Intravenous Oxycodone versus Intravenous Morphine in Cancer Pain: A Randomized, Open-Label, Parallel-Group, Active-Control Study

Kyung-Hee Lee, Jung-Hun Kang, Ho-Suk Oh, Moon-Ki Choi, Byoung-Yong Shim, Young-Jun Eum, Hye-Jeong Park, Jin-Hyong Kang, Kyung-Hee Lee, Jung-Hun Kang, Ho-Suk Oh, Moon-Ki Choi, Byoung-Yong Shim, Young-Jun Eum, Hye-Jeong Park, Jin-Hyong Kang

Abstract

Objective: To compare efficacy and safety of intravenous continuous infusion of oxycodone with morphine in patients with cancer pain.

Methods: A 5-day, randomized, open-label, exploratory study at 6 sites in the Republic of Korea. Sixty-six adults aged ≥19 years with moderate-to-severe cancer pain (Numeric Rating Scale [NRS] ≥ 4) were enrolled. The study group received intravenous (IV) oxycodone, and the comparator group received IV morphine which were titrated depending on pain intensity. The efficacy endpoint is change in average NRS score from baseline to Day 5. Other assessments included worst, current, and average pain intensity; patient satisfaction; medication dose; and adverse events.

Results: Both groups achieved >50% reduction in average pain intensity: from "moderate" at baseline (oxycodone versus morphine: 6.0 ± 1.8 versus 5.9 ± 1.4) to "mild" at Day 5 (2.5 ± 1.8 versus 2.8 ± 1.6). While this reduction was similar between groups (3.5 ± 2.2 versus 3.1 ± 1.8, P value = 0.562), oxycodone achieved faster pain relief (average pain: 3.0 ± 1.6 versus 3.9 ± 1.6, P value = 0.020) on Day 2 and significant NRS reductions for worst pain on Day 2 (P value = 0.045) and current pain on Day 2 (P value = 0.035) and Day 5 (P value = 0.020) compared to morphine. Patient satisfaction, adverse events, and adverse drug reactions were similar for both groups.

Conclusions: For Asian patients with cancer pain, IV oxycodone is faster acting and showed similar analgesic efficacy and safety profiles as IV morphine. This trial is registered with Clinicaltrials.gov NCT02660229.

Figures

Figure 1
Figure 1
Study design and visit schedule. ∗At screening, patients can be randomized if average pain intensity NRS score during previous 7 days is ≥4. IV = intravenous, NRS = Numerical Rating Scale (0–10 points, 0 = no pain and 10 = worst pain), PGIC/CGIC = Patient Global Impression of Change/Clinical Global Impression of Change, R = randomization.
Figure 2
Figure 2
Flow of patients through the trial.
Figure 3
Figure 3
Average NRS pain scores. ∗Difference between average pain scores is significant. NRS = Numerical Rating Scale (0–10 points, 0 = no pain and 10 = worst pain).
Figure 4
Figure 4
Percentage of responders based on (A) ≥30% and (B) ≥50% NRS reduction from baseline. ∗Difference between percentages of responders is significant. NRS = Numerical Rating Scale.

References

    1. van den Beuken-van Everdingen M. H., de Rijke J. M., Kessels A. G., Schouten H. C., van Kleef M., Patijn J. Prevalence of pain in patients with cancer: a systematic review of the past 40 years. Annals of Oncology. 2007;18(9):1437–1449. doi: 10.1093/annonc/mdm056.
    1. Deandrea S., Montanari M., Moja L., Apolone G. Prevalence of undertreatment in cancer pain. A review of published literature. Annals of Oncology. 2008;19(12):1985–1991. doi: 10.1093/annonc/mdn419.
    1. Middleton C. Understanding the physiological effects of unrelieved pain. Nursing Times. 2003;99(37):28–31.
    1. Tennant F. The physiologic effects of pain on the endocrine system. Pain and Therapy. 2013;2(2):75–86. doi: 10.1007/s40122-013-0015-x.
    1. Pasternak G. W. Opiate pharmacology and relief of pain. Journal of Clinical Oncology. 2014;32(16):1655–1661. doi: 10.1200/JCO.2013.53.1079.
    1. World Health Organisation. Cancer Pain Relief. Geneva, Switzerland: World Health Organisation; 1986.
    1. Pergolizzi J. V., Jr., Seow-Choen F., Wexner S. D., Zampogna G., Raffa R. B., Taylor R., Jr Perspectives on intravenous oxycodone for control of postoperative pain. Pain Practice. 2016;16(7):924–934. doi: 10.1111/papr.12345.
    1. Conti G., Costa R., Pellegrini A., Craba A., Cavaliere F. Analgesia in PACU: intravenous opioids. Current Drug Targets. 2005;6(7):767–771. doi: 10.2174/138945005774574407.
    1. Fukuda K. Miller’s Anesthesia. 6th edition. R. Miller, Ed. Churchill Livingstone Publishers; 2005. Intravenous opioid anesthetics; pp. 379–424.
    1. Hanks G. W., Conno F., Cherny N., et al. Morphine and alternative opioids in cancer pain: the EAPC recommendations. British Journal of Cancer. 2001;84(5):587–593. doi: 10.1054/bjoc.2001.1680.
    1. Fields H. L. The doctor’s dilemma: opiate analgesics and chronic pain. Neuron. 2011;69(4):591–594. doi: 10.1016/j.neuron.2011.02.001.
    1. King S. J., Reid C., Forbes K., Hanks G. A systematic review of oxycodone in the management of cancer pain. Palliative Medicine. 2011;25(5):454–470. doi: 10.1177/0269216311401948.
    1. Corli O., Floriani I., Roberto A., et al. Are strong opioids equally effective and safe in the treatment of chronic cancer pain? A multicenter randomized phase IV ‘real life’ trial on the variability of response to opioids. Annals of Oncology. 2016;27(6):1107–1115. doi: 10.1093/annonc/mdw097.
    1. Kalso E. Oxycodone. Journal of Pain and Symptom Management. 2005;29(5):S47–S56. doi: 10.1016/j.jpainsymman.2005.01.010.
    1. Sneader W. Drug Discovery: A History. John Wiley & Sons, Hoboken, NJ, USA: 2005.
    1. Smith M. T. Differences between and combinations of opioids re-visited. Current opinion in Anaesthesiology. 2008;21(5):596–601. doi: 10.1097/aco.0b013e32830a4c4a.
    1. Schmidt-Hansen M., Bennett M. I., Arnold S., Bromham N., Hilgart J. S. Oxycodone for cancer-related pain. Cochrane Database of Systematic Reviews. 2015;2:p. Cd003870. doi: 10.1002/14651858.cd003870.pub5.
    1. Nielsen C. K., Ross F. B., Lotfipour S., Saini K. S., Edwards S. R., Smith M. T. Oxycodone and morphine have distinctly different pharmacological profiles: radioligand binding and behavioural studies in two rat models of neuropathic pain. Pain. 2007;132(3):289–300. doi: 10.1016/j.pain.2007.03.022.
    1. Kalso E., Pöyhiä R., Onnela P., Linko K., Tigerstedt I., Tammisto T. Intravenous morphine and oxycodone for pain after abdominal surgery. Acta Anaesthesiologica Scandinavica. 1991;35(7):642–646. doi: 10.1111/j.1399-6576.1991.tb03364.x.
    1. Koch S., Ahlburg P., Spangsberg N., Brock B., Tonnesen E., Nikolajsen L. Oxycodone vs. fentanyl in the treatment of early post-operative pain after laparoscopic cholecystectomy: a randomised double-blind study. Acta Anaesthesiologica Scandinavica. 2008;52(6):845–850. doi: 10.1111/j.1399-6576.2008.01643.x.
    1. Silvasti M., Rosenberg P., Seppälä T., Svartling N., Pitkänen M. Comparison of analgesic efficacy of oxycodone and morphine in postoperative intravenous patient-controlled analgesia. Acta Anaesthesiologica Scandinavica. 1998;42(5):576–580. doi: 10.1111/j.1399-6576.1998.tb05169.x.
    1. Kalso E., Vainio A. Morphine and oxycodone hydrochloride in the management of cancer pain. Clinical Pharmacology and Therapeutics. 1990;47(5):639–646. doi: 10.1038/clpt.1990.85.
    1. Maddocks I., Somogyi A., Abbott F., Hayball P., Parker D. Attenuation of morphine-induced delirium in palliative care by substitution with infusion of oxycodone. Journal of Pain and Symptom Management. 1996;12(3):182–189. doi: 10.1016/0885-3924(96)00050-4.
    1. Bradford L. D. CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics. 2002;3(2):229–243. doi: 10.1517/14622416.3.2.229.
    1. Olkkola K. T., Kontinen V. K., Saari T. I., Kalso E. A. Does the pharmacology of oxycodone justify its increasing use as an analgesic? Trends in Pharmacological Sciences. 2013;34(4):206–214. doi: 10.1016/j.tips.2013.02.001.
    1. Guideline for Korean Good Clinical Practice. Korea Food and Drug Administration Notification No. 1999-67. Cheongsong gun, Republic of Korea: Korea Food and Drug Administration; 2000.
    1. ICH Secretariat. International Conference on Harmonisation (ICH) .
    1. Ferguson L., Scheman J. Patient global impression of change scores within the context of a chronic pain rehabilitation program. Journal of Pain. 2009;10(4):p. S73. doi: 10.1016/j.jpain.2009.01.258.
    1. Kamper S. J., Maher C. G., Mackay G. Global rating of change scales: a review of strengths and weaknesses and considerations for design. Journal of Manual & Manipulative Therapy. 2009;17(3):163–170. doi: 10.1179/jmt.2009.17.3.163.
    1. Mercadante S., Tirelli W., David F., et al. Morphine versus oxycodone in pancreatic cancer pain: a randomized controlled study. Clinical Journal of Pain. 2010;26(9):794–797. doi: 10.1097/ajp.0b013e3181ecd895.
    1. Wang Y. M., Liu Z. W., Liu J. L., Zhang L. Efficacy and tolerability of oxycodone in moderate-severe cancer-related pain: a meta-analysis of randomized controlled trials. Experimental and Therapeutic Medicine. 2012;4(2):249–254. doi: 10.3892/etm.2012.571.
    1. Dalal S., Hui D., Nguyen L., et al. Achievement of personalized pain goal in cancer patients referred to a supportive care clinic at a comprehensive cancer center. Cancer. 2012;118(15):3869–3877. doi: 10.1002/cncr.26694.
    1. Hui D., Bruera E. A personalized approach to assessing and managing pain in patients with cancer. Journal of Clinical Oncology. 2014;32(16):1640–1646. doi: 10.1200/jco.2013.52.2508.
    1. Boström E., Hammarlund-Udenaes M., Simonsson U. S. Blood-brain barrier transport helps to explain discrepancies in in vivo potency between oxycodone and morphine. Anesthesiology. 2008;108(3):495–505. doi: 10.1097/aln.0b013e318164cf9e.
    1. Boström E., Simonsson U. S. H., Hammarlund-Udenaes M. In vivo blood-brain barrier transport of oxycodone in the rat: indications for active influx and implications for pharmacokinetics/pharmacodynamics. Drug Metabolism and Disposition. 2006;34(9):1624–1631. doi: 10.1124/dmd.106.009746.
    1. Olesen A. E., Staahl C., Arendt-Nielsen L., Drewes A. M. Different effects of morphine and oxycodone in experimentally evoked hyperalgesia: a human translational study. British Journal of Clinical Pharmacology. 2010;70(2):189–200. doi: 10.1111/j.1365-2125.2010.03700.x.
    1. Biancofiore G. Oxycodone controlled release in cancer pain management. Therapeutics and clinical risk management. 2006;2(3):229–234. doi: 10.2147/tcrm.2006.2.3.229.
    1. Radbruch L., Trottenberg P., Elsner F., Kaasa S., Caraceni A. Systematic review of the role of alternative application routes for opioid treatment for moderate to severe cancer pain: an EPCRC opioid guidelines project. Palliative Medicine. 2011;25(5):578–596. doi: 10.1177/0269216310383739.
    1. Farrar J. T., Portenoy R. K., Berlin J. A., Kinman J. L., Strom B. L. Defining the clinically important difference in pain outcome measures. Pain. 2000;88(3):287–294. doi: 10.1016/s0304-3959(00)00339-0.
    1. Farrar J. T., Dworkin R. H., Max M. B. Use of the cumulative proportion of responders analysis graph to present pain data over a range of cut-off points: making clinical trial data more understandable. Journal of Pain and Symptom Management. 2006;31(4):369–377. doi: 10.1016/j.jpainsymman.2005.08.018.
    1. Oosten A. W., Oldenmenger W. H., Mathijssen R. H., van der Rijt C. C. A systematic review of prospective studies reporting adverse events of commonly used opioids for cancer-related pain: a call for the use of standardized outcome measures. Journal of Pain. 2015;16(10):935–946. doi: 10.1016/j.jpain.2015.05.006.
    1. Huxtable C. A., Roberts L. J., Somogyi A. A., MacIntyre P. E. Acute pain management in opioid-tolerant patients: a growing challenge. Anaesthesia and Intensive Care. 2011;39(5):804–823.
    1. Noble M., Treadwell J. R., Tregear S. J., et al. Long-term opioid management for chronic noncancer pain. Cochrane Database of Systematic Reviews. 2010;2010(1):p. CD006605. doi: 10.1002/14651858.CD006605.pub2.
    1. Baek S. K., Shin H. W., Choi Y. J., et al. Noninterventional observational study using high-dose controlled-release oxycodone (CR oxycodone) for cancer pain management in outpatient clinics. Pain Medicine. 2013;14(12):1866–1872. doi: 10.1111/pme.12228.

Source: PubMed

3
Abonnere