Is Probiotic Supplementation Useful for the Management of Body Weight and Other Anthropometric Measures in Adults Affected by Overweight and Obesity with Metabolic Related Diseases? A Systematic Review and Meta-Analysis

Simone Perna, Zahra Ilyas, Attilio Giacosa, Clara Gasparri, Gabriella Peroni, Milena Anna Faliva, Chiara Rigon, Maurizio Naso, Antonella Riva, Giovanna Petrangolini, Ali A Redha, Mariangela Rondanelli, Simone Perna, Zahra Ilyas, Attilio Giacosa, Clara Gasparri, Gabriella Peroni, Milena Anna Faliva, Chiara Rigon, Maurizio Naso, Antonella Riva, Giovanna Petrangolini, Ali A Redha, Mariangela Rondanelli

Abstract

The aim of this systematic review and meta-analysis is to assess the effectiveness of probiotics in inducing body weight loss in patients with overweight or obesity with related metabolic diseases. The research was carried out on PubMed and Scopus, focusing on studies reporting the effect on anthropometric measures (weight, body mass Index (BMI), waist circumference (WC), and hip circumference (HC) after administration of various probiotic strains compared to placebo. Twenty randomized controlled trials, that included 1411 patients, were considered. The meta-analyzed mean differences (MD) for random effects showed no significant decrease in body weight after probiotic supplementation (-0.26 kg [-075, 0.23], p = 0.30), while a significant BMI decrease was found (-0.73 kg/m2 [-1.31, -0.16], p = 0.01). For WC and HC, the meta-analyzed MD for random effects showed a significant decrease (WC: -0.71 cm [-1.24; -0.19], p = 0.008 and HC: -0.73 cm [-1.16; -0.30], p = 0.0008). The risk of bias was also evaluated considering a high risk and a low risk according to PRISMA criteria. In conclusion, the results of this meta-analysis highlight a positive trend of probiotics supplementation on the amelioration of anthropometric measures of overweight and obese patients with related metabolic diseases. However, further research is needed before recommending the use of probiotics as a therapeutic strategy for these patients. The focus of the future research should be to evaluate the efficacy of different probiotic strains, the quantities to be administered, and the duration of the intervention.

Keywords: body weight; obesity; probiotics; weight loss.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Forest plot for randomized controlled trials of probiotic supplementation included in body weight (kg) subgroup meta-analysis (n = 1057). The studies are listed by first author and year. IV = equation that can be estimated by inverse variance (linear, exponential). The square represents the measures of effect (i.e., an odd ratio) for each study; the area of each square is proportional to the study’s weight in the meta-analysis. Horizontal line represents the confidence interval (CI) at the 95% level. The diamond represents the meta-analyzed measure of effect; the lateral points of diamond indicate CIs for this estimate. The vertical line represents no effects; if the CI for an individual study overlaps with this line, the given level of confidence for the effect size does not differ from no effect for that study. Risk of bias indicates the level of high and low risk associated with the article. With green signal for low risk and red for high risk of bias.
Figure 2
Figure 2
Forest plot for randomized controlled trials of probiotic supplementation included in body mass index (kg/m2) subgroup meta-analysis (n = 1123). The studies are listed by first author and year. IV = equation that can be estimated by inverse variance (linear, exponential). The square represents the measures of effect (i.e., an odd ratios) for each study; the area of each square is proportional to the study’s weight in the meta-analysis. Horizontal line represents the confidence interval (CI) at the 95% level. The diamond represents the meta-analyzed measure of effect; the lateral points of diamond indicate CIs for this estimate. The vertical line represents no effects; if the CI for an individual study overlaps with this line, the given level of confidence for the effect size does not differ from no effect for that study. Risk of bias indicates the level of high and low risk associated with the article, with green signal for low risk and red for high risk of bias.
Figure 3
Figure 3
Forest plot for randomized controlled trials of probiotic supplementation included in waist circumference (cm) subgroup meta-analysis (n = 621). The studies are listed by first author and year. IV = equation that can be estimated by inverse variance (linear, exponential). The square represents the measures of effect (i.e., an odd ratios) for each study; the area of each square is proportional to the study’s weight in the meta-analysis. The horizontal line represents the confidence interval CI) at the 95% level. The diamond represents the meta-analyzed measure of effect; the lateral points of diamond indicate CIs for this estimate. The vertical line represents no effects; if the CI for an individual study overlaps with this line, the given level of confidence for the effect size does not differ from no effect for that study. Risk of bias indicate the level of high and low risk associated with the article, with green signal for low risk and red for high risk of bias.
Figure 4
Figure 4
Forest plot for randomized controlled trials of probiotic supplementation included in hip circumference (cm) subgroup meta-analysis (n = 621). The studies are listed by first author and year. IV = equation that can be estimated by inverse variance (linear, exponential). The square represents the measures of effect (i.e., an odd ratios) for each study; the area of each square is proportional to the study’s weight in the meta-analysis. The horizontal line represents the confidence interval CI) at the 95% level. The diamond represents the meta-analyzed measure of effect; the lateral points of diamond indicate CIs for this estimate. The vertical line represents no effects; if the CI for an individual study overlaps with this line, the given level of confidence for the effect size does not differ from no effect for that study. Risk of bias indicate the level of high and low risk associated with the article, with green signal for low risk and red for high risk of bias.

References

    1. Baothman O.A., Zamzami M.A., Taher I., Abubaker J., Abu-Farha M. The Role of Gut Microbiota in the Development of Obesity and Diabetes. Lipids Health Dis. 2016;15:1–8. doi: 10.1186/s12944-016-0278-4.
    1. Walker A.W., Ince J., Duncan S.H., Webster L.M., Holtrop G., Ze X., Brown D., Stares M.D., Scott P., Bergerat A., et al. Dominant and Diet-Responsive Groups of Bacteria within the Human Colonic Microbiota. ISME J. 2011;5:220–230. doi: 10.1038/ismej.2010.118.
    1. Jumpertz R., Le D.S., Turnbaugh P.J., Trinidad C., Bogardus C., Gordon J.I., Krakoff J. Energy-Balance Studies Reveal Associations between Gut Microbes, Caloric Load, and Nutrient Absorption in Humans. Am. J. Clin. Nutr. 2011;94:58–65. doi: 10.3945/ajcn.110.010132.
    1. Murphy E.F., Cotter P.D., Healy S., Marques T.M., O’Sullivan O., Fouhy F., Clarke S.F., O’Toole P.W., Quigley E.M., Stanton C., et al. Composition and Energy Harvesting Capacity of the Gut Microbiota: Relationship to Diet, Obesity and Time in Mouse Models. Gut. 2010;59:1635–1642. doi: 10.1136/gut.2010.215665.
    1. Turnbaugh P.J., Ley R.E., Mahowald M.A., Magrini V., Mardis E.R., Gordon J.I. An Obesity-Associated Gut Microbiome with Increased Capacity for Energy Harvest. Nature. 2006;444:1027–1031. doi: 10.1038/nature05414.
    1. Tagliabue A., Elli M. The Role of Gut Microbiota in Human Obesity: Recent Findings and Future Perspectives. Nutr. Metab. Cardiovasc. Dis. 2013;23:160–168. doi: 10.1016/j.numecd.2012.09.002.
    1. Fernandes J., Su W., Rahat-Rozenbloom S., Wolever T.M.S., Comelli E.M. Adiposity, Gut Microbiota and Faecal Short Chain Fatty Acids Are Linked in Adult Humans. Nutr. Diabetes. 2014;4:e121. doi: 10.1038/nutd.2014.23.
    1. Schwiertz A., Taras D., Schäfer K., Beijer S., Bos N.A., Donus C., Hardt P.D. Microbiota and SCFA in Lean and Overweight Healthy Subjects. Obesity. 2010;18:190–195. doi: 10.1038/oby.2009.167.
    1. Sanmiguel C., Gupta A., Mayer E.A. Gut Microbiome and Obesity: A Plausible Explanation for Obesity. Curr. Obes. Rep. 2015;4:250–261. doi: 10.1007/s13679-015-0152-0.
    1. Turnbaugh P.J., Hamady M., Yatsunenko T., Cantarel B.L., Duncan A., Ley R.E., Sogin M.L., Jones W.J., Roe B.A., Affourtit J.P., et al. A Core Gut Microbiome in Obese and Lean Twins. Nature. 2009;457:480–484. doi: 10.1038/nature07540.
    1. Le Chatelier E., Nielsen T., Qin J., Prifti E., Hildebrand F., Falony G., Almeida M., Arumugam M., Batto J.M., Kennedy S., et al. Richness of Human Gut Microbiome Correlates with Metabolic Markers. Nature. 2013;500:541–546. doi: 10.1038/nature12506.
    1. Kasai C., Sugimoto K., Moritani I., Tanaka J., Oya Y., Inoue H., Tameda M., Shiraki K., Ito M., Takei Y., et al. Comparison of the Gut Microbiota Composition between Obese and Non-Obese Individuals in a Japanese Population, as Analyzed by Terminal Restriction Fragment Length Polymorphism and next-Generation Sequencing. BMC Gastroenterol. 2015;15:1–10. doi: 10.1186/s12876-015-0330-2.
    1. Walters W.A., Xu Z., Knight R. Meta-Analyses of Human Gut Microbes Associated with Obesity and IBD. FEBS Lett. 2014;588:4223–4233. doi: 10.1016/j.febslet.2014.09.039.
    1. Ley R.E., Turnbaugh P.J., Klein S., Gordon J.I. Microbial Ecology: Human Gut Microbes Associated with Obesity. Nature. 2006;444:1022–1023. doi: 10.1038/4441022a.
    1. Duncan S.H., Lobley G.E., Holtrop G., Ince J., Johnstone A.M., Louis P., Flint H.J. Human Colonic Microbiota Associated with Diet, Obesity and Weight Loss. Int. J. Obes. 2008;32:1720–1724. doi: 10.1038/ijo.2008.155.
    1. Furet J.-P., Kong L.-C., Tap J., Poitou C., Basdevant A., Bouillot J.-L., Mariat D., Corthier G., Doré J., Henegar C., et al. Differential Adaptation of Human Gut Microbiota to Bariatric Surgery-Induced Weight Loss: Links with Metabolic and Low-Grade Inflammation Markers. Diabetes. 2010;59:3049–3057. doi: 10.2337/db10-0253.
    1. Angelakis E., Armougom F., Carrière F., Bachar D., Laugier R., Lagier J.C., Robert C., Michelle C., Henrissat B., Raoult D. A Metagenomic Investigation of the Duodenal Microbiota Reveals Links with Obesity. PLoS ONE. 2015;10:1–15. doi: 10.1371/journal.pone.0137784.
    1. Million M., Angelakis E., Maraninchi M., Henry M., Giorgi R., Valero R., Vialettes B., Raoult D. Correlation between Body Mass Index and Gut Concentrations of Lactobacillus Reuteri, Bifidobacterium Animalis, Methanobrevibacter Smithii and Escherichia Coli. Int. J. Obes. 2013;37:1460–1466. doi: 10.1038/ijo.2013.20.
    1. Million M., Maraninchi M., Henry M., Armougom F., Richet H., Carrieri P., Valero R., Raccah D., Vialettes B., Raoult D. Obesity-Associated Gut Microbiota Is Enriched in Lactobacillus Reuteri and Depleted in Bifidobacterium Animalis and Methanobrevibacter Smithii. Int. J. Obes. 2012;36:817–825. doi: 10.1038/ijo.2011.153.
    1. World Health Organization (WHO) Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria. Fao Who. 2001:1–34. doi: 10.1201/9781420009613.ch16.
    1. Gérard P. Gut Microbiota and Obesity. Cell. Mol. Life Sci. 2016;73:147–162. doi: 10.1007/s00018-015-2061-5.
    1. Million M., Angelakis E., Paul M., Armougom F., Leibovici L., Raoult D. Comparative Meta-Analysis of the Effect of Lactobacillus Species on Weight Gain in Humans and Animals. Microb. Pathog. 2012;53:100–108. doi: 10.1016/j.micpath.2012.05.007.
    1. Aoun A., Darwish F., Hamod N. The Influence of the Gut Microbiome on Obesity in Adults and the Role of Probiotics, Prebiotics, and Synbiotics for Weight Loss. Preventive Nutrition Food Sci. 2020;25:113–123. doi: 10.3746/pnf.2020.25.2.113.
    1. Ballini A., Scacco S., Boccellino M., Santacroce L., Arrigoni R. Microbiota and Obesity: Where Are We Now? Biology. 2020;9:415. doi: 10.3390/biology9120415.
    1. Home-PubMed-NCBI. [(accessed on 27 September 2018)]; Available online: .
    1. Scopus Preview-Scopus-Welcome to Scopus. [(accessed on 27 September 2018)]; Available online: .
    1. Kadooka Y., Sato M., Imaizumi K., Ogawa A., Ikuyama K., Akai Y., Okano M., Kagoshima M., Tsuchida T. Regulation of Abdominal Adiposity by Probiotics (Lactobacillus Gasseri SBT2055) in Adults with Obese Tendencies in a Randomized Controlled Trial. Eur. J. Clin. Nutr. 2010;64:636–643. doi: 10.1038/ejcn.2010.19.
    1. Kadooka Y., Sato M., Ogawa A., Miyoshi M., Uenishi H., Ogawa H., Ikuyama K., Kagoshima M., Tsuchida T. Effect of Lactobacillus Gasseri SBT2055 in Fermented Milk on Abdominal Adiposity in Adults in a Randomised Controlled Trial. Br. J. Nutr. 2013;110:1696–1703. doi: 10.1017/S0007114513001037.
    1. Ogawa A., Kadooka Y., Kato K., Shirouchi B., Sato M. Lactobacillus Gasseri SBT2055 Reduces Postprandial and Fasting Serum Non-Esterified Fatty Acid Levels in Japanese Hypertriacylglycerolemic Subjects. Lipids Health Dis. 2014;13:1–8. doi: 10.1186/1476-511X-13-36.
    1. Jung S.-P., Lee K.-M., Kang J.-H., Yun S.-I., Park H.-O., Moon Y., Kim J.-Y. Effect of Lactobacillus Gasseri BNR17 on Overweight and Obese Adults: A Randomized, Double-Blind Clinical Trial. Korean J. Fam. Med. 2013;34:80–89. doi: 10.4082/kjfm.2013.34.2.80.
    1. Lee S.J., Bose S., Seo J.G., Chung W.S., Lim C.Y., Kim H. The Effects of Co-Administration of Probiotics with Herbal Medicine on Obesity, Metabolic Endotoxemia and Dysbiosis: A Randomized Double-Blind Controlled Clinical Trial. Clin. Nutr. 2014;33:973–981. doi: 10.1016/j.clnu.2013.12.006.
    1. Sanchez M., Darimont C., Drapeau V., Emady-Azar S., Lepage M., Rezzonico E., Ngom-Bru C., Berger B., Philippe L., Ammon-Zuffrey C., et al. Effect of Lactobacillus Rhamnosus CGMCC1.3724 Supplementation on Weight Loss and Maintenance in Obese Men and Women. Br. J. Nutr. 2014;111:1507–1519. doi: 10.1017/S0007114513003875.
    1. Zarrati M., Shidfar F., Nourijelyani K., Mofid V., Hossein zadeh-Attar M.J., Bidad K., Najafi F., Gheflati Z., Chamari M., Salehi E. Lactobacillus Acidophilus La5, Bifidobacterium BB12, and Lactobacillus Casei DN001 Modulate Gene Expression of Subset Specific Transcription Factors and Cytokines in Peripheral Blood Mononuclear Cells of Obese and Overweight People. BioFactors. 2013;39:633–643. doi: 10.1002/biof.1128.
    1. Gomes A.C., de Sousa R.G.M., Botelho P.B., Gomes T.L.N., Prada P.O., Mota J.F. The Additional Effects of a Probiotic Mix on Abdominal Adiposity and Antioxidant Status: A Double-Blind, Randomized Trial. Obesity. 2017;25:30–38. doi: 10.1002/oby.21671.
    1. Woodard G.A., Encarnacion B., Downey J.R., Peraza J., Chong K., Hernandez-Boussard T., Morton J.M. Probiotics Improve Outcomes after Roux-En-Y Gastric Bypass Surgery: A Prospective Randomized Trial. J. Gastrointest. Surg. 2009;13:1198–1204. doi: 10.1007/s11605-009-0891-x.
    1. Asemi Z., Khorrami-Rad A., Alizadeh S.A., Shakeri H., Esmaillzadeh A. Effects of Synbiotic Food Consumption on Metabolic Status of Diabetic Patients: A Double-Blind Randomized Cross-over Controlled Clinical Trial. Clin. Nutr. 2014;33:198–203. doi: 10.1016/j.clnu.2013.05.015.
    1. Shakeri H., Hadaegh H., Abedi F., Tajabadi-Ebrahimi M., Mazroii N., Ghandi Y., Asemi Z. Consumption of Synbiotic Bread Decreases Triacylglycerol and VLDL Levels While Increasing HDL Levels in Serum from Patients with Type-2 Diabetes. Lipids. 2014;49:695–701. doi: 10.1007/s11745-014-3901-z.
    1. Mohammadi-Sartang M., Bellissimo N., Totosy de Zepetnek J.O., Brett N.R., Mazloomi S.M., Fararouie M., Bedeltavana A., Famouri M., Mazloom Z. The Effect of Daily Fortified Yogurt Consumption on Weight Loss in Adults with Metabolic Syndrome: A 10-Week Randomized Controlled Trial. Nutr. Metab. Cardiovasc. Dis. NMCD. 2018;28:565–574. doi: 10.1016/j.numecd.2018.03.001.
    1. Asemi Z., Zohreh Z., Shakeri H., Sabihi S., Esmaillzadeh A. Effect of Multispecies Probiotic Supplements on Metabolic Profile, Hs-CRP, and Oxidative Stress in Patients with Type 2 Diabetes. Ann. Nutr. Metab. 2013;63:1–9. doi: 10.1159/000349922.
    1. Kassaian N., Aminorroaya A., Feizi A., Jafari P., Amini M. The Effects of Probiotic and Synbiotic Supplementation on Metabolic Syndrome Indices in Adults at Risk of Type 2 Diabetes: Study Protocol for a Randomized Controlled Trial. Trials. 2017;18:148. doi: 10.1186/s13063-017-1885-8.
    1. Palacios T., Vitetta L., Coulson S., Madigan C.D., Denyer G.S., Caterson I.D. The Effect of a Novel Probiotic on Metabolic Biomarkers in Adults with Prediabetes and Recently Diagnosed Type 2 Diabetes Mellitus: Study Protocol for a Randomized Controlled Trial. Trials. 2017;18:7. doi: 10.1186/s13063-016-1762-x.
    1. Shavakhi A., Minakari M., Firouzian H., Assali R., Hekmatdoost A., Ferns G. Effect of a Probiotic and Metformin on Liver Aminotransferases in Non-Alcoholic Steatohepatitis: A Double Blind Randomized Clinical Trial. Int. J. Prev. Med. 2013;4:531–537.
    1. Alisi A., Bedogni G., Baviera G., Giorgio V., Porro E., Paris C., Giammaria P., Reali L., Anania F., Nobili V. Randomised Clinical Trial: The Beneficial Effects of VSL#3 in Obese Children with Non-Alcoholic Steatohepatitis. Aliment. Pharmacol. Ther. 2014;39:1276–1285. doi: 10.1111/apt.12758.
    1. Nabavi S., Rafraf M., Somi M.H., Homayouni-Rad A., Asghari-Jafarabadi M. Effects of Probiotic Yogurt Consumption on Metabolic Factors in Individuals with Nonalcoholic Fatty Liver Disease. J. Dairy Sci. 2014;97:7386–7393. doi: 10.3168/jds.2014-8500.
    1. Sadrzadeh-Yeganeh H., Elmadfa I., Djazayery A., Jalali M., Heshmat R., Chamary M. The Effects of Probiotic and Conventional Yoghurt on Lipid Profile in Women. Br. J. Nutr. 2010;103:1778–1783. doi: 10.1017/S0007114509993801.
    1. Chang B.J., Park S.U., Jang Y.S., Ko S.H., Joo N.M., Kim S.I., Kim C.H., Chang D.K. Effect of Functional Yogurt NY-YP901 in Improving the Trait of Metabolic Syndrome. Eur. J. Clin. Nutr. 2011;65:1250–1255. doi: 10.1038/ejcn.2011.115.
    1. Leber B., Tripolt N.J., Blattl D., Eder M., Wascher T.C., Pieber T.R., Stauber R., Sourij H., Oettl K., Stadlbauer V. The Influence of Probiotic Supplementation on Gut Permeability in Patients with Metabolic Syndrome: An Open Label, Randomized Pilot Study. Eur. J. Clin. Nutr. 2012;66:1110–1115. doi: 10.1038/ejcn.2012.103.
    1. Sharafedtinov K.K., Plotnikova O.A., Alexeeva R.I., Sentsova T.B., Songisepp E., Stsepetova J., Smidt I., Mikelsaar M. Hypocaloric Diet Supplemented with Probiotic Cheese Improves Body Mass Index and Blood Pressure Indices of Obese Hypertensive Patients—A Randomized Double-Blind Placebo-Controlled Pilot Study. Nutr. J. 2013;12:1. doi: 10.1186/1475-2891-12-138.
    1. Abenavoli L., Scarpellini E., Colica C., Boccuto L., Salehi B., Sharifi-Rad J., Aiello V., Romano B., De Lorenzo A., Izzo A.A., et al. Gut Microbiota and Obesity: A Role for Probiotics. Nutrients. 2019;11:2690. doi: 10.3390/nu11112690.
    1. Papadaki A., Nolen-Doerr E., Mantzoros C.S. The Effect of the Mediterranean Diet on Metabolic Health: A Systematic Review and Meta-Analysis of Controlled Trials in Adults. Nutrients. 2020;12:3342. doi: 10.3390/nu12113342.
    1. Wiciński M., Gębalski J., Gołębiewski J., Malinowski B. Probiotics for the Treatment of Overweight and Obesity in Humans—A Review of Clinical Trials. Microorganisms. 2020;8:1148. doi: 10.3390/microorganisms8081148.
    1. Mazloom K., Siddiqi I., Covasa M. Probiotics: How Effective Are They in the Fight against Obesity? Nutrients. 2019;11:258. doi: 10.3390/nu11020258.
    1. Daniali M., Nikfar S., Abdollahi M. A Brief Overview on the Use of Probiotics to Treat Overweight and Obese Patients. Expert Rev. Endocrinol. Metab. 2020;15:1–4. doi: 10.1080/17446651.2020.1719068.
    1. Aronsson L., Huang Y., Parini P., Korach-André M., Håkansson J., Gustafsson J.-Å., Pettersson S., Arulampalam V., Rafter J. Decreased Fat Storage by Lactobacillus Paracasei Is Associated with Increased Levels of Angiopoietin-Like 4 Protein (ANGPTL4) PLoS ONE. 2010;5:e13087. doi: 10.1371/journal.pone.0013087.
    1. Ogawa A., Kobayashi T., Sakai F., Kadooka Y., Kawasaki Y. Lactobacillus Gasseri SBT2055 Suppresses Fatty Acid Release through Enlargement of Fat Emulsion Size in Vitro and Promotes Fecal Fat Excretion in Healthy Japanese Subjects. Lipids Health Dis. 2015;14:20. doi: 10.1186/s12944-015-0019-0.
    1. Scarmozzino F., Poli A., Visioli F. Microbiota and cardiovascular disease risk: A scoping review. Pharmacol. Res. 2020;159 doi: 10.1016/j.phrs.2020.104952.
    1. Lescheid D.W. Probiotics as Regulators of Inflammation: A Review. Funct. Foods Health Dis. 2014;4:299. doi: 10.31989/ffhd.v4i7.2.
    1. Peng L., Li Z.R., Green R.S., Holzman I.R., Lin J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J. Nutr. 2009;139:1619–1625. doi: 10.3945/jn.109.104638.
    1. Zhang Q., Wu Y., Fei X. Effect of Probiotics on Body Weight and Body-Mass Index: A Systematic Review and Meta-Analysis of Randomized, Controlled Trials. Int. J. Food Sci. Nutr. 2016;67:571–580. doi: 10.1080/09637486.2016.1181156.
    1. Abbasi J. Are Probiotics Money Down the Toilet? or Worse? JAMA J. Am. Med. Assoc. 2019;321:633–635. doi: 10.1001/jama.2018.20798.
    1. Daniel H. Diet and the gut microbiome: From hype to hypothesis. Br. J. Nutr. 2020;124:521–530. doi: 10.1017/S0007114520001142.
    1. Hiergeist A., Reischl U., Gessner A., Garzetti D., Stecher B., Gálvez E.J.C., Strowig T., Yang I., Suerbaum S., Fischer N., et al. Multicenter quality assessment of 16S ribosomal DNA-sequencing for microbiome analyses reveals high inter-center variability. Int. J. Med. Microbiol. 2016;306:334–342. doi: 10.1016/j.ijmm.2016.03.005.

Source: PubMed

3
Abonnere