Customized Human Milk Fortification Based on Measured Human Milk Composition to Improve the Quality of Growth in Very Preterm Infants: A Mixed-Cohort Study Protocol

Manuela Cardoso, Daniel Virella, Israel Macedo, Diana Silva, Luís Pereira-da-Silva, Manuela Cardoso, Daniel Virella, Israel Macedo, Diana Silva, Luís Pereira-da-Silva

Abstract

Adequate nutrition of very preterm infants comprises fortification of human milk (HM), which helps to improve their nutrition and health. Standard HM fortification involves a fixed dose of a multi-nutrient HM fortifier, regardless of the composition of HM. This fortification method requires regular measurements of HM composition and has been suggested to be a more accurate fortification method. This observational study protocol is designed to assess whether the target HM fortification method (contemporary cohort) improves the energy and macronutrient intakes and the quality of growth of very preterm infants, compared with the previously used standard HM fortification (historical cohorts). In the contemporary cohort, a HM multi-nutrient fortifier and modular supplements of protein and fat are used for HM fortification, and the enteral nutrition recommendations of the European Society for Paediatric Gastroenterology Hepatology and Nutrition for preterm infants will be considered. For both cohorts, the composition of HM is assessed using the Miris Human Milk analyzer (Uppsala, Sweden). The quality of growth will be assessed by in-hospital weight, length, and head circumference growth velocities and a single measurement of adiposity (fat mass percentage and fat mass index) performed just after discharge, using the air displacement plethysmography method (Pea Pod, Cosmed, Italy). ClinicalTrials.gov registration number: NCT04400396.

Keywords: body composition; growth; human milk fortification; preterm infants; standard fortification; target fortification.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flow diagram including the eligibility, recruitment, and drop-out criteria, used in both study arms: standard and target human milk fortification.

References

    1. Dutta S., Singh B., Chessell L., Wilson J., Janes M., McDonald K., Shahid S., Gardner V.A., Hjartarson A., Purcha M., et al. Guidelines for Feeding Very Low Birth Weight Infants. Nutrients. 2015;7:423–442. doi: 10.3390/nu7010423.
    1. Lewis E.D., Richard C., Larsen B.M., Field C.J. The Importance of Human Milk for Immunity in Preterm Infants. Clin. Perinatol. 2017;44:23–47. doi: 10.1016/j.clp.2016.11.008.
    1. Wagner C.L., Taylor S.N., Johnson D. Host Factors in Amniotic Fluid and Breast Milk that Contribute to Gut Maturation. Clin. Rev. Allergy Immunol. 2008;34:191–204. doi: 10.1007/s12016-007-8032-3.
    1. Loui A., Eilers E., Strauss E., Pohl-Schickinger A., Obladen M., Koehne P. Vascular Endothelial Growth Factor (VEGF) and Soluble VEGF Receptor 1 (sFlt-1) Levels in Early and Mature Human Milk from Mothers of Preterm versus Term Infants. J. Hum. Lact. 2012;28:522–528. doi: 10.1177/0890334412447686.
    1. Ballard O., Morrow A.L. Human Milk Composition. Pediatr. Clin. N. Am. 2013;60:49–74. doi: 10.1016/j.pcl.2012.10.002.
    1. Vohr B.R., Poindexter B.B., Dusick A.M., McKinley L.T., Higgins R.D., Langer J.C., Poole W.K., for the National Institute of Child Health and Human Development National Research Network Persistent Beneficial Effects of Breast Milk Ingested in the Neonatal Intensive Care Unit on Outcomes of Extremely Low Birth Weight Infants at 30 Months of Age. Pediatrics. 2007;120:e953–e959. doi: 10.1542/peds.2006-3227.
    1. Miller J., Tonkin E., Damarell R.A., McPhee A.J., Suganuma M., Suganuma H., Middleton P.F., Makrides M., Collins C.T. A Systematic Review and Meta-Analysis of Human Milk Feeding and Morbidity in Very Low Birth Weight Infants. Nutrients. 2018;10:707. doi: 10.3390/nu10060707.
    1. Villamor-Martínez E., Pierro M., Cavallaro G., Mosca F., Kramer B.W., Villamor E. Donor Human Milk Protects against Bronchopulmonary Dysplasia: A Systematic Review and Meta-Analysis. Nutrients. 2018;10:238. doi: 10.3390/nu10020238.
    1. Corpeleijn W.E., Kouwenhoven S.M.P., Paap M.C., Van Vliet I., Scheerder I., Muizer Y., Helder O.K., Van Goudoever J.B., Vermeulen M.J. Intake of Own Mother’s Milk during the First Days of Life Is Associated with Decreased Morbidity and Mortality in Very Low Birth Weight Infants during the First 60 Days of Life. Neonatology. 2012;102:276–281. doi: 10.1159/000341335.
    1. Ehrenkranz R.A., Dusick A.M., Vohr B.R., Wright L.L., Wrage L.A., Poole W.K. Growth in the Neonatal Intensive Care Unit Influences Neurodevelopmental and Growth Outcomes of Extremely Low Birth Weight Infants. Pediatrics. 2006;117:1253–1261. doi: 10.1542/peds.2005-1368.
    1. Tozzi M.G., Moscuzza F., Michelucci A., Lorenzoni F., Cosini C., Ciantelli M., Ghirri P. ExtraUterine Growth Restriction (EUGR) in Preterm Infants: Growth Patterns, Nutrition, and Epigenetic Markers. A Pilot Study. Front. Pediatr. 2018;6:408. doi: 10.3389/fped.2018.00408.
    1. Ziegler E.E. Meeting the Nutritional Needs of the Low-Birth-Weight Infant. Ann. Nutr. Metab. 2011;58:8–18. doi: 10.1159/000323381.
    1. Rochow N., Landau-Crangle E., Samiee-Zafarghandy S. Challenges in breast milk fortification for preterm infants. Curr. Opin. Clin. Nutr. Metab. Care. 2015;18:276–284. doi: 10.1097/MCO.0000000000000167.
    1. Radmacher P.G., Adamkin D.H. Fortification of human milk for preterm infants. Semin. Fetal Neonatal Med. 2017;22:30–35. doi: 10.1016/j.siny.2016.08.004.
    1. Arslanoglu S., Boquien C.-Y., King C., Lamireau D., Tonetto P., Barnett D., Bertino E., Gaya A., Gebauer C., Grovslien A., et al. Fortification of Human Milk for Preterm Infants: Update and Recommendations of the European Milk Bank Association (EMBA) Working Group on Human Milk Fortification. Front. Pediatr. 2019;7:76. doi: 10.3389/fped.2019.00076.
    1. John A., Sun R., Maillart L., Schaefer A., Spence E.H., Perrin M.T. Macronutrient variability in human milk from donors to a milk bank: Implications for feeding preterm infants. PLoS ONE. 2019;14:e0210610. doi: 10.1371/journal.pone.0210610.
    1. Rochow N., Fusch G., Choi A., Chessell L., Elliott L., McDonald K., Kuiper E., Purcha M., Turner S., Chan E., et al. Target Fortification of Breast Milk with Fat, Protein, and Carbohydrates for Preterm Infants. J. Pediatr. 2013;163:1001–1007. doi: 10.1016/j.jpeds.2013.04.052.
    1. Faienza M.F., D’Amato E., Natale M.P., Grano M., Chiarito M., Brunetti G., D’Amato G. Metabolic Bone Disease of Prematurity: Diagnosis and Management. Front. Pediatr. 2019;7:143. doi: 10.3389/fped.2019.00143.
    1. Fabrizio V., Trzaski J.M., Brownell E.A., Esposito P., Lainwala S., Lussier M.M., Hagadorn J.I. Targeted or adjustable versus standard diet fortification for growth and development in very low birth weight infants receiving human milk. Cochrane Database Syst. Rev. 2019 doi: 10.1002/14651858.CD013465.
    1. Morlacchi L., Mallardi D., Giannì M.L., Roggero P., Amato O., Piemontese P., Consonni D., Mosca F. Is targeted fortification of human breast milk an optimal nutrition strategy for preterm infants? An interventional study. J. Transl. Med. 2016;14:195. doi: 10.1186/s12967-016-0957-y.
    1. Quan M., Wang D., Gou L., Sun Z., Ma J., Zhang L., Wang C., Schibler K., Li Z. Individualized Human Milk Fortification to Improve the Growth of Hospitalized Preterm Infants. Nutr. Clin. Pract. 2020;35:680–688. doi: 10.1002/ncp.10366.
    1. Rochow N., Fusch G., Ali A., Bhatia A., So H.Y., Iskander R., Chessell L., El Helou S., Fusch C. Individualized target fortification of breast milk with protein, carbohydrates, and fat for preterm infants: A double-blind randomized controlled trial. Clin. Nutr. 2021;40:54–63. doi: 10.1016/j.clnu.2020.04.031.
    1. Şimşek G.K., Dizdar E.A., Arayıcı S., Canpolat F.E., Sarı F.N., Uraş N., Oguz S.S. Comparison of the Effect of Three Different Fortification Methods on Growth of Very Low Birth Weight Infants. Breastfeed. Med. 2019;14:63–68. doi: 10.1089/bfm.2018.0093.
    1. Minarski M., Maas C., Engel C., Heinrich C., Böckmann K.A., Bernhard W., Poets C.F., Franz A.R. Calculating Protein Content of Expressed Breast Milk to Optimize Protein Supplementation in Very Low Birth Weight Infants with Minimal Effort—A Secondary Analysis. Nutrients. 2020;12:1231. doi: 10.3390/nu12051231.
    1. Agostoni C., Buonocore G., Carnielli V.P., De Curtis M., Darmaun D., Decsi T., Domellöf M., Embleton N.D., Fusch C., Genzel-Boroviczeny O., et al. Enteral Nutrient Supply for Preterm Infants: Commentary From the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2010;50:85–91. doi: 10.1097/MPG.0b013e3181adaee0.
    1. Fu T.T., Schroder P.E., Poindexter B.B. Macronutrient Analysis of Target-Pooled Donor Breast Milk and Corresponding Growth in Very Low Birth Weight Infants. Nutrients. 2019;11:1884. doi: 10.3390/nu11081884.
    1. McLeod G., Sherriff J.L., Hartmann P.E., Nathan E., Geddes D., Simmer K. Comparing different methods of human breast milk fortification using measured v. assumed macronutrient composition to target reference growth: A randomised controlled trial. Br. J. Nutr. 2015;115:431–439. doi: 10.1017/S0007114515004614.
    1. Johnson M.J., Wootton S.A., Leaf A.A., Jackson A.A. Preterm Birth and Body Composition at Term Equivalent Age: A Systematic Review and Meta-analysis. Pediatrics. 2012;130:e640–e649. doi: 10.1542/peds.2011-3379.
    1. Bruckner M., Khan Z., Binder C., Morris N., Windisch B., Holasek S., Urlesberger B. Extremely Preterm Infants Have a Higher Fat Mass Percentage in Comparison to Very Preterm Infants at Term-Equivalent Age. Front. Pediatr. 2020;8:61. doi: 10.3389/fped.2020.00061.
    1. Hawkes C.P., Hourihane J.O., Kenny L.C., Irvine A.D., Kiely M., Murray D. Gender- and Gestational Age-Specific Body Fat Percentage at Birth. Pediatrics. 2011;128:e645–e651. doi: 10.1542/peds.2010-3856.
    1. Demerath E.W., Johnson W., Davern B.A., Anderson C.G., Shenberger J.S., Misra S., Ramel S.E. New body composition reference charts for preterm infants. Am. J. Clin. Nutr. 2017;105:70–77. doi: 10.3945/ajcn.116.138248.
    1. Strydom K., Van Niekerk E., Dhansay M. Factors affecting body composition in preterm infants: Assessment techniques and nutritional interventions. Pediatr. Neonatol. 2019;60:121–128. doi: 10.1016/j.pedneo.2017.10.007.
    1. Andrews E.T., Beattie R.M., Johnson M.J. Measuring body composition in the preterm infant: Evidence base and practicalities. Clin. Nutr. 2019;38:2521–2530. doi: 10.1016/j.clnu.2018.12.033.
    1. Macedo I., Pereira-Da-Silva L., Cardoso M. The fortification method relying on assumed human milk composition overestimates the actual energy and macronutrient intakes in very preterm infants. Matern. Health Neonatol. Perinatol. 2018;4:22. doi: 10.1186/s40748-018-0090-4.
    1. Pereira-Da-Silva L., Cardoso M., Macedo I. Associations of Measured Protein and Energy Intakes with Growth and Adiposity in Human Milk-Fed Preterm Infants at Term Postmenstrual Age: A Cohort Study. Am. J. Perinatol. 2018;35:882–891. doi: 10.1055/s-0038-1626717.
    1. Fenton T.R., Chan H.T., Madhu A., Griffin I.J., Hoyos A., Ziegler E.E., Groh-Wargo S., Carlson S.J., Senterre T., Anderson D., et al. Preterm Infant Growth Velocity Calculations: A Systematic Review. Pediatrics. 2017;139:e20162045. doi: 10.1542/peds.2016-2045.
    1. Brennan A.-M., Murphy B.P., Kiely M.E. Optimising preterm nutrition: Present and future. Proc. Nutr. Soc. 2016;75:154–161. doi: 10.1017/S0029665116000136.
    1. Fenton T.R., Senterre T., Griffin I.J. Time interval for preterm infant weight gain velocity calculation precision. Arch. Dis. Child. Fetal Neonatal Ed. 2018;104:F218–F219. doi: 10.1136/archdischild-2018-314843.
    1. Mihatsch W.A., Shamir R., Van Goudoever J., Fewtrell M., Lapillonne A., Lohner S., Mihályi K., Decsi T., Braegger C., Bronsky J., et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Guideline development process for the updated guidelines. Clin. Nutr. 2018;37:2306–2308. doi: 10.1016/j.clnu.2018.06.943.
    1. Pereira-da-Silva L., Pissarra S., Alexandrino A.M., Malheiro L., Macedo I., Cardoso M., on behalf of the Portuguese Neonatal Society Guidelines for neonatal parenteral nutrition: 2019 Update by the Portuguese Neonatal Society. Part I. General aspects, energy, and macronutrients. Port. J. Pediatr. 2019;50:209–219. doi: 10.25754/pjp.2019.15981.
    1. Pereira-da-Silva L., Pissarra S., Alexandrino A.M., Malheiro L., Macedo I., Cardoso M., on behalf of the Portuguese Neonatal Society Guidelines for Neonatal Parenteral Nutrition: 2019 Update by the Portuguese Neonatal Society. Part II. Micronutrients, ready-to-use solutions, and particular conditions. Port. J. Pediatr. 2019;50:220–231.
    1. Pereira-da-Silva L., Gomes A., Macedo I., Alexandrino A.M., Pissarra S., Cardoso M., on behalf of the Portuguese Neonatal Society Enteral nutrition in preterm infants: Review of the National Consensus. Acta Pediatr. Port. 2014;45:326–329.
    1. Fenton T.R., Nasser R., Eliasziw M., Kim J.H., Bilan D., Sauve R. Validating the weight gain of preterm infants between the reference growth curve of the fetus and the term infant. BMC Pediatr. 2013;13:92. doi: 10.1186/1471-2431-13-92.
    1. Richardson D.K., Corcoran J.D., Escobar G.J., Lee S.K. SNAP-II and SNAPPE-II: Simplified newborn illness severity and mortality risk scores. J. Pediatr. 2001;138:92–100. doi: 10.1067/mpd.2001.109608.
    1. Modi N., Dore C.J., Saraswatula A., Richards M., Bamford K.B., Coello R., Holmes A. A case definition for national and international neonatal bloodstream infection surveillance. Arch. Dis. Child. Fetal Neonatal Ed. 2008;94:F8–F12. doi: 10.1136/adc.2007.126458.
    1. Walsh M.C., Kliegman R.M. Necrotizing Enterocolitis: Treatment Based on Staging Criteria. Pediatr. Clin. N. Am. 1986;33:179–201. doi: 10.1016/S0031-3955(16)34975-6.
    1. Papile L.-A., Burstein J., Burstein R., Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: A study of infants with birth weights less than 1500 gm. J. Pediatr. 1978;92:529–534. doi: 10.1016/S0022-3476(78)80282-0.
    1. De Vries L.S., Eken P., Pierrat V., Daniels H., Casaer P. Prediction of neurodevelopmental outcome in the preterm infant: Short latency cortical somatosensory evoked potentials compared with cranial ultrasound. Arch. Dis. Child. 1992;67:1177–1181. doi: 10.1136/adc.67.10_Spec_No.1177.
    1. Bancalari E., Claure N., Jobe A.H., Laughon M.M. Definitions and diagnostic criteria of bronchopulmonary dysplasia: Clinical and research implications. In: Bancalari E., Keszler M., Davis P.G., editors. The Newborn Lung: Neonatology Questions and Controversies. 3rd ed. Elsevier Health Sciences Division; New York, NY, USA: 2019. pp. 115–129. Chapter 6.
    1. Czosnykowska-Łukacka M., Krolak-Olejnik B., Orczyk-Pawiłowicz M. Breast Milk Macronutrient Components in Prolonged Lactation. Nutrients. 2018;10:1893. doi: 10.3390/nu10121893.
    1. Patel A.L., Engstrom J.L., Meier P.P., Jegier B.J., Kimura R.E. Calculating postnatal growth velocity in very low birth weight (VLBW) premature infants. J. Perinatol. 2009;29:618–622. doi: 10.1038/jp.2009.55.
    1. Pereira-Da-Silva L., Virella D., Samiee-Zafarghandy S. Nutritional Assessment in Preterm Infants: A Practical Approach in the NICU. Nutrients. 2019;11:1999. doi: 10.3390/nu11091999.
    1. Pereira-da-Silva L. Neonatal anthropometry: A tool to evaluate the nutritional status, and to predict early and late risks. In: Preedy V.R., editor. The Handbook of Anthropometry: Physical Measures of Human Form in Health and Disease. Springer Science & Business Media; New York, NY, USA: 2012. pp. 1079–1104.
    1. Polberger S., Räihä N.C.R., Juvonen P., Moro G.E., Minoli I., Warm A. Individualized Protein Fortification of Human Milk for Preterm Infants: Comparison of Ultrafiltrated Human Milk Protein and a Bovine Whey Fortifier. J. Pediatr. Gastroenterol. Nutr. 1999;29:332–338. doi: 10.1097/00005176-199909000-00017.
    1. Mimouni F.B., Lubetzky R., Yochpaz S., Mandel D. Preterm Human Milk Macronutrient and Energy Composition. Clin. Perinatol. 2017;44:165–172. doi: 10.1016/j.clp.2016.11.010.
    1. Fenton T.R., Griffin I.J., Hoyos A., Groh-Wargo S., Anderson D., Ehrenkranz R.A., Senterre T. Accuracy of preterm infant weight gain velocity calculations vary depending on method used and infant age at time of measurement. Pediatr. Res. 2019;85:650–654. doi: 10.1038/s41390-019-0313-z.
    1. Ma G., Yao M., Liu Y., Lin A., Zou H., Urlando A., Wong W.W., Nommsen-Rivers L., Dewey K.G. Validation of a new pediatric air-displacement plethysmograph for assessing body composition in infants. Am. J. Clin. Nutr. 2004;79:653–660. doi: 10.1093/ajcn/79.4.653.
    1. Ellis K.J., Yao M., Shypailo R.J., Urlando A., Wong W.W., Heird W.C. Body-composition assessment in infancy: Air-displacement plethysmography compared with a reference 4-compartment model. Am. J. Clin. Nutr. 2007;85:90–95. doi: 10.1093/ajcn/85.1.90.
    1. Weber D.R., Moore R.H., Leonard M.B., Zemel B.S. Fat and lean BMI reference curves in children and adolescents and their utility in identifying excess adiposity compared with BMI and percentage body fat. Am. J. Clin. Nutr. 2013;98:49–56. doi: 10.3945/ajcn.112.053611.
    1. Goswami I.R., Rochow N., Fusch G., Liu K., Marrin M., Heckmann M., Nelle M., Samiee-Zafarghandy S. Length Normalized Indices for Fat Mass and Fat-Free Mass in Preterm and Term Infants during the First Six Months of Life. Nutrients. 2016;8:417. doi: 10.3390/nu8070417.
    1. Rochow N., Fusch G., Zapanta B., Ali A., Barui S., Samiee-Zafarghandy S. Target Fortification of Breast Milk: How Often Should Milk Analysis Be Done? Nutrients. 2015;7:2297–2310. doi: 10.3390/nu7042297.
    1. Parat S., Raza P., Kamleh M., Super D., Groh-Wargo S. Targeted Breast Milk Fortification for Very Low Birth Weight (VLBW) Infants: Nutritional Intake, Growth Outcome and Body Composition. Nutrients. 2020;12:1156. doi: 10.3390/nu12041156.

Source: PubMed

3
Abonnere