Rehabilitation Improves Mitochondrial Energetics in Progressive Multiple Sclerosis: The Significant Role of Robot-Assisted Gait Training and of the Personalized Intensity

Fabio Manfredini, Sofia Straudi, Nicola Lamberti, Simone Patergnani, Veronica Tisato, Paola Secchiero, Francesco Bernardi, Nicole Ziliotto, Giovanna Marchetti, Nino Basaglia, Massimo Bonora, Paolo Pinton, Fabio Manfredini, Sofia Straudi, Nicola Lamberti, Simone Patergnani, Veronica Tisato, Paola Secchiero, Francesco Bernardi, Nicole Ziliotto, Giovanna Marchetti, Nino Basaglia, Massimo Bonora, Paolo Pinton

Abstract

Abnormal levels of pyruvate and lactate were reported in multiple sclerosis (MS). We studied the response of markers of mitochondrial function to rehabilitation in relation to type, intensity and endurance performance in severely disabled MS patients. Forty-six progressive MS patients were randomized to receive 12 walking sessions of robot-assisted gait training (RAGT, n = 23) or conventional overground therapy (CT, n = 23). Ten healthy subjects were also studied. Blood samples were collected to determine lactate, pyruvate, and glutathione levels and lactate/pyruvate ratio pre-post rehabilitation. In vivo muscle metabolism and endurance walking capacity were assessed by resting muscle oxygen consumption (rmVO2) using near-infrared spectroscopy and by six-minute walking distance (6MWD), respectively. The levels of mitochondrial biomarkers and rmVO2, altered at baseline with respect to healthy subjects, improved after rehabilitation in the whole population. In the two groups, an enhanced response was observed after RAGT compared to CT for lactate (p = 0.012), glutathione (<0.001), lactate/pyruvate ratio (p = 0.08) and rmVO2 (p = 0.07). Metabolic biomarkers and 6MWD improvements were exclusively correlated with a training speed markedly below individual gait speed. In severely disabled MS patients, rehabilitation rebalanced altered serum metabolic and muscle parameters, with RAGT being more effective than CT. A determinable slow training speed was associated with better metabolic and functional recovery. Trial Registration: ClinicalTrials.gov NCT02421731.

Keywords: exercise training; lactic acid; multiple sclerosis; pyruvic acid.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Correlation between rehabilitative factors and mitochondrial biomarkers in both groups. Abbreviations: RAGT, robot-assisted gait training; CT, conventional therapy; RTI, relative training intensity.
Figure 2
Figure 2
Variations of biomarkers at the end of rehabilitation compared to baseline according to two quantiles of relative training intensity in the two groups. Legend: data are expressed as median and interquartile range.

References

    1. Patergnani S., Fossati V., Bonora M., Giorgi C., Marchi S., Missiroli S., Rusielewicz T., Wieckowski M.R., Pinton P. Mitochondria in Multiple Sclerosis: Molecular Mechanisms of Pathogenesis. Int. Rev. Cell Mol. Biol. 2017;328:49–103. doi: 10.1016/bs.ircmb.2016.08.003.
    1. Giorgi C., Marchi S., Simoes I.C.M., Ren Z., Morciano G., Perrone M., Patalas-Krawczyk P., Borchard S., Jędrak P., Pierzynowska K., et al. Mitochondria and Reactive Oxygen Species in Aging and Age-Related Diseases. Int. Rev. Cell Mol. Biol. 2018;340:209–344. doi: 10.1016/bs.ircmb.2018.05.006.
    1. Mathur D., López-Rodas G., Casanova B., Marti M.B. Perturbed glucose metabolism: Insights into multiple sclerosis pathogenesis. Front. Neurol. 2014;5:250. doi: 10.3389/fneur.2014.00250.
    1. Adiele R.C., Adiele C.A. Metabolic defects in multiple sclerosis. Mitochondrion. 2019;44:7–14. doi: 10.1016/j.mito.2017.12.005.
    1. Gray L.R., Tompkins S.C., Taylor E.B. Regulation of pyruvate metabolism and human disease. Cell. Mol. Life Sci. 2014;71:2577–2604. doi: 10.1007/s00018-013-1539-2.
    1. Sahlin K. Muscle glucose metabolism during exercise. Ann. Med. 1990;22:85–89.
    1. Bonora M., Patergnani S., Rimessi A., De Marchi E., Suski J.M., Bononi A., Giorgi C., Marchi S., Missiroli S., Poletti F., et al. ATP synthesis and storage. Purinergic Signal. 2012;8:343–357. doi: 10.1007/s11302-012-9305-8.
    1. Stallknecht B., Vissing J., Galbo H. Lactate production and clearance in exercise. Effects of training. A mini-review. Scand. J. Med. Sci. Sports. 1998;8:127–131. doi: 10.1111/j.1600-0838.1998.tb00181.x.
    1. Kaushik D.K., Bhattacharya A., Mirzaei R., Rawji K.S., Ahn Y., Rho J.M., Yong V.W. Enhanced glycolytic metabolism supports transmigration of brain-infiltrating macrophages in multiple sclerosis. J. Clin. Investig. 2019;129:3277–3292. doi: 10.1172/JCI124012.
    1. Marchi S., Giorgi C., Suski J.M., Agnoletto C., Bononi A., Bonora M., De Marchi E., Missiroli S., Patergnani S., Poletti F., et al. Mitochondria-ros crosstalk in the control of cell death and aging. J. Signal Transduct. 2012;2012:329635. doi: 10.1155/2012/329635.
    1. Beal M.F. Mitochondria, free radicals, and neurodegeneration. Curr. Opin. Neurobiol. 1996;6:661–666. doi: 10.1016/S0959-4388(96)80100-0.
    1. Morciano G., Bonora M., Campo G., Aquila G., Rizzo P., Giorgi C., Wieckowski M.R., Pinton P. Mechanistic Role of mPTP in Ischemia-Reperfusion Injury. Adv. Exp. Med. Biol. 2017;982:169–189. doi: 10.1007/978-3-319-55330-6_9.
    1. Bonora M., Wieckowsk M.R., Chinopoulos C., Kepp O., Kroemer G., Galluzzi L., Pinton P. Molecular mechanisms of cell death: Central implication of ATP synthase in mitochondrial permeability transition. Oncogene. 2015;34:1608. doi: 10.1038/onc.2014.462.
    1. Zilberter Y., Gubkina O., Ivanov A.I. A unique array of neuroprotective effects of pyruvate in neuropathology. Front. Neurosci. 2015;9:17. doi: 10.3389/fnins.2015.00017.
    1. Amorini A.M., Nociti V., Petzold A., Gasperini C., Quartuccio E., Lazzarino G., Di Pietro V., Belli A., Signoretti S., Vagnozzi R., et al. Serum lactate as a novel potential biomarker in multiple sclerosis. Biochim Biophys. Acta. 2014;1842:1137–1143. doi: 10.1016/j.bbadis.2014.04.005.
    1. Nijland P.G., Molenaar R.J., van der Pol S.M., Van Der Valk P., Van Noorden C.J.F., De Vries H.E., Van Horssen J. Differential expression of glucose-metabolizing enzymes in multiple sclerosis lesions. Acta Neuropathol. Commun. 2015;3:79. doi: 10.1186/s40478-015-0261-8.
    1. Albanese M., Zagaglia S., Landi D., Boffa L., Nicoletti C.G., Marciani M.G., Mandolesi G., Marfia G.A., Buttari F., Mori F., et al. Cerebrospinal fluid lactate is associated with multiple sclerosis disease progression. J. Neuroinflamm. 2016;13:36. doi: 10.1186/s12974-016-0502-1.
    1. Castellazzi M., Patergnani S., Donadio M., Giorgi C., Bonora M., Fainardi E., Casetta I., Granieri E., Pugliatti M., Pinton P. Correlation between auto/mitophagic processes and magnetic resonance imaging activity in multiple sclerosis patients. J. Neuroinflamm. 2019;16:131. doi: 10.1186/s12974-019-1526-0.
    1. Patergnani S., Castellazzi M., Bonora M., Marchi S., Casetta I., Pugliatti M., Giorgi C., Granieri E., Pinton P. Autophagy and mitophagy elements are increased in body fluids of multiple sclerosis-affected individuals. J. Neurol. Neurosurg. Psychiatry. 2018;89:439–441. doi: 10.1136/jnnp-2017-316234.
    1. Kim H.H., Jeong I.H., Hyun J.S., Kong B.S., Kim H.J., Park S.J. Metabolomic profiling of CSF in multiple sclerosis and neuromyelitis optica spectrum disorder by nuclear magnetic resonance. PLoS ONE. 2017;12:e0181758. doi: 10.1371/journal.pone.0181758.
    1. Huertas J.R., Casuso R.A., Agustín P.H., Cogliati S. Stay Fit, Stay Young: Mitochondria in Movement: The Role of Exercise in the New Mitochondrial Paradigm. Oxidative Med. Cell. Longev. 2019;2019:7058350. doi: 10.1155/2019/7058350.
    1. Mähler A., Steiniger J., Bock M., Brandt A.U., Haas V., Boschmann M., Paul F. Is metabolic flexibility altered in multiple sclerosis patients? PLoS ONE. 2012;7:e43675. doi: 10.1371/journal.pone.0043675.
    1. Hortobágyi T., Dempsey L., Fraser D., Zheng D., Hamilton G., Lambert J., Dohm L. Changes in muscle strength; muscle fibre size and myofibrillar gene expression after immobilization and retraining in humans. J. Physiol. 2000;524:293–304. doi: 10.1111/j.1469-7793.2000.00293.x.
    1. Malagoni A.M., Felisatti M., Lamberti N., Basaglia N., Manfredini R., Salvi F., Zamboni P., Manfredini F. Muscle oxygen consumption by NIRS and mobility in multiple sclerosis patients. BMC Neurol. 2013;13:52. doi: 10.1186/1471-2377-13-52.
    1. Greb E. Patients with multiple sclerosis have altered metabolic flexibility. Neurol. Rev. 2012;20:15.
    1. Langeskov-Christensen M., Heine M., Kwakkel G., Dalgas U. Aerobic capacity in persons with multiple sclerosis: A systematic review and meta-analysis. Sports Med. 2015;45:905–923. doi: 10.1007/s40279-015-0307-x.
    1. Motl R.W., Goldman M. Physical inactivity; neurological disability; and cardiorespiratory fitness in multiple sclerosis. Acta Neurol. Scand. 2011;123:98–104. doi: 10.1111/j.1600-0404.2010.01361.x.
    1. Gusdon A.M., Callio J., Distefano G., O’Doherty R.M., Goodpaster B.H., Coen P.M., Chu C.T. Exercise increases mitochondrial complex I activity and DRP1 expression in the brains of aged mice. Exp. Gerontol. 2017;90:1–13. doi: 10.1016/j.exger.2017.01.013.
    1. Steiner J.L., Murphy E.A., McClellan J.L., Carmichael M.D., Davis J.M. Exercise training increases mitochondrial biogenesis in the brain. J. Appl. Physiol. 2011;111:1066–1071. doi: 10.1152/japplphysiol.00343.2011.
    1. AAHPERD . Physical Education for Lifelong Fitness: The Physical Best Teacher’s Guide. Human Kinetics; Champaign, IL, USA: 1999. pp. 78–79.
    1. Pedersen B.K. Physical activity and muscle-brain crosstalk. Nat. Rev. Endocrinol. 2019;15:383–392. doi: 10.1038/s41574-019-0174-x.
    1. Straudi S., Manfredini F., Lamberti N., Martinuzzi C., Maietti E., Basaglia N. Robot-assisted gait training is not superior to intensive overground walking in multiple sclerosis with severe disability (the RAGTIME study): A randomized controlled trial. Mult. Scler. J. 2020;26:716–724. doi: 10.1177/1352458519833901.
    1. Straudi S., Manfredini F., Lamberti N., Zamboni P., Bernardi F., Marchetti G., Pinton P., Bonora M., Secchiero P., Tisato V., et al. The effectiveness of Robot-Assisted Gait Training versus conventional therapy on mobility in severely disabled progressIve MultiplE sclerosis patients (RAGTIME): Study protocol for a randomized controlled trial. Trials. 2017;18:88. doi: 10.1186/s13063-017-1838-2.
    1. Ryan T.E., Southern W.M., Reynolds M.A., McCully K.K. A cross-validation of near-infrared spectroscopy measurements of skeletal muscle oxidative capacity with phosphorus magnetic resonance spectroscopy. J. Appl. Physiol. (1985) 2013;115:1757–1766. doi: 10.1152/japplphysiol.00835.2013.
    1. Manfredini F., Lamberti N., Malagoni A.M., Felisatti M., Zuccalà A., Torino C., Tripepi G., Catizone L., Mallamaci F., Zoccali C., et al. The role of deconditioning in the end-stage renal disease myopathy: Physical exercise improves altered resting muscle oxygen consumption. Am. J. Nephrol. 2015;41:329–336. doi: 10.1159/000431339.
    1. Malagoni A.M., Felisatti M., Mandini S., Mascoli F., Manfredini R., Basaglia N., Zamboni P., Manfredini F. Resting muscle oxygen consumption by near-infrared spectroscopy in peripheral arterial disease: A parameter to be considered in a clinical setting? Angiology. 2010;61:530–536. doi: 10.1177/0003319710362975.
    1. Cederberg K.L.J., Sikes E.M., Bartolucci A.A., Motl R.W. Walking endurance in multiple sclerosis: Meta-analysis of six-minute walk test performance. Gait Posture. 2019;73:147–153. doi: 10.1016/j.gaitpost.2019.07.125.
    1. Janikiewicz J., Szymański J., Malinska D., Patalas-Krawczyk P., Michalska B., Duszyński J., Giorgi C., Bonora M., Dobrzyn A., Wieckowski M.R. Mitochondria-associated membranes in aging and senescence: Structure; function; and dynamics. Cell Death Dis. 2018;9:332. doi: 10.1038/s41419-017-0105-5.
    1. Bonora M., De Marchi E., Patergnani S., Suski J.M., Celsi F., Bononi A., Giorgi C., Marchi S., Rimessi A., Duszynski J., et al. Tumor necrosis factor-α impairs oligodendroglial differentiation through a mitochondria-dependent process. Cell Death Differ. 2014;21:1198–1208. doi: 10.1038/cdd.2014.35.
    1. Kestenbaum B., Gamboa J., Liu S., Ali A.S., Shankland E., Jue T., Giulivi C., Smith L.R., Himmelfarb J., De Boer I.H., et al. Impaired skeletal muscle mitochondrial bioenergetics and physical performance in chronic kidney disease. JCI Insight. 2020;5:e133289. doi: 10.1172/jci.insight.133289.
    1. Rimmer J.H., Schiller W., Chen M.D. Effects of disability-associated low energy expenditure deconditioning syndrome. Exerc. Sport Sci. Rev. 2012;40:22–29. doi: 10.1097/JES.0b013e31823b8b82.
    1. Bogdanis G.C. Effects of physical activity and inactivity on muscle fatigue. Front. Physiol. 2012;3:142. doi: 10.3389/fphys.2012.00142.
    1. Hyatt H., Deminice R., Yoshihara T., Powers S.K. Mitochondrial dysfunction induces muscle atrophy during prolonged inactivity: A review of the causes and effects. Arch. Biochem. Biophys. 2019;662:49–60. doi: 10.1016/j.abb.2018.11.005.
    1. Andersen J.L., Aagaard P. Myosin heavy chain IIX overshoot in human skeletal muscle. Muscle Nerve. 2000;23:1095–1104. doi: 10.1002/1097-4598(200007)23:7<1095::AID-MUS13>;2-O.
    1. Stein T.P., Wade C.E. Metabolic consequences of muscle disuse atrophy. J. Nutr. 2005;135:1824S–1828S. doi: 10.1093/jn/135.7.1824S.
    1. Degens H., Always S.E. Control of muscle size during disuse; disease; and aging. Int. J. Sports Med. 2006;27:94–99. doi: 10.1055/s-2005-837571.
    1. Hikida R.S., Staron R.S., Hagerman F.C., Walsh S., Kaiser E., Shell S., Hervey S. Effects of high-intensity resistance training on untrained older men. II. Muscle fiber characteristics and nucleo-cytoplasmic relationships. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2000;55:B347–B354. doi: 10.1093/gerona/55.7.B347.
    1. Häkkinen K., Newton R.U., Gordon S.E., McCormick M., Volek J.S., Nindl B.C., Gotshalk L.A., Campbell W.W., Evans W.J., Häkkinen A., et al. Changes in muscle morphology; electromyographic activity; and force production characteristics during progressive strength training in young and older men. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 1998;53:B415–B423. doi: 10.1093/gerona/53A.6.B415.
    1. Wens I., Dalgas U., Vandenabeele F., Grevendonk L., Verboven K., Hansen D., Eijnde B.O. High Intensity Exercise in Multiple Sclerosis: Effects on Muscle Contractile Characteristics and Exercise Capacity, a Randomised Controlled Trial. PLoS ONE. 2015;10:e0133697. doi: 10.1371/journal.pone.0133697.
    1. Lefeber N., Swinnen E., Kerckhofs E. The immediate effects of robot-assistance on energy consumption and cardiorespiratory load during walking compared to walking without robot-assistance: A systematic review. Disabil. Rehabil. Assist. Technol. 2017;12:657–671. doi: 10.1080/17483107.2016.1235620.
    1. Devasahayam A.J., Downer M.B., Ploughman M. The Effects of Aerobic Exercise on the Recovery of Walking Ability and Neuroplasticity in People with Multiple Sclerosis: A Systematic Review of Animal and Clinical Studies. Mult. Scler. Int. 2017;2017:4815958. doi: 10.1155/2017/4815958.
    1. Xie X., Sun H., Zeng Q., Lu P., Zhao Y., Fan T., Huang G. Do Patients with Multiple Sclerosis Derive More Benefit from Robot-Assisted Gait Training Compared with Conventional Walking Therapy on Motor Function? A Meta-analysis. Front. Neurol. 2017;8:260. doi: 10.3389/fneur.2017.00260.
    1. Osborne T.L., Turner A.P., Williams R.M., Bowen J.D., Hatzakis M., Rodriguez A., Haselkorn J.K. Correlates of pain interference in multiple sclerosis. Rehabil. Psychol. 2006;51:166–174. doi: 10.1037/0090-5550.51.2.166.
    1. Rohrig M. Physical Therapy in Multiple Sclerosis. Clin. Bull. Natl. Mult. Scler. Soc. 2018:1–16.
    1. Lamberti N., Straudi S., Donadi M., Tanaka H., Basaglia N., Manfredini F. Effectiveness of blood flow-restricted slow walking on mobility in severe multiple sclerosis: A pilot randomized trial. Scand. J. Med. Sci. Sports. 2020 doi: 10.1111/sms.13764.
    1. Hansen D., Feys P., Wens I., Eijnde B.O. Is walking capacity in subjects with multiple sclerosis primarily related to muscle oxidative capacity or maximal muscle strength? A pilot study. Mult. Scler. Int. 2014;2014:759030. doi: 10.1155/2014/759030.

Source: PubMed

3
Abonnere