption and disease. J. Dairy Sci. 1985;68:184–205.
    1. Godden S. Colostrum management for dairy calves. Vet. Clin. Food Anim. 2008;24:19–39.
    1. Husband A.J., Brandon M.R., Lascelles A.K. Absorption and endogenous production of immunoglobulins in calves. Aust. J. Exp. Biol. Med. Sci. 1972;50:491–498.
    1. Brandtzaeg P., Johansen F.E. IgA and intestinal homeostasis. In: Kaetzel C.S., editor. Mucosal Immune Defense: Immunoglobulin A. Springer; New York, NY, USA: 2007. pp. 221–268.
    1. Russell M.W. Biological functions of IgA. In: Kaetzel C.S., editor. Mucosal Immune Defense: Immunoglobulin A. Springer; New York, NY, USA: 2007. pp. 144–172.
    1. Hanson L.A., Korotkova M., Telemo E. Human milk: Its components and their immunobiologic functions. In: Mestecky J., Bienenstock J., Lamm M.E., Mayer L., McGhee J.R., Strober W., editors. Mucosal Immunology. 3rd. Elsevier Academic Press; Amsterdam, The Netherlands: 2005. pp. 1795–1827.
    1. Sait L.C., Galic M., Price J.D., Simpfendorfer K.R., Diavatopoulos D.A., Uren T.K., Wijburg O.L.C., Strugnell R.A. Secretory antibodies reduce systemic antibody responses against the gastrointestinal commensal flora. Int. Immunol. 2007;19:257–265.
    1. Barrington G.M., Parish S.M. Bovine neonatal immunology. Vet. Clin. North Am. Food Anim. Pract. 2001;17:463–475.
    1. Gill H. Dairy products and the immune function in the elderly. In: Mattila-Sandholm T., Saarela M., editors. Functional Dairy Products. CRC Press; New York, NY, USA: 2003. pp. 133–168.
    1. Lonnerdal B. Nutritional and physiological significance of human milk proteins. Am. J. Clin. Nutr. 2003;77:1537S–1543S.
    1. Pakkanen R., Aalto J. Growth factors and antimicrobial factors of bovine colostrum. Int. Dairy J. 1997;7:285–297.
    1. Playford R.J., Macdonald C.E., Johnson W.S. Colostrum and milk-derived peptide growth factors for the treatment of gastrointestinal disorders. Am. J. Clin. Nutr. 2000;72:5–14.
    1. Newburg D.S., Walker W.A. Protection of the neonate by the innate immune system of developing gut and of human milk. Pediatr. Res. 2007;61:2–8.
    1. Mehta R., Petrova A. Biologically active breast milk proteins in association with very preterm delivery and stage of lactation. J. Perinatol. 2010;31:58–62.
    1. Siccardi D., Turner J.R., Mrsny R.J. Regulation of intestinal epithelial function: A link between opportunities for macromolecular drug delivery and inflammatory bowel disease. Adv. Drug Deliv. Rev. 2005;57:219–235.
    1. Bikker P., Kranendonk G., Gerritsen R., Russell L., Campbell J., Crenshaw J., Rodriguez C., Rodenas J., Polo J. Absorption of orally supplied immunoglobulins in neonatal piglets. Livest. Sci. 2010;134:139–142.
    1. Weiner M.L. Intestinal transport of some macromolecules in food. Food Chem. Toxicol. 1988;26:867–880.
    1. Hardin J.A., Kimm M.H., Wirasinghe M., Gall D.G. Macromolecular transport across the rabbit proximal and distal colon. Gut. 1999;44:218–225.
    1. Davids B.J., Palm J.E.D., Housley M.P., Smith J.R., Anderson Y.S., Martin M.G., Hendrickson B.A., Johansen F.-E., Svard S.G., Gillin F.D., Eckmann L. Polymeric immunoglobulin receptor in intestinal immune defense against the lumen-dwelling protozoan parasite Giardia. J. Immunol. 2006;177:6281–6290.
    1. Fernandez M.I., Pedron T., Tournebize R., Olivo-Marin J.-C., Sansonetti P.J., Phalipon A. Anti-inflammatory role for intracellular dimeric immunoglobulin A by neutralization of lipopolysaccharide in epithelial cells. Immunity. 2003;18:739–749.
    1. Israel E.J., Taylor S., Wu Z., Mizoguchi E., Blumberg R.S., Bhan A., Simister E. Expression of the neonatal Fc receptor, FcRn, on human intestinal epithelial cell. Immunology. 1997;92:69–74.
    1. Dickinson B.L., Badizadegan K., Wu Z., Ahouse J.C., Zhu X., Simister N.E., Blumberg R.S., Lencer W.I. Bidirectional FcRn-dependent IgG transport in a polarized human intestinal epithelial cell line. J. Clin. Invest. 1999;104:903–911.
    1. Rojas R., Apodaca G. Immunoglobulin transport across polarized epithelia cells. Nat. Rev. Mol. Cell Biol. 2002;3:1–12.
    1. Yoshida M., Claypool S.M., Wagner J.S., Mizoguchi E., Mizoguchi A., Roopenian D.C., Lencer W.I., Blumberg R.S. Human neonatal Fc receptor mediates transport of IgG into luminal secretions for delivery of antigens to mucosal dendritic cells. Immunity. 2004;20:769–783.
    1. Guarner F., Malagelada J.-R. Gut flora in health and disease. Lancet. 2003;361:512–519.
    1. Kobayashi K., Blaser M.J., Brown W.R. Identification of a unique IgG Fc binding site in human intestinal epithelium. J. Immunol. 1989;143:2567–2574.
    1. Harada N., Iijima S., Kobayashi K., Yoshida T., Brown W.R., Hibi T., Oshima A., Morikawa M. Human IgGFc binding protein (FcγBP) in colonic epithelial cells exhibits mucin-like structure. J. Biol. Chem. 1997;272:15232–15241.
    1. Kobayashi K., Ogata H., Morikawa M., Iijima S., Harada N., Yoshida T., Brown W.R., Inoue N., Hamada Y., Ishii H., Watanabe M., Hibi T. Distribution and partial characterization of IgG Fc binding protein in various mucin producing cells and body fluids. Gut. 2002;51:169–176.
    1. Siegrist C.-A. Mechanisms by which maternal antibodies influence infant vaccine responses: Review of hypotheses and definition of main determinants. Vaccine. 2003;21:3406–3412.
    1. Milstein C.P., Feinstein A. Comparative studies of two types of bovine immunoglobulin G heavy chains. Biochem. J. 1968;107:559–564.
    1. Porto A.C.R.C., Oliveira L.L., Ferraz L.C., Ferraz L.E.S., Thomaz S.M.O., Rosa J.C., Roque-Barreira M.C. Isolation of bovine immunoglobulins resistant to peptic digestion: New perspectives in the prevention of failure in passive immunization of neonatal calves. J. Dairy Sci. 2007;90:955–962.
    1. Zettlitz K.A. Protein A/G chromatography. In: Kontermann R., Dübel S., editors. Antibody Engineering. Springer-Verlag; Berlin, Germany: 2010.
    1. Darcy E., Leonard P., Fitzgerald J., Danaher M., O’Kennedy R. Purification of antibodies using affinity chromatography. Methods Mol. Biol. 2011;681:369–382.
    1. Ma Z., Lan Z., Matsuura T., Ramakrishna S. Electrospun polyethersulfone affinity membrane: Membrane preparation and performance evaluation. J. Chromatogr. B. 2009;877:3686–3694.
    1. Kaneko T., Wu B.T., Nakai S. Selective concentration of bovine immunoglobulins and α-lactalbumin from acid whey using FeCl3. J. Food Sci. 1985;50:1531–1536.
    1. Al-Mashikhi S.A., Nakai S. Separation of immunoglobulin and transferring from blood serum and plasma by metal chelate interaction chromatography. J. Dairy Sci. 1988;71:1756–1763.
    1. Carrillo-Conde B., Garza A., Anderegg J., Narasimhan B. Protein adsorption on biodegradable polyanhydride microparticles. J. Biomed. Mater. Res. 2010;95A:40–48.
    1. Mancini G., Carbonara A.O., Heremans J.F. Immunochemical quantification of antigens by single radial immunodiffusion. Immunochemistry. 1965;2:235–254.
    1. Kummer A., Kitts D.D., Li-Chan E., Losso J.N., Skura B.J., Nakai S. Quantification of bovine IgG in milk using enzyme-linked immunosorbant assay. Food Agric. Immunol. 1992;4:93–102.
    1. Ma L., Wang C., Hong Y., Zhang M., Su M. Thermally addressed immunosorbent assay for multiplexed protein detections using phase change nanoparticles. Anal. Chem. 2010;82:1186–1190.
    1. Crosson C., Thomas D., Rossi C. Quantification of immunoglobulin G in bovine and caprine milk using a surface plasmon resonance-based immunosensor. J. Agric. Food Chem. 2010;58:3259–3264.
    1. Nisonoff A., Wissler F.C., Lipman L.N., Woernley D.L. Separation of univalent fragments from the bivalent rabbit antibody molecule by reduction of disulfide bonds. Arch. Biochem. Biophys. 1960;89:230–244.
    1. Fang W.D., Mukkur T.K.S. Physicochemical characteristics of proteolytic cleavage fragments of bovine colostral immunoglobulin G1 (IgG1) Biochem. J. 1976;155:25–30.
    1. Carter P.J. Potent antibody therapeutics by design. Nat. Rev. Immunol. 2006;6:343–357.
    1. Brock J.H., Arzabe F.A., Pineiro A., Olivito A.-M. The effect of trypsin and chymotrypsin on the bactericidal antibody activity of bovine colostrum. Immunology. 1977;32:207–213.
    1. De Rham O., Isliker H. Proteolysis of bovine immunoglobulins. Int. Arch. Allergy Appl. Immunol. 1977;55:61–69.
    1. Yvon M., Levieux D., Valluv M.-C., Pelissier J.-P., Mirand P.P. Colostrum protein digestion in newborn lambs. J. Nutr. 1993;123:586–596.
    1. Roos N., Mahe S., Benamouzig R., Sick H., Rautureau J., Tome D. 15N-labeled immunoglobulins from bovine colostrum are partially resistant to digestion in human intestine. J. Nutr. 1995;125:1238–1244.
    1. Mahe S., Huneau J.-F., Marteau P., Thuille F., Tome D. Gastroileal nitrogen and electrolyte movements after bovine milk ingestion in humans. Am. J. Clin. Nutr. 1992;56:410–416.
    1. Kelly C.P., Chetham S., Keates S., Bostwick E.F., Roush A.M., Castagliuolo I., LaMont J.T., Pothoulakis C. Survival of anti-Colostridium difficile bovine immunoglobulin concentrate in the human gastrointestinal tract. Antimicrob. Agents Chemother. 1997;41:236–241.
    1. Warny M., Fatimi A., Bostwick E.F., Laine D.C., Lebei F., LaMont J.T., Pothoulakis C., Kelly C.P. Bovine immunoglobulin concentrate-Colostridium difficile retains C. difficile toxin neutralizing activity after passage through the human stomach and small intestine. Gut. 1999;44:212–217. doi: 10.1136/gut.44.2.212.
    1. Hurley W.L. Mammary function during the nonlactating period: Enzyme, lactose, protein concentrations, and pH of mammary secretions. J. Dairy Sci. 1987;70:20–28. doi: 10.3168/jds.S0022-0302(87)79976-7.
    1. Shimizu M., Nagashima H., Hasimoto K. Comparative studies in molecular stability of immunoglobulin G from different species. Comp. Biochem. Physiol. B. 1993;106:255–261.
    1. Chen C.-C., Chang H.-M. Effect of thermal protectants on the stability of bovine milk immunoglobulin G. J. Agric. Food Chem. 1998;46:3570–3576.
    1. Dominguez E., Perez M.D., Puyol P., Sanchez L., Calvo M. Effect of pH on antigen-binding activity of IgG from bovine colostrum upon heating. J. Dairy Res. 2001;68:511–518.
    1. Gao W., Chen L., Xu L.B., Huang X.H. Specific activity against diarrheagenic bacteria in bovine immune milk and effect of pH on its antigen-binding activity upon heating. J. Dairy Res. 2010;77:220–224.
    1. Chen C.-C., Tu Y.-Y., Chang H.-M. Efficiency and protective effect of encapsulation of milk immunoglobulin G in multiple emulsion. J. Agric. Food Chem. 1999;47:407–410.
    1. Calmettes P., Cser L., Rajnavolgy E. Temperature and pH dependence of immunoglobulin G conformation. Arch. Biochem. Biophys. 1991;291:277–283.
    1. Dominguez E., Perez M.D., Calvo M. Effect of heat treatment on the antigen-binding activity of anti-peroxidase immunoglobulins in bovine colostrum. J. Dairy Sci. 1997;80:3182–3187.
    1. Mainer G., Sanchez L., Ena J.M., Calvo M. Kinetic and thermodynamic parameters for heat denaturation of bovine milk IgG, IgA and IgM. J. Food Sci. 1997;62:1034–1038.
    1. Chen C.-C., Tu Y.-Y., Chang H.-M. Thermal stability of bovine milk immunoglobulin G (IgG) and the effect of added thermal protectants on the stability. J. Food Sci. 2000;65:188–193.
    1. Li-Chan E., Kummer A., Loso J.N., Kitts D.D., Nakai S. Stability of bovine immunoglobulins to thermal treatment and processing. Food Res. Int. 1995;28:9–16.
    1. Mainer G., Dominguez E., Randrup M., Sanchez L., Calvo M. Effect of heat treatment on anti-rotavirus activity of bovine colostrum. J. Dairy Res. 1999;66:131–137.
    1. Chantry C.J., Israel-Ballard K., Moldoveanu Z., Peerson J.M., Coutsoudis A., Sibeko L., Abrams B. Effect of flash-heat treatment on immunoglobulins in breastmilk. J. Acquir. Immune Defic. Syndr. 2009;51:264–267.
    1. Chantry C.J., Wiedeman J., Buehring G., Peerson J.M., Hayton K., K’Aluoch O., Lonnerdal B., Israel-Ballard K., Coutsoudis A., Abrams B. Effect of flash-heat treatment on antimicrobial activity of breastmilk. Breastfeed. Med. 2010
    1. Evrendilek G.A., Li S., Dantzer W.R., Zhang Q.-H. Pulsed electric field processing of beer: Microbial, sensory, and quality analyse. J. Food Sci. 2004;69:M228–M232.
    1. Li S.-Q., Zhang Q.-H. Inactivation of E. coli 8739 in enriched soymilk using pulsed electric fields. J. Food Sci. 2004;69:M169–M174.
    1. Yang R.-J., Li S.-Q., Zhang Q.-H. Effects of pulsed electric fields on the activity of enzymes in aqueous solution. J. Food Sci. 2004;69:FCT241–FCT248.
    1. Li S.-Q., Zhang Q.-H., Lee Y.-Z., Pham T.-V. Effects of pulsed electric fields and thermal processing on the stability of bovine immunoglobulin G (IgG) in enriched soymilk. J. Food Sci. 2003;68:1201–1207.
    1. Li S.-Q., Bomser J.A., Zhang Q.-H. Effects of pulsed electric fields and heat treatment on stability and secondary structure of bovine immunoglobulin G. J. Agric. Food Chem. 2005;53:663–670.
    1. Krishnamurthy K., Demirci A., Irudayaraj J.M. Inactivation of Staphylococcus aureus in milk using flow-through pulsed UV-light treatment system. J. Food Sci. 2007;72:M233–M239.
    1. Balasubramaniam V.M., Ting E.Y., Stewart C.M., Robbins J.A. Recommended laboratory practices for conducting high-pressure microbial inactivation experiments. Innov. Food Sci. Emerg. Technol. 2004;5:299–306.
    1. Li S.-Q., Zhang Q.-H., Balasubramaniam V.M., Lee Y.-Z., Bomser J.A., Schwartz S.J., Dunne C.P. Comparison of effects of high-pressure processing and heat treatment on immunoactivity of bovine milk immunoglobulin G in enriched soymilk under equivalent microbial inactivation levels. J. Agric. Food Chem. 2006;54:739–746.
    1. Balasubramaniam S., Balasubramaniam V.M. Compression heating influence of pressure transmitting fluids on bacteria inactivation during high pressure processing. Food Res. Int. 2003;36:661–668.
    1. Trujillo A.J., Castro N., Quevedo J.M., Arguello A., Capote J., Guamis B. Effect of heat and high-pressure treatments on microbiological quality and immunoglobulin G stability of caprine colostrum. J. Dairy Sci. 2007;90:833–839.
    1. Permanyer M., Castellote C., Ramirez-Santana C., Audi C., Pérez-Cano F.J., Castell M., Lopez-Sabater M.C., Franch A. Maintenance of breast milk immunoglobulin A after high-pressure processing. J. Dairy Sci. 2009;93:877–883.
    1. McMartin S., Godden S., Metzger L., Feirtag J., Bey R., Stabel J., Goyal S., Fetrow J., Wells S., Chester-Jones H. Heat treatment of bovine colostrum. I: Effects of temperature on viscosity and immunoglobulin G level. J. Dairy Sci. 2006;89:2110–2118. doi: 10.3168/jds.S0022-0302(06)72281-0.
    1. Godden S.M., Smith S., Feirtag J.M., Green L.R., Wells S.J., Fetrow J.P. Effect of on-farm commercial batch pasteurization of colostrum on colostrum and serum immunoglobulin concentrations in dairy calves. J. Dairy Sci. 2003;86:1503–1512.
    1. Elizondo-Salazar J.A., Jayarao B.M., Heinrichs A.J. Effect of heat treatment of bovine colostrum on bacterial counts, viscosity, and immunoglobulin G concentratio. J. Dairy Sci. 2010;93:961–967.
    1. Godden S., McMartin S., Feirtag J., Stabel J., Bey R., Goyal S., Metzger L., Fetrow J., Wells S., Chester-Jones H. Heat-treatment of bovine colostrum. II: Effects of heating duration on pathogen viability and immunoglobulin G. J. Dairy Sci. 2006;89:3476–3483.
    1. Johnson J.L., Godden S.M., Molitor T., Ames T., Hagman D. Effects of feeding heat-treated colostrum on passive transfer of immune and nutritional parameters in neonatal dairy calves. J. Dairy Sci. 2007;90:5189–5198.
    1. Elizondo-Salazar J.A., Heinrichs A.J. Feeding heat-treated colostrum or unheated colostrum with two different bacterial concentrations to neonatal dairy calves. J. Dairy Sci. 2009;92:4565–4571.
    1. Elizondo-Salazar J.A., Heinrichs A.J. Feeding heat-treated colostrum to neonatal dairy heifers: Effects on growth characteristics and blood parameters. J. Dairy Sci. 2009;92:3265–3273.

Source: PubMed

3
Abonnere