Preventing diabetes in obese Latino youth with prediabetes: a study protocol for a randomized controlled trial

Erica G Soltero, Yolanda P Konopken, Micah L Olson, Colleen S Keller, Felipe G Castro, Allison N Williams, Donald L Patrick, Stephanie Ayers, Houchun H Hu, Matthew Sandoval, Janiel Pimentel, William C Knowler, Kevin D Frick, Gabriel Q Shaibi, Erica G Soltero, Yolanda P Konopken, Micah L Olson, Colleen S Keller, Felipe G Castro, Allison N Williams, Donald L Patrick, Stephanie Ayers, Houchun H Hu, Matthew Sandoval, Janiel Pimentel, William C Knowler, Kevin D Frick, Gabriel Q Shaibi

Abstract

Background: Obese Latino adolescents are disproportionately impacted by insulin resistance and type 2 diabetes. Prediabetes is an intermediate stage in the pathogenesis of type 2 diabetes and represents a critical opportunity for intervention. However, to date, no diabetes prevention studies have been conducted in obese Latino youth with prediabetes, a highly vulnerable and underserved group. Therefore, we propose a randomized-controlled trial to test the short-term (6-month) and long-term (12-month) efficacy of a culturally-grounded, lifestyle intervention, as compared to usual care, for improving glucose tolerance and reducing diabetes risk in 120 obese Latino adolescents with prediabetes.

Methods: Participants will be randomized to a lifestyle intervention or usual care group. Participants in the intervention group will attend weekly nutrition and wellness sessions and physical activity sessions twice a week for six months, followed by three months of booster sessions. The overall approach of the intervention is framed within a multilevel Ecodevelopmental model that leverages community, family, peer, and individual factors during the critical transition period of adolescence. The intervention is also guided by Social Cognitive Theory and employs key behavioral modification strategies to enhance self-efficacy and foster social support for making and sustaining healthy behavior changes. We will test intervention effects on quality of life, explore the potential mediating effects of changes in body composition, total, regional, and organ fat on improving glucose tolerance and increasing insulin sensitivity, and estimate the initial incremental cost effectiveness of the intervention as compared with usual care for improving glucose tolerance.

Discussion: The proposed trial builds upon extant collaborations of a transdisciplinary team of investigators working in concert with local community agencies to address critical gaps in how diabetes prevention interventions for obese Latino youth are developed, implemented and evaluated. This innovative approach is an essential step in the development of scalable, cost-effective, solution oriented programs to prevent type 2 diabetes in this and other populations of high-risk youth.

Trial registration: NCT02615353, registered on June 8, 2016.

Keywords: Adolescents; Diabetes prevention; Disparities; Intervention; Latino; Obesity.

Figures

Fig. 1
Fig. 1
Expanded Ecodevelopmental Model
Fig. 2
Fig. 2
Study Design

References

    1. Huang TT, Goran MI. Prevention of type 2 diabetes in young people: a theoretical perspective. Pediatr Diabetes. 2003;4(1):38–56. doi: 10.1034/j.1399-5448.2003.00022.x.
    1. Ogden CL, et al. Prevalence of high body mass index in US children and adolescents, 2007-2008. JAMA. 2010;303(3):242–9. doi: 10.1001/jama.2009.2012.
    1. Pettitt DJ, et al. Prevalence of diabetes in U.S. youth in 2009: the SEARCH for diabetes in youth study. Diabetes Care. 2014;37(2):402–8. doi: 10.2337/dc13-1838.
    1. Menke A, Casagrande S, Cowie CC. Prevalence of diabetes in adolescents aged 12 to 19 years in the United States, 2005-2014. JAMA. 2016;316(3):344–5. doi: 10.1001/jama.2016.8544.
    1. Lawrence JM, et al. Diabetes in Hispanic American youth: prevalence, incidence, demographics, and clinical characteristics: the SEARCH for diabetes in youth study. Diabetes Care. 2009;32(Suppl 2):S123–32. doi: 10.2337/dc09-S204.
    1. Narayan KM, et al. Lifetime risk for diabetes mellitus in the United States. JAMA. 2003;290(14):1884–90. doi: 10.1001/jama.290.14.1884.
    1. Goran MI, et al. Insulin resistance and associated compensatory responses in african-american and Hispanic children. Diabetes Care. 2002;25(12):2184–90. doi: 10.2337/diacare.25.12.2184.
    1. Lee JM, et al. Prevalence and determinants of insulin resistance among U.S. adolescents: a population-based study. Diabetes Care. 2006;29(11):2427–32. doi: 10.2337/dc06-0709.
    1. Goran MI, Ball GD, Cruz ML. Obesity and risk of type 2 diabetes and cardiovascular disease in children and adolescents. J Clin Endocrinol Metab. 2003;88(4):1417–27. doi: 10.1210/jc.2002-021442.
    1. Goran MI, Gower BA. Longitudinal study on pubertal insulin resistance. Diabetes. 2001;50(11):2444–50. doi: 10.2337/diabetes.50.11.2444.
    1. Weiss R, et al. Predictors of changes in glucose tolerance status in obese youth. Diabetes Care. 2005;28(4):902–9. doi: 10.2337/diacare.28.4.902.
    1. Duncan GE. Prevalence of diabetes and impaired fasting glucose levels among US adolescents: National Health and Nutrition Examination Survey, 1999-2002. Arch Pediatr Adolesc Med. 2006;160(5):523–8. doi: 10.1001/archpedi.160.5.523.
    1. Zeller MH, Modi AC. Predictors of health-related quality of life in obese youth. Obesity (Silver Spring) 2006;14(1):122–30. doi: 10.1038/oby.2006.15.
    1. Ul-Haq Z, et al. Meta-analysis of the association between body mass index and health-related quality of life among children and adolescents, assessed using the pediatric quality of life inventory index. J Pediatr. 2013;162(2):280–6. doi: 10.1016/j.jpeds.2012.07.049.
    1. Franks PW, et al. Childhood obesity, other cardiovascular risk factors, and premature death. N Engl J Med. 2010;362(6):485–93. doi: 10.1056/NEJMoa0904130.
    1. Census US. Most children younger than age 1 are minorities, Census Bureau Reports. 2012.
    1. Haemer MA, et al. Addressing prediabetes in childhood obesity treatment programs: support from research and current practice. Child Obes. 2014;10(4):292–303. doi: 10.1089/chi.2013.0158.
    1. Lee DC, Sui X, Blair SN. Does physical activity ameliorate the health hazards of obesity? Br J Sports Med. 2009;43(1):49–51. doi: 10.1136/bjsm.2008.054536.
    1. Knowler WC, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403. doi: 10.1056/NEJMoa012512.
    1. Kitabchi AE, et al. Role of insulin secretion and sensitivity in the evolution of type 2 diabetes in the diabetes prevention program: effects of lifestyle intervention and metformin. Diabetes. 2005;54(8):2404–14. doi: 10.2337/diabetes.54.8.2404.
    1. Group TS. Retinopathy in youth with type 2 diabetes participating in the TODAY clinical trial. Diabetes Care. 2013;36(6):1772–4. doi: 10.2337/dc12-2387.
    1. Group TS. Rapid rise in hypertension and nephropathy in youth with type 2 diabetes: the TODAY clinical trial. Diabetes Care. 2013;36(6):1735–41. doi: 10.2337/dc12-2420.
    1. Group TS. Lipid and inflammatory cardiovascular risk worsens over 3 years in youth with type 2 diabetes: the TODAY clinical trial. Diabetes Care. 2013;36(6):1758–64. doi: 10.2337/dc12-2388.
    1. Whitlock EP, et al. Effectiveness of weight management interventions in children: a targeted systematic review for the USPSTF. Pediatrics. 2010;125(2):e396–418. doi: 10.1542/peds.2009-1955.
    1. Seo DC, Sa J. A meta-analysis of obesity interventions among U.S. minority children. J Adolesc Health. 2010;46(4):309–23. doi: 10.1016/j.jadohealth.2009.11.202.
    1. Ho M, et al. Effectiveness of lifestyle interventions in child obesity: systematic review with meta-analysis. Pediatrics. 2012;130(6):e1647–71. doi: 10.1542/peds.2012-1176.
    1. Epstein LH, et al. Treatment of pediatric obesity. Pediatrics. 1998;101(3 Pt 2):554–70.
    1. Flynn MA, et al. Reducing obesity and related chronic disease risk in children and youth: a synthesis of evidence with ‘best practice’ recommendations. Obes Rev. 2006;7(Suppl 1):7–66. doi: 10.1111/j.1467-789X.2006.00242.x.
    1. Flores G, et al. Access barriers to health care for Latino children. Arch Pediatr Adolesc Med. 1998;152(11):1119–25. doi: 10.1001/archpedi.152.11.1119.
    1. Franks PW, Pearson E, Florez JC. Gene-environment and gene-treatment interactions in type 2 diabetes: progress, pitfalls, and prospects. Diabetes Care. 2013;36(5):1413–21. doi: 10.2337/dc12-2211.
    1. Flores G, et al. The health of Latino children: urgent priorities, unanswered questions, and a research agenda. JAMA. 2002;288(1):82–90. doi: 10.1001/jama.288.1.82.
    1. Davison KK, Lawson HA, Coatsworth JD. The Family-centered Action Model of Intervention Layout and Implementation (FAMILI): the example of childhood obesity. Health Promot Pract. 2012;13(4):454–61. doi: 10.1177/1524839910377966.
    1. Castro FG, Shaibi GQ, Boehm-Smith E. Ecodevelopmental contexts for preventing type 2 diabetes in Latino and other racial/ethnic minority populations. J Behav Med. 2009;32(1):89–105. doi: 10.1007/s10865-008-9194-z.
    1. Hill JO, et al. Scientific statement: Socioecological determinants of prediabetes and type 2 diabetes. Diabetes Care. 2013;36(8):2430–9. doi: 10.2337/dc13-1161.
    1. Baker MK, et al. Behavioral strategies in diabetes prevention programs: a systematic review of randomized controlled trials. Diabetes Res Clin Pract. 2011;91(1):1–12. doi: 10.1016/j.diabres.2010.06.030.
    1. Diabetes Prevention Program Research Group The Diabetes Prevention Program (DPP): description of lifestyle intervention. Diabetes Care. 2002;25(12):2165–71. doi: 10.2337/diacare.25.12.2165.
    1. Task Force on Community Preventive, S Recommendations to increase physical activity in communities. Am J Prev Med. 2002;22(4 Suppl):67–72.
    1. Wang Y, Wu Y, Wilson RF, et al. Childhood Obesity Prevention Programs: Comparative Effectiveness Review and Meta-Analysis [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US). 2013. (Comparative Effectiveness Reviews, No. 115.) Available from: .
    1. Shaibi GQ, et al. Diabetes Prevention for Latino Youth: Unraveling the Intervention “Black Box”. Health Promot Pract. 2015;16(6):916–24. doi: 10.1177/1524839915603363.
    1. Giannini C, et al. Evidence for early defects in insulin sensitivity and secretion before the onset of glucose dysregulation in obese youths: a longitudinal study. Diabetes. 2012;61(3):606–14. doi: 10.2337/db11-1111.
    1. American Diabetes Association. Diagnosing diabetes and learning about prediabetes. 2016. Available from: . Accessed Nov 2016.
    1. Shaibi GQ, et al. Effects of a culturally grounded community-based diabetes prevention program for obese Latino adolescents. Diabetes Educ. 2012;38(4):504–12. doi: 10.1177/0145721712446635.
    1. Shaibi GQ, et al. Development, implementation, and effects of community-based diabetes prevention program for obese latino youth. J Prim Care Community Health. 2010;1(3):206–12. doi: 10.1177/2150131910377909.
    1. Williams AN, et al. Culturally-grounded diabetes prevention program for obese Latino youth: Rationale, design, and methods. 2016.
    1. Castro FG, Alarcon EH. Integrating cultural factors into drug abuse prevention and treatment with racial/ethnic minorities. J Drug Issues. 2002;32(3):783–810. doi: 10.1177/002204260203200304.
    1. Keller C, Coe K, Shiabi GS. Using rituals for intervention refinement. Health, Culture, and Society. 2015;8(2):37–45. doi: 10.5195/HCS.2015.201.
    1. Frieden TR, C. Centers for Disease, and Prevention Strategies for reducing health disparities - selected CDC-sponsored interventions, United States, 2014. Foreword. MMWR Suppl, 2014. 2014;63(1):1–2.
    1. Institute of Medicine. 2008. Challenges and Successes in Reducing Health Disparities: Workshop Summary. Washington, DC: The National Academies Press. .
    1. Gutin B, et al. Effects of exercise intensity on cardiovascular fitness, total body composition, and visceral adiposity of obese adolescents. Am J Clin Nutr. 2002;75(5):818–26.
    1. Benson AC, Torode ME, Fiatarone Singh MA. Effects of resistance training on metabolic fitness in children and adolescents: a systematic review. Obes Rev. 2008;9(1):43–66.
    1. Kaufman FR. Screening for abnormalities of carbohydrate metabolism in teens. J Pediatr. 2005;146(6):721–3. doi: 10.1016/j.jpeds.2005.03.034.
    1. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22(9):1462–70. doi: 10.2337/diacare.22.9.1462.
    1. Yeckel CW, et al. Validation of insulin sensitivity indices from oral glucose tolerance test parameters in obese children and adolescents. J Clin Endocrinol Metab. 2004;89(3):1096–101. doi: 10.1210/jc.2003-031503.
    1. Shaibi GQ, et al. Improving insulin resistance in obese youth: choose your measures wisely. Int J Pediatr Obes. 2011;6(2-2):e290–6. doi: 10.3109/17477166.2010.528766.
    1. Phillips DI, et al. Understanding oral glucose tolerance: comparison of glucose or insulin measurements during the oral glucose tolerance test with specific measurements of insulin resistance and insulin secretion. Diabet Med. 1994;11(3):286–92. doi: 10.1111/j.1464-5491.1994.tb00273.x.
    1. Bacha F, Gungor N, Arslanian SA. Measures of beta-cell function during the oral glucose tolerance test, liquid mixed-meal test, and hyperglycemic clamp test. J Pediatr. 2008;152(5):618–21. doi: 10.1016/j.jpeds.2007.11.044.
    1. Bergman RN, Phillips LS, Cobelli C. Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. J Clin Invest. 1981;68(6):1456–67. doi: 10.1172/JCI110398.
    1. Bergman RN, et al. Accurate assessment of beta-cell function: the hyperbolic correction. Diabetes. 2002;51(Suppl 1):S212–20. doi: 10.2337/diabetes.51.2007.S212.
    1. Utzschneider KM, et al. Oral disposition index predicts the development of future diabetes above and beyond fasting and 2-h glucose levels. Diabetes Care. 2009;32(2):335–41. doi: 10.2337/dc08-1478.
    1. Patrick DL, Edwards TC, Topolski TD. Adolescent quality of life, part II: initial validation of a new instrument. J Adolesc. 2002;25(3):287–300. doi: 10.1006/jado.2002.0471.
    1. Morales LS, et al. Measurement properties of a multicultural weight-specific quality-of-life instrument for children and adolescents. Qual Life Res. 2011;20(2):215–24. doi: 10.1007/s11136-010-9735-0.
    1. Patrick DL, et al. Weight loss and changes in generic and weight-specific quality of life in obese adolescents. Qual Life Res. 2011;20(6):961–8. doi: 10.1007/s11136-010-9824-0.
    1. Helba M, Binkovitz LA. Pediatric body composition analysis with dual-energy X-ray absorptiometry. Pediatr Radiol. 2009;39(7):647–56. doi: 10.1007/s00247-009-1247-0.
    1. Wells JC, et al. Evaluation of DXA against the four-component model of body composition in obese children and adolescents aged 5-21 years. Int J Obes (Lond) 2010;34(4):649–55. doi: 10.1038/ijo.2009.249.
    1. Hu HH, Bornert P, Hernando D. ISMRM workshop on fat-water separation: insights, applications and progress in MRI. Magn Reson Med. 2012;68(2):378–388. doi: 10.1002/mrm.24369.
    1. Hu HH, et al. Comparison of fat-water MRI and single-voxel MRS in the assessment of hepatic and pancreatic fat fractions in humans. Obesity (Silver Spring) 2010;18(4):841–7. doi: 10.1038/oby.2009.352.
    1. Hu HH, et al. MRI detection of brown adipose tissue with low fat content in newborns with hypothermia. Magn Reson Imaging. 2014;32(2):107–17. doi: 10.1016/j.mri.2013.10.003.
    1. Hu HH, et al. Comparison of brown and white adipose tissues in infants and children with chemical-shift-encoded water-fat MRI. J Magn Reson Imaging. 2013;38(4):885–96. doi: 10.1002/jmri.24053.
    1. Pratt C, et al. Sedentary activity and body composition of middle school girls: the trial of activity for adolescent girls. Res Q Exerc Sport. 2008;79(4):458–67. doi: 10.1080/02701367.2008.10599512.
    1. McMurray RG, et al. Comparison of two approaches to structured physical activity surveys for adolescents. Med Sci Sports Exerc. 2004;36(12):2135–43. doi: 10.1249/01.MSS.0000147628.78551.3B.
    1. Pate RR, et al. Validation of a 3-day physical activity recall instrument in female youth. Pediatr Exerc Sci. 2003;15(3):257–265. doi: 10.1123/pes.15.3.257.
    1. Nemeth BA, et al. Submaximal treadmill test predicts VO2max in overweight children. J Pediatr. 2009;154(5):677–81. doi: 10.1016/j.jpeds.2008.11.032.
    1. Hunsberger M, et al. Relative validation of Block Kids Food Screener for dietary assessment in children and adolescents. Matern Child Nutr. 2015;11(2):260–70. doi: 10.1111/j.1740-8709.2012.00446.x.
    1. Davis JN, et al. LA Sprouts: a gardening, nutrition, and cooking intervention for Latino youth improves diet and reduces obesity. J Am Diet Assoc. 2011;111(8):1224–30. doi: 10.1016/j.jada.2011.05.009.
    1. Enders, CK. The relative performance of full-information maximum likelihood estimation for missing data in structural equation models. DigitalCommons@University of Nebraska-Lincoln; 1999
    1. Schafer JL. Analysis of incomplete data. London: Chapman & Hall; 1997.
    1. Schafer JL, Graham JW. Missing data: Our view of the state of the art. Psychol Methods. 2002;7(2):147–177. doi: 10.1037/1082-989X.7.2.147.
    1. Baron RM, Kenny DA. The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol. 1986;51(6):1173–82. doi: 10.1037/0022-3514.51.6.1173.
    1. Herman WH, et al. The cost-effectiveness of lifestyle modification or metformin in preventing type 2 diabetes in adults with impaired glucose tolerance. Ann Intern Med. 2005;142(5):323–32. doi: 10.7326/0003-4819-142-5-200503010-00007.
    1. American Diabetes Association Economic costs of diabetes in the U.S. in 2012. Diabetes Care. 2012;36(4):1033–46. doi: 10.2337/dc12-2625.
    1. Rhodes ET, et al. Health-related quality of life in adolescents with or at risk for type 2 diabetes mellitus. J Pediatr. 2012;160(6):911–7. doi: 10.1016/j.jpeds.2011.11.026.
    1. Jackson L. Translating the diabetes prevention program into practice: a review of community interventions. Diabetes Educ. 2009;35(2):309–20. doi: 10.1177/0145721708330153.
    1. Ferguson MA, et al. Effects of exercise training and its cessation on components of the insulin resistance syndrome in obese children. Int J Obes Relat Metab Disord. 1999;23(8):889–95. doi: 10.1038/sj.ijo.0800968.
    1. Campbell KJ, Hesketh KD. Strategies which aim to positively impact on weight, physical activity, diet and sedentary behaviours in children from zero to five years. A systematic review of the literature. Obes Rev. 2007;8(4):327–38. doi: 10.1111/j.1467-789X.2006.00305.x.
    1. Sobol-Goldberg S, Rabinowitz J, Gross R. School-based obesity prevention programs: a meta-analysis of randomized controlled trials. Obesity (Silver Spring) 2013;21(12):2422–8. doi: 10.1002/oby.20515.
    1. Whittemore R. A systematic review of the translational research on the Diabetes Prevention Program. Transl Behav Med. 2011;1(3):480–91. doi: 10.1007/s13142-011-0062-y.
    1. Adamson K, et al. The YMCA/Steps Community Collaboratives, 2004-2008. Prev Chronic Dis. 2009;6(3):A109.
    1. Weyer C, et al. Insulin resistance and insulin secretory dysfunction are independent predictors of worsening of glucose tolerance during each stage of type 2 diabetes development. Diabetes Care. 2001;24(1):89–94. doi: 10.2337/diacare.24.1.89.
    1. Retnakaran R, et al. Hyperbolic relationship between insulin secretion and sensitivity on oral glucose tolerance test. Obesity (Silver Spring) 2008;16(8):1901–7. doi: 10.1038/oby.2008.307.
    1. Weiss R, Caprio S. Development of type 2 diabetes in children and adolescents. Minerva Med. 2006;97(3):263–9.
    1. Kester LM, Hey H, Hannon TS. Using hemoglobin A1c for prediabetes and diabetes diagnosis in adolescents: can adult recommendations be upheld for pediatric use? J Adolesc Health. 2012;50(4):321–3. doi: 10.1016/j.jadohealth.2012.02.009.
    1. Haymond MW. Measuring insulin resistance: a task worth doing. But how? Pediatr Diabetes. 2003;4(3):115–8. doi: 10.1034/j.1399-5448.2003.00024.x.
    1. Linder BL, Fradkin JE, Rodgers GP. The TODAY study: an NIH perspective on its implications for research. Diabetes Care. 2013;36(6):1775–6. doi: 10.2337/dc13-0707.

Source: PubMed

3
Abonnere