The Probiotic Strain H. alvei HA4597® Improves Weight Loss in Overweight Subjects under Moderate Hypocaloric Diet: A Proof-of-Concept, Multicenter Randomized, Double-Blind Placebo-Controlled Study

Pierre Déchelotte, Jonathan Breton, Clémentine Trotin-Picolo, Barbara Grube, Constantin Erlenbeck, Gordana Bothe, Sergueï O Fetissov, Grégory Lambert, Pierre Déchelotte, Jonathan Breton, Clémentine Trotin-Picolo, Barbara Grube, Constantin Erlenbeck, Gordana Bothe, Sergueï O Fetissov, Grégory Lambert

Abstract

Background: Increasing evidence supports the role of the gut microbiota in the control of body weight and feeding behavior. Moreover, recent studies have reported that the probiotic strain Hafnia alvei HA4597® (HA), which produces the satietogenic peptide ClpB mimicking the effect of alpha-MSH, reduced weight gain and adiposity in rodent models of obesity. Methods: To investigate the clinical efficacy of HA, 236 overweight subjects were included, after written informed consent, in a 12-week prospective, double-blind, randomized study. All subjects received standardized counselling for a -20% hypocaloric diet and were asked to maintain their usual physical activity. Subjects of the HA group received two capsules per day providing 100 billion bacteria per day and subjects in the Placebo (P) group received two placebo capsules. The primary endpoint was the percentage of subjects achieving a weight loss of at least 3% after 12 weeks. Intention-to-treat statistical analysis was performed using exact-Fischer, Mann-Whitney and paired-Wilcoxon tests as appropriate. Results: In the HA group, significantly more subjects (+33%) met the primary endpoint than in the P group (54.9 vs. 41.4%, p = 0.048). In the HA group, an increased feeling of fullness (p = 0.009) and a greater loss of hip circumference (p < 0.001) at 12 weeks were also observed. Fasting glycemia at 12 weeks was significantly lower (p < 0.05) in the HA compared to P group. Clinical and biological tolerance was good in both groups. Conclusions: A 12-week treatment with the probiotic strain H. alvei HA4597® significantly improves weight loss, feeling of fullness and reduction of hip circumference in overweight subjects following moderate hypocaloric diet. These data support the use of H. alvei HA4597® in the global management of excess weight.

Keywords: H. alvei HA4597; HA4597®; appetite; feeling of fullness; gut microbiota; hip circumference; overweight subjects; probiotics.

Conflict of interest statement

S.O.F., J.B., P.D. and G.L. are inventors of patents supporting the technology used in the study. S.O.F. and P.D. are founders, shareholders and consultants of TargEDys SA. C.E. is a former and G.B. a current employee of Analyze & Realize. B.G. is an MD at a practice for general medicine in Berlin. C.T.-P. and G.L. are employees of TargEDys.

Figures

Figure 1
Figure 1
Flowchart illustrating the steps of screening, enrollment, assignment and follow-up of study participants for the Intent To Treat (ITT) and Per Protocol (PP) analysis.
Figure 2
Figure 2
Effect of HA supplementation on the proportion of responders losing at least 3% of body weight. Proportion of overweight subjects losing at least 3% of body weight in ITT (A) and PP (B) populations. (A,B) Exact Fisher’s test P. vs. HA.* p ≤ 0.05.
Figure 3
Figure 3
Proportion of responders losing at least 4% of body weight after 12 HA supplementation. Proportion of HA treated subjects losing at least 4% of body weight in ITT (A) and PP (B) populations. Exact Fisher’s test P. vs. HA.* p ≤ 0.05.
Figure 4
Figure 4
Changes in hip circumference following 12 weeks of HA supplementation in overweight subjects. Changes in Hip circumference following 12 weeks of HA supplementation compared to week 0 in ITT (A) and PP (B) population. (A,B) Mann-Whitney-U test (w12-w0)P. vs. (w12-w0)HA.*** pU ≤ 0.001.
Figure 5
Figure 5
Feeling of fullness in overweight subject treated with HA under hypocaloric diet. Feeling of fullness in ITT (A) and PP (B) populations. Changes in the feeling of fullness over 12 weeks of HA supplementation in ITT (C) and PP (D) population. (A,B) Mann-Whitney-U test (w12)P. vs. (w12)HA.** pU ≤ 0.01.*pU ≤ 0.05. (C) Mann-Whitney-U test; (w12-w0)P. vs. (w12-w0)HA.* pU ≤ 0.05. Paired Wilcoxon test; HA(w0) vs. HA(w12).** pwi ≤ 0.01 (D) Mann-Whitney-U test; (w12-w0)P. vs. (w12-w0)HA.* pU ≤ 0.05. Paired Wilcoxon test; HA(w0) vs. HA(w12).* pwi ≤ 0.05.
Figure 6
Figure 6
Global assessment of the treatment by the blinded subjects and investigators in the HA and P groups.

References

    1. GBD 2015 Obesity Collaborators. Afshin A., Forouzanfar M.H., Reitsma M.B., Sur P., Estep K., Lee A., Marczak L., Mokdad A.H., Moradi-Lakeh M., et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017;377:13–27. doi: 10.1056/NEJMoa1614362.
    1. Jensen M.D., Ryan D.H., Apovian C.M., Ard J.D., Comuzzie A.G., Donato K.A., Hu F.B., Hubbard V.S., Jakicic J.M., Kushner R.F., et al. 2013 AHA/ACC/TOS Guideline for the Management of Overweight and Obesity in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. Circulation. 2014;129:S102–S138. doi: 10.1161/.
    1. Romo-Nava F., Blom T.J., Guerdjikova A., Winham S.J., Cuellar-Barboza A.B., Nunez N.A., Singh B., Biernacka J.M., Frye M.A., McElroy S.L. Evening Chronotype, Disordered Eating Behavior, and Poor Dietary Habits in Bipolar Disorder. Acta Psychiatr. Scand. 2020;142:58–65. doi: 10.1111/acps.13179.
    1. Appolinario J.C., Nardi A.E., McElroy S.L. Investigational Drugs for the Treatment of Binge Eating Disorder (BED): An Update. Expert Opin. Investig. Drugs. 2019;28:1081–1094. doi: 10.1080/13543784.2019.1692813.
    1. Cani P.D., Van Hul M., Lefort C., Depommier C., Rastelli M., Everard A. Microbial Regulation of Organismal Energy Homeostasis. Nat. Metab. 2019;1:34–46. doi: 10.1038/s42255-018-0017-4.
    1. Turnbaugh P.J., Ley R.E., Mahowald M.A., Magrini V., Mardis E.R., Gordon J.I. An Obesity-Associated Gut Microbiome with Increased Capacity for Energy Harvest. Nature. 2006;444:1027–1031. doi: 10.1038/nature05414.
    1. Fetissov S.O. Role of the Gut Microbiota in Host Appetite Control: Bacterial Growth to Animal Feeding Behaviour. Nat. Rev. Endocrinol. 2017;13:11–25. doi: 10.1038/nrendo.2016.150.
    1. Carbone E.A., D’Amato P., Vicchio G., De Fazio P., Segura-Garcia C. A Systematic Review on the Role of Microbiota in the Pathogenesis and Treatment of Eating Disorders. Eur. Psychiatry. 2021;64:e2. doi: 10.1192/j.eurpsy.2020.109.
    1. Breton J., Tennoune N., Lucas N., Francois M., Legrand R., Jacquemot J., Goichon A., Guérin C., Peltier J., Pestel-Caron M., et al. Gut Commensal, E. Coli Proteins Activate Host Satiety Pathways Following Nutrient-Induced Bacterial Growth. Cell Metab. 2016;23:324–334. doi: 10.1016/j.cmet.2015.10.017.
    1. Muscogiuri G., Cantone E., Cassarano S., Tuccinardi D., Barrea L., Savastano S., Colao A. Gut Microbiota: A New Path to Treat Obesity. Int. J. Obes. Suppl. 2019;9:10–19. doi: 10.1038/s41367-019-0011-7.
    1. Guazzelli Marques C., de Piano Ganen A., Zaccaro de Barros A., Thomatieli Dos Santos R.V., Dos Santos Quaresma M.V.L. Weight Loss Probiotic Supplementation Effect in Overweight and Obesity Subjects: A Review. Clin. Nutr. 2020;39:694–704. doi: 10.1016/j.clnu.2019.03.034.
    1. Suzumura E.A., Bersch-Ferreira Â.C., Torreglosa C.R., da Silva J.T., Coqueiro A.Y., Kuntz M.G.F., Chrispim P.P., Weber B., Cavalcanti A.B. Effects of Oral Supplementation with Probiotics or Synbiotics in Overweight and Obese Adults: A Systematic Review and Meta-Analyses of Randomized Trials. Nutr. Rev. 2019;77:430–450. doi: 10.1093/nutrit/nuz001.
    1. Koutnikova H., Genser B., Monteiro-Sepulveda M., Faurie J.-M., Rizkalla S., Schrezenmeir J., Clément K. Impact of Bacterial Probiotics on Obesity, Diabetes and Non-Alcoholic Fatty Liver Disease Related Variables: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. BMJ Open. 2019;9:e017995. doi: 10.1136/bmjopen-2017-017995.
    1. Tennoune N., Chan P., Breton J., Legrand R., Chabane Y.N., Akkermann K., Järv A., Ouelaa W., Takagi K., Ghouzali I., et al. Bacterial ClpB Heat-Shock Protein, an Antigen-Mimetic of the Anorexigenic Peptide α-MSH, at the Origin of Eating Disorders. Transl. Psychiatry. 2014;4:e458. doi: 10.1038/tp.2014.98.
    1. Legrand R., Lucas N., Dominique M., Azhar S., Deroissart C., Le Solliec M.-A., Rondeaux J., Nobis S., Guérin C., Léon F., et al. Commensal Hafnia Alvei Strain Reduces Food Intake and Fat Mass in Obese Mice-a New Potential Probiotic for Appetite and Body Weight Management. Int. J. Obes. 2020;44:1041–1051. doi: 10.1038/s41366-019-0515-9.
    1. Lucas N., Legrand R., Deroissart C., Dominique M., Azhar S., Le Solliec M.-A., Léon F., do Rego J.-C., Déchelotte P., Fetissov S.O., et al. Hafnia Alvei HA4597 Strain Reduces Food Intake and Body Weight Gain and Improves Body Composition, Glucose, and Lipid Metabolism in a Mouse Model of Hyperphagic Obesity. Microorganisms. 2019;8:35. doi: 10.3390/microorganisms8010035.
    1. Dominique M., Breton J., Guérin C., Bole-Feysot C., Lambert G., Déchelotte P., Fetissov S. Effects of Macronutrients on the In Vitro Production of ClpB, a Bacterial Mimetic Protein of α-MSH and Its Possible Role in Satiety Signaling. Nutrients. 2019;11:2115. doi: 10.3390/nu11092115.
    1. Chong P.-W., Beah Z.-M., Grube B., Riede L. IQP-GC-101 Reduces Body Weight and Body Fat Mass: A Randomized, Double-Blind, Placebo-Controlled Study. Phytotherapy Res. 2014;28:1520–1526. doi: 10.1002/ptr.5158.
    1. Grube B., Chong P.-W., Lau K.-Z., Orzechowski H.-D. A Natural Fiber Complex Reduces Body Weight in the Overweight and Obese: A Double-Blind, Randomized, Placebo-Controlled Study. Obesity. 2013;21:58–64. doi: 10.1002/oby.20244.
    1. Svedlund J., Sjödin I., Dotevall G. GSRS—A Clinical Rating Scale for Gastrointestinal Symptoms in Patients with Irritable Bowel Syndrome and Peptic Ulcer Disease. Dig. Dis. Sci. 1988;33:129–134. doi: 10.1007/BF01535722.
    1. Bäckhed F., Manchester J.K., Semenkovich C.F., Gordon J.I. Mechanisms Underlying the Resistance to Diet-Induced Obesity in Germ-Free Mice. Proc. Natl. Acad. Sci. USA. 2007;104:979–984. doi: 10.1073/pnas.0605374104.
    1. Boulangé C.L., Neves A.L., Chilloux J., Nicholson J.K., Dumas M.-E. Impact of the Gut Microbiota on Inflammation, Obesity, and Metabolic Disease. Genome Med. 2016;8:42. doi: 10.1186/s13073-016-0303-2.
    1. Frost G., Sleeth M.L., Sahuri-Arisoylu M., Lizarbe B., Cerdan S., Brody L., Anastasovska J., Ghourab S., Hankir M., Zhang S., et al. The Short-Chain Fatty Acid Acetate Reduces Appetite via a Central Homeostatic Mechanism. Nat. Commun. 2014;5:3611. doi: 10.1038/ncomms4611.
    1. Kerac M., Bunn J., Seal A., Thindwa M., Tomkins A., Sadler K., Bahwere P., Collins S. Probiotics and Prebiotics for Severe Acute Malnutrition (PRONUT Study): A Double-Blind Efficacy Randomised Controlled Trial in Malawi. Lancet. 2009;374:136–144. doi: 10.1016/S0140-6736(09)60884-9.
    1. Korpela K., Flint H.J., Johnstone A.M., Lappi J., Poutanen K., Dewulf E., Delzenne N., de Vos W.M., Salonen A. Gut Microbiota Signatures Predict Host and Microbiota Responses to Dietary Interventions in Obese Individuals. PLoS ONE. 2014;9:e90702. doi: 10.1371/journal.pone.0090702.
    1. Salonen A., Lahti L., Salojärvi J., Holtrop G., Korpela K., Duncan S.H., Date P., Farquharson F., Johnstone A.M., Lobley G.E., et al. Impact of Diet and Individual Variation on Intestinal Microbiota Composition and Fermentation Products in Obese Men. ISME J. 2014;8:2218–2230. doi: 10.1038/ismej.2014.63.
    1. Cani P.D., de Vos W.M. Next-Generation Beneficial Microbes: The Case of Akkermansia Muciniphila. Front. Microbiol. 2017;8:1765. doi: 10.3389/fmicb.2017.01765.
    1. Sanders M.E. Probiotics: Definition, Sources, Selection, and Uses. Clin. Infect. Dis. 2008;46:S58–S61. doi: 10.1086/523341.
    1. Cerdó T., García-Santos J.A., Bermúdez M.G., Campoy C. The Role of Probiotics and Prebiotics in the Prevention and Treatment of Obesity. Nutrients. 2019;11:635. doi: 10.3390/nu11030635.
    1. Wiciński M., Gębalski J., Gołębiewski J., Malinowski B. Probiotics for the Treatment of Overweight and Obesity in Humans—A Review of Clinical Trials. Microorganisms. 2020;8:1148. doi: 10.3390/microorganisms8081148.
    1. Rucker D., Padwal R., Li S.K., Curioni C., Lau D.C.W. Long Term Pharmacotherapy for Obesity and Overweight: Updated Meta-Analysis. BMJ. 2007;335:1194–1199. doi: 10.1136/bmj.39385.413113.25.
    1. Anderson E.J.P., Çakir I., Carrington S.J., Cone R.D., Ghamari-Langroudi M., Gillyard T., Gimenez L.E., Litt M.J. 60 YEARS OF POMC: Regulation of Feeding and Energy Homeostasis by α-MSH. J. Mol. Endocrinol. 2016;56:T157–T174. doi: 10.1530/JME-16-0014.
    1. Panaro B.L., Tough I.R., Engelstoft M.S., Matthews R.T., Digby G.J., Møller C.L., Svendsen B., Gribble F., Reimann F., Holst J.J., et al. The Melanocortin-4 Receptor Is Expressed in Enteroendocrine L Cells and Regulates the Release of Peptide YY and Glucagon-like Peptide 1 in Vivo. Cell Metab. 2014;20:1018–1029. doi: 10.1016/j.cmet.2014.10.004.
    1. Kühnen P., Clément K., Wiegand S., Blankenstein O., Gottesdiener K., Martini L.L., Mai K., Blume-Peytavi U., Grüters A., Krude H. Proopiomelanocortin Deficiency Treated with a Melanocortin-4 Receptor Agonist. N. Engl. J. Med. 2016;375:240–246. doi: 10.1056/NEJMoa1512693.
    1. Arnoriaga-Rodríguez M., Mayneris-Perxachs J., Burokas A., Pérez-Brocal V., Moya A., Portero-Otin M., Ricart W., Maldonado R., Fernández-Real J.-M. Gut Bacterial ClpB-like Gene Function Is Associated with Decreased Body Weight and a Characteristic Microbiota Profile. Microbiome. 2020;8:59. doi: 10.1186/s40168-020-00837-6.
    1. Million M., Angelakis E., Maraninchi M., Henry M., Giorgi R., Valero R., Vialettes B., Raoult D. Correlation between Body Mass Index and Gut Concentrations of Lactobacillus Reuteri, Bifidobacterium Animalis, Methanobrevibacter Smithii and Escherichia Coli. Int. J. Obes. 2013;37:1460–1466. doi: 10.1038/ijo.2013.20.
    1. Dominique M., Legrand R., Galmiche M., Azhar S., Deroissart C., Guérin C., do Rego J.-L., Leon F., Nobis S., Lambert G., et al. Changes in Microbiota and Bacterial Protein Caseinolytic Peptidase B During Food Restriction in Mice: Relevance for the Onset and Perpetuation of Anorexia Nervosa. Nutrients. 2019;11:2514. doi: 10.3390/nu11102514.
    1. Breton J., Jacquemot J., Yaker L., Leclerc C., Connil N., Feuilloley M., Déchelotte P., Fetissov S.O. Host Starvation and Female Sex Influence Enterobacterial ClpB Production: A Possible Link to the Etiology of Eating Disorders. Microorganisms. 2020;8:530. doi: 10.3390/microorganisms8040530.
    1. Maillard F., Pereira B., Boisseau N. Effect of High-Intensity Interval Training on Total, Abdominal and Visceral Fat Mass: A Meta-Analysis. Sports Med. 2018;48:269–288. doi: 10.1007/s40279-017-0807-y.
    1. Andreato L.V., Esteves J.V., Coimbra D.R., Moraes A.J.P., de Carvalho T. The Influence of High-Intensity Interval Training on Anthropometric Variables of Adults with Overweight or Obesity: A Systematic Review and Network Meta-Analysis. Obes. Rev. 2019;20:142–155. doi: 10.1111/obr.12766.
    1. Depommier C., Everard A., Druart C., Plovier H., Van Hul M., Vieira-Silva S., Falony G., Raes J., Maiter D., Delzenne N.M., et al. Supplementation with Akkermansia Muciniphila in Overweight and Obese Human Volunteers: A Proof-of-Concept Exploratory Study. Nat. Med. 2019;25:1096–1103. doi: 10.1038/s41591-019-0495-2.
    1. Folope V., Hellot M.-F., Kuhn J.-M., Ténière P., Scotté M., Déchelotte P. Weight Loss and Quality of Life after Bariatric Surgery: A Study of 200 Patients after Vertical Gastroplasty or Adjustable Gastric Banding. Eur. J. Clin. Nutr. 2007;62:1022–1030. doi: 10.1038/sj.ejcn.1602808.
    1. Gordon D.M., FitzGibbon F. The Distribution of Enteric Bacteria from Australian Mammals: Host and Geographical Effects. Microbiology. 1999;145:2663–2671. doi: 10.1099/00221287-145-10-2663.
    1. Tornadijo E., Fresno J.M., Carballo J., Martín-Sarmiento R. Study of Enterobacteriaceae throughout the Manufacturing and Ripening of Hard Goats’ Cheese. J. Appl. Bacteriol. 1993;75:240–246. doi: 10.1111/j.1365-2672.1993.tb02772.x.
    1. Veiga P., Suez J., Derrien M., Elinav E. Moving from Probiotics to Precision Probiotics. Nat. Microbiol. 2020;5:878–880. doi: 10.1038/s41564-020-0721-1.

Source: PubMed

3
Abonnere