Protecting brains and saving futures guidelines: A prospective, multicenter, and observational study on the use of telemedicine for neonatal neurocritical care in Brazil

Gabriel Fernando Todeschi Variane, Maurício Magalhães, Rafaela Fabri Rodrigues Pietrobom, Alexandre Netto, Daniela Pereira Rodrigues, Renato Gasperini, Guilherme Mendes Sant'Anna, Gabriel Fernando Todeschi Variane, Maurício Magalhães, Rafaela Fabri Rodrigues Pietrobom, Alexandre Netto, Daniela Pereira Rodrigues, Renato Gasperini, Guilherme Mendes Sant'Anna

Abstract

Background: Management of high-risk newborns should involve the use of standardized protocols and training, continuous and specialized brain monitoring with electroencephalography (EEG), amplitude integrated EEG, Near Infrared Spectroscopy, and neuroimaging. Brazil is a large country with disparities in health care assessment and some neonatal intensive care units (NICUs) are not well structured with trained personnel able to provide adequate neurocritical care. To reduce this existing gap, an advanced telemedicine model of neurocritical care called Protecting Brains and Saving Futures (PBSF) Guidelines was developed and implemented in a group of Brazilian NICUs.

Methods: A prospective, multicenter, and observational study will be conducted in all 20 Brazilian NICUs using the PBSF Guidelines as standard-of-care. All infants treated accordingly to the guidelines during Dec 2021 to Nov 2024 will be eligible. Ethical approval was obtained from participating centers. The primary objective is to describe adherence to the PBSF Guidelines and clinical outcomes, by center and over a 3-year period. Adherence will be measured by quantification of neuromonitoring, neuroimaging exams, sub-specialties consultation, and clinical case discussions and videoconference meetings. Clinical outcomes of interest are detection of seizures during hospitalization, use of anticonvulsants, inotropes, and fluid resuscitation, death before hospital discharge, length of hospital stay, and referral of patients to specialized follow-up.

Discussion: The study will provide evaluation of PBSF Guidelines adherence and its impact on clinical outcomes. Thus, data from this large prospective, multicenter, and observational study will help determine whether neonatal neurocritical care via telemedicine can be effective. Ultimately, it may offer the necessary framework for larger scale implementation and development of research projects using remote neuromonitoring.

Trial registration: NCT03786497, Registered 26 December 2018, https://www.clinicaltrials.gov/ct2/show/NCT03786497?term=protecting+brains+and+saving+futures&draw=2&rank=1.

Conflict of interest statement

Gabriel FT Variane and Alexandre Netto are the owners of PBSF and Guilherme M Sant’Anna has no conflicts of interest and no financial relationships relevant to this article to disclose. All other authors work at PBSF.

Figures

Fig 1. Schedule of enrollment, interventions, and…
Fig 1. Schedule of enrollment, interventions, and assessments.

References

    1. Kurinczuk JJ, White-Koning M, Badawi N. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum Dev. 2010;86(6): 329–338. doi: 10.1016/j.earlhumdev.2010.05.010
    1. Lawn JE, Cousens S, Zupan J, Lancet Neonatal Survival Steering Team. 4 million neonatal deaths: When? Where? Why? Lancet. 2005;365(9462): 891–900. doi: 10.1016/S0140-6736(05)71048-5
    1. Lawn JE, Wilczynska-Ketende K, Cousens SN. Estimating the causes of 4 million neonatal deaths in the year 2000. Int J Epidemiol. 2006;35(3): 706–718. doi: 10.1093/ije/dyl043
    1. Shankaran S, Woldt E, Koepke T, Bedard MP, Nandyal R. Acute neonatal morbidity and long-term central nervous system sequelae of perinatal asphyxia in term infants. Early Hum Dev. 1991;25(2): 135–148. doi: 10.1016/0378-3782(91)90191-5
    1. Robertson CMT. Long-term follow-up of term infants with perinatal asphyxia. In: Stevenson DK, Benitz WE, Sunshine P. Fetal and neonatal brain injury. 3. Ed. New York: Cambridge University; 2003. p. 829–858.
    1. de Vries LS, Jongmans MJ. Long-term outcome after neonatal hypoxic-ischemic encephalopathy. Arch Dis Child Fetal Neonatal Ed. 2010;95(3): F220–F224. doi: 10.1136/adc.2008.148205
    1. Marlow N, Rose AS, Rands CE, Draper ES. Neuropsychological and educational problems at school age associated with neonatal encephalopathy. Arch Dis Child Fetal Neonatal Ed. 2005;90(5): F380–F387. doi: 10.1136/adc.2004.067520
    1. Blencowe H, Lee ACC, Cousens S, Bahalim A, Narwal R, Zhong N, et al.. Preterm birth associated neurodevelopmental impairment estimates at regional and global levels for 2010. Pediatr Res. 2013;74(Suppl 1): 17–34. doi: 10.1038/pr.2013.204
    1. Hellström-Westas L, Rosén I. Continuous brain-function monitoring: state of the art in clinical practice. Semin Fetal Neonatal Med. 2006;11(6): 503–511. doi: 10.1016/j.siny.2006.07.011
    1. Hellström-Westas L, Rosén I, de Vries LS, Greisen G. Amplitude-integrated EEG Classification and Interpretation in Preterm and Term Infants. NeoReviews. 2006;7(2): e76–e87.
    1. Shah DK, Mackay MT, Lavery S, Watson S, Harvey AS, Zempel J, et al.. Accuracy of bedside electroencephalographic monitoring in comparison with simultaneous continuous conventional electroencephalography for detection of neonatal seizures in term infants. Pediatrics. 2008;121(6): 1146–1154. doi: 10.1542/peds.2007-1839
    1. Mastrangelo M, Fiocchi I, Fontana P, Gorgone G, Lista G, Belcastro V. Acute neonatal encephalopathy and seizures recurrence: a combined aEEG/EEG study. Seizure. 2013;22(9): 703–707. doi: 10.1016/j.seizure.2013.05.006
    1. Shah DK, Zempel J, Barton T, Lukas K, Inder TE. Electrographic seizures in preterm infants during the first week of life are associated with cerebral injury. Pediatr Res. 2010;67(1): 102–106. doi: 10.1203/PDR.0b013e3181bf5914
    1. Payne ET, Zhao XY, Frndova H, McBain K, Sharma R, Hutchison JS, et al.. Seizure burden is independently associated with short term outcome in critically ill children. Brain. 2014;137(5): 1429–1438. doi: 10.1093/brain/awu042
    1. van Rooij LG, Toet MC, van Huffelen AC, Groenendaal F, Laan W, Zecic A, et al.. Effect of treatment of subclinical neonatal seizures detected with aEEG: randomized, controlled trial. Pediatrics 2010;125(2): e358–e366. doi: 10.1542/peds.2009-0136
    1. Vesoulis ZA, Inder TE, Woodward LJ, Buse B, Vavasseur C, Mathur AM. Early electrographic seizures, brain injury, and neurodevelopmental risk in the very preterm infant. Pediatr Res 2014;75(4): 564–569. doi: 10.1038/pr.2013.245
    1. Srinivasakumar P, Zempel J, Trivedi S, Wallendorf M, Rao R, Smith B, et al.. Treating EEG Seizures in Hypoxic Ischemic Encephalopathy: A Randomized Controlled Trial. Pediatrics. 2015;136(5): e1302–e1309. doi: 10.1542/peds.2014-3777
    1. Hellström-Westas L, Rosen I, Svenningsen NW. Predictive value of early continuous amplitude integrated EEG recordings on outcome after severe birth asphyxia in full term infants. Arch Dis Child Fetal Neonatal Ed. 1995;72(1): F34–F38. doi: 10.1136/fn.72.1.f34
    1. Thoresen M, Hellström-Westas L, Liu X, de Vries LS. Effect of hypothermia on amplitude-integrated electroencephalogram in infants with asphyxia. Pediatrics. 2010;126(1): e131–e139. doi: 10.1542/peds.2009-2938
    1. van Rooij LG, Toet MC, Osredkar D, van Huffelen AC, Groenendaal F, de Vries LD. Recovery of amplitude electroencephalographic background patterns within 24 hours of perinatal asphyxia. Arch Dis Child Fetal Neonatal Ed. 2005;90(3): F245–F251. doi: 10.1136/adc.2004.064964
    1. Del Río R, Ochoa C, Alarcon A, Arnáez J, Blanco D, García-Alix A. Amplitude integrated electroencephalogram as a prognostic tool in neonates with hypoxic- ischemic encephalopathy: a systematic review. PLoS One. 2016;11(11): e0165744. doi: 10.1371/journal.pone.0165744
    1. van Bel F, Lemmers PMA, Naulaers G. Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls. Neonatology. 2008;94(4): 237–244. doi: 10.1159/000151642
    1. Alderliesten T, De Vis JB, Lemmers PMA, Hendrikse J, Groenendaal F, van Bel F, et al.. Brain oxygen saturation assessment in neonates using T2-prepared blood imaging of oxygen saturation and near-infrared spectroscopy. J Cereb Blood Flow Metab. 2017;37(3): 902–913. doi: 10.1177/0271678X16647737
    1. Chock VY, Rose LA, Mante JV, Punn R. Near-infrared spectroscopy for detection of a significant patent ductus arteriosus. Pediatr Res. 2016;80(5): 675–680. doi: 10.1038/pr.2016.148
    1. World Health Organization. A health telematics policy in support of WHO’s Health-for-All Strategy for Global Health Development. Geneva (Switzerland); 1998.
    1. World Health Organization. Telemedicine: Opportunities and Development in Member States: Report on the second global survey on eHealth. Geneva (Switzerland); 2010.
    1. Hall RW, Hall-Barrow J, Garcia-Rill E. Neonatal Regionalization Through Telemedicine Using a Community Based Research and Education Core Facility. Ethn Dis. 2010;20(1Suppl 1): S1-136-140.
    1. Burke BL Jr, Hall RW, Section on Telehealth Care. Telemedicine: Pediatric Applications. Pediatrics. 2015;136(1): e293–e308. doi: 10.1542/peds.2015-1517
    1. McConnochie K, Wood N, Herendeen N, ten Hoopen C, Denk L, Neuderfer J. Integrating telemedicine in urban pediatric primary care: provider perspectives and performance. Telemed J E Health. 2010;16(3): 280–2888. doi: 10.1089/tmj.2009.0112
    1. Ministério da Saúde. DATASUS. [online] Tabnet. [accessed on Jan 10th 2018] .
    1. Variane GFT, Cunha LM, Pinto P, Brandao P, Mascaretti RS, Magalhães M, et al.. Therapeutic Hypothermia in Brazil: A MultiProfessional National Survey. Am J Perinatol. 2019;36(11): 1150–1156. doi: 10.1055/s-0038-1676052
    1. Triulzi D, Parazzini C, Righini A. Patterns of damage in the mature neonatal brain. Pediatric Radiol. 2006;36(7): 608–620. doi: 10.1007/s00247-006-0203-5
    1. Ferriero DM. Neonatal brain injury. N Engl J Med. 2004;351(19): 1985–1995. doi: 10.1056/NEJMra041996
    1. World Health Organization. [online] The World Health Report 2005—make every mother and child count; 2005. [accessed on Oct 14th 2019] .
    1. Prempunpong C, Chalak LF, Garfinkle J, Shah B, Kalra V, Rollins N, et al.. Prospective research on infants with mild encephalopathy: the PRIME study. J Perinatol. 2018;38(1): 80–85. doi: 10.1038/jp.2017.164
    1. Abend NS, Wusthoff CJ, Goldberg EM, Dlugos DJ. Electrographic seizures and status epilepticus in critically ill children and neonates with encephalopathy. Lancet Neurol. 2013;12(12): 1170–1179. doi: 10.1016/S1474-4422(13)70246-1
    1. Murray DM, Boylan GB, Ali I, Ryan CA, Murphy BP, Connolly S. Defining the gap between electrographic seizure burden, clinical expression and staff recognition of neonatal seizures. Arch Dis Child Fetal Neonatal Ed. 2008;93(3): F187–F191. doi: 10.1136/adc.2005.086314
    1. Burnett AC, Cheong JLY, Doyle LW. Biological and Social Influences on the Neurodevelopmental Outcomes of Preterm Infants. Clin Perinatol. 2018;45(3): 485–500. doi: 10.1016/j.clp.2018.05.005
    1. Joseph RM, O’Shea TM, Allred EN, Heeren T, Hirtz D, Jara H, et al.. Neurocognitive and Academic Outcomes at Age 10 years of Extremely Preterm Newborns. Pediatrics. 2016;137(4): e20154343. doi: 10.1542/peds.2015-4343
    1. Cheong JL, Doyle LW, Burnett AC, Lee KJ, Walsh JM, Potter CR, et al.. Association Between Moderate and Late Preterm Birth and Neurodevelopmental and Social-Emotional Development at Age 2 Years. JAMA Pediatr. 2017;171(4): e164805. doi: 10.1001/jamapediatrics.2016.4805
    1. Bosi G, Garani G, Scorrano M, Calzolari E, IMER Working Party. Temporal variability in birth prevalence of congenital heart defects as recorded by a general birth defects registry. J Pediatr. 2003;142(6): 690–698. doi: 10.1067/mpd.2003.243
    1. Hoffman JIE, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39(12): 1890–1900. doi: 10.1016/s0735-1097(02)01886-7
    1. Marino B, Lipkin PH, Newburger JW, Peacock G, Gerdes M, Gaynor JW, et al.. Neurodevelopmental outcomes in children with congenital heart disease: Evaluation and management: A scientific statement from the American heart association. Circulation. 2012;126(9): 1143–1172. doi: 10.1161/CIR.0b013e318265ee8a
    1. Dimitropoulos A, McQuillen PS, Sethi V, Moosa A, Chau V, Xu D, et al.. Brain injury and development in newborns with critical congenital heart disease. Neurology. 2013;81(3): 241–248. doi: 10.1212/WNL.0b013e31829bfdcf
    1. Limperopoulos C, Majnemer A, Shevell MI, Resenblatt B, Rohlicek C, Tchervenkov C. Neurologic status of newborns with congenital heart defects before open heart surgery. Pediatrics. 1999;103(2): 402–408. doi: 10.1542/peds.103.2.402
    1. Gunn JK, Beca J, Hunt RW, Olischar M, Shekerdemian LS. Perioperative amplitude-integrated EEG and neurodevelopment in infants with congenital heart disease. Intensive Care Med. 2012;38(9): 1539–1547. doi: 10.1007/s00134-012-2608-y
    1. Gunn JK, Beca J, Penny DJ, Horton SB, d’Udekem YA, Brizard CP, et al.. Amplitude-integrated electroencephalography and brain injury in infants undergoing Norwood-Type operations. Ann Thorac Surg. 2012;93(1): 170–176. doi: 10.1016/j.athoracsur.2011.08.014
    1. Toso PA, González AJ, Pérez ME, Kattan J, Fabres JG, Tapia JL, et al.. Clinical utility of early amplitude integrated EEG in monitoring term newborns at risk of neurological injury. J Pediatr (Rio J). 2014;90(2): 143–148. doi: 10.1016/j.jped.2013.07.004
    1. Shah NA, Wusthoff CJ. How to use: amplitude-integrated EEG (aEEG). Arch Dis Child Educ Pract Ed. 2015;100(2): 75–81. doi: 10.1136/archdischild-2013-305676
    1. Azzopardi DV, Strohm B, Edwards AD, Dyet L, Halliday HL, Juszczak E, et al.. Moderate hypothermia to treat perinatal asphyxial encephalopathy. N Engl J Med. 2009;361(14): 1349–1358. doi: 10.1056/NEJMoa0900854
    1. Gluckman PD, Wyatt JS, Azzopardi D, Ballard R, Edwards AD, Ferriero DM, et al.. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomized trial. Lancet. 2005;365(9460): 663–670. doi: 10.1016/S0140-6736(05)17946-X
    1. Simbruner G, Mittal RA, Rohlmann F, Muche R, neo.nEURO.network Trial Participants. Systemic hypothermia after neonatal encephalopathy: outcomes of neo.nEURO.network RCT. Pediatrics. 2010;126(4): e771–e778. doi: 10.1542/peds.2009-2441
    1. Skranes JH, Løhaugen G, Schumacher EM, Osredkar D, Server A, Cowan FM, et al.. Amplitude-Integrated Electroencephalography Improves the Identification of Infants with Encephalopathy for Therapeutic Hypothermia and Predicts Neurodevelopmental Outcomes at 2 Years of Age. J Pediatr. 2017;187: 34–42. doi: 10.1016/j.jpeds.2017.04.041
    1. Sarkar D, Barks JD, Donn SM. Should amplitude-integrated electroencephalography be used to identify infants suitable for hypothermic neuroprotection? J Perinatol. 2008;28(2): 117–122. doi: 10.1038/sj.jp.7211882
    1. Chandrasekaran M, Chaban B, Montaldo P, Thayyil S. Predictive value of amplitude-integrated EEG (aEEG) after rescue hypothermia neuroprotection for hypoxic ischemic encephalopathy: a meta-analysis. J Perinatol. 2017;37(6): 684–689. doi: 10.1038/jp.2017.14
    1. Ancora G, Maranella E, Grandi S, Sbravati F, Coccolini E, Savini S, et al.. Early predictors of short term neurodevelopmental outcome in asphyxiated cooled infants. A combined brain amplitude integrated electroencephalography and near infrared spectroscopy study. Brain Dev. 2013;35(1): 26–31. doi: 10.1016/j.braindev.2011.09.008
    1. Jain SV, Pagano L, Gilliam-Krakauer M, Slaughter JC, Pruthi S, Engelhardt B. Cerebral regional oxygen saturation trends in infants with hypoxic-ischemic encephalopathy. Early Hum Dev. 2017;113: 55–61. doi: 10.1016/j.earlhumdev.2017.07.008
    1. Lemmers PM, Zwanenburg RJ, Benders MJNL, de Vries LS, Groenendaal F, van Bel F, et al.. Cerebral oxygenation and brain activity after perinatal asphyxia: does hypothermia change their prognostic value? Pediatr Res. 2013;74(2): 180–185. doi: 10.1038/pr.2013.84
    1. Tekgul H, Gauvreau K, Soul J, Murphy L, Robertson E, Stewart J, et al.. The current etiologic profile and neurodevelopmental outcome of seizures in term newborn infants. Pediatrics. 2006;117(4): 1270–1280. doi: 10.1542/peds.2005-1178
    1. Hellström-Westas L, Rosén I, Svenningsen NW. Cerebral function monitoring during the first week of life in extremely small low birthweight (ESLBW) infants. Neuropediatrics. 1991;22(1): 27–32. doi: 10.1055/s-2008-1071411
    1. Wikström S, Pupp IH, Rosén I, Norman E, Fellman V, Ley D, et al.. Early single-channel aEEG/EEG predicts outcome in very preterm infants. Acta Paediatr. 2012;101(7): 719–726. doi: 10.1111/j.1651-2227.2012.02677.x
    1. Soubasi V, Mitsakis K, Sarafidis K, Griva M, Nakas CT, Drossou V. Early abnormal amplitude-integrated electroencephalography (aEEG) is associated with adverse short-term outcome in premature infants. Eur J Paediatric Neurol. 2012;16(6): 625–630. doi: 10.1016/j.ejpn.2012.02.008
    1. Klebermass K, Olischar M, Waldhoer T, Fuiko R, Pollak A, Weninger M. Amplitude-integrated EEG pattern predicts further outcome in preterm infants. Pediatr Res. 2011;70(1): 102–108. doi: 10.1203/PDR.0b013e31821ba200
    1. Variane GFT, Magalhães M, Gasperine R, Alves HCBR, Scoppetta TLPD, Figueredo RJG, et al.. Early amplitude-integrated electroencephalography for monitoring neonates at high risk for brain injury. J Pediatr. 2017;93(5): 460–466. doi: 10.1016/j.jped.2016.12.003
    1. Hyttel-Sorensen S, Pellicer A, Alderliesten T, Austin T, van Bel F, Benders M, et al.. Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase II randomised clinical trial. BMJ. 2015;350: g7635. doi: 10.1136/bmj.g7635
    1. Lemmers PMA, Toet MC, van Bel F. Impact of patent ductus arteriosus and subsequent therapy with indomethacin on cerebral oxygenation in preterm infants. Pediatrics. 2008;121(1): 142–147. doi: 10.1542/peds.2007-0925
    1. Underwood MA, Milstein JM, Sherman MP. Near-infrared spectroscopy as a screening tool for patent ductus arteriosus in extremely low birth weight infants. Neonatology. 2007;91(1): 134–139. doi: 10.1159/000097131
    1. Olischar M, Shany E, Aygün C, Azzopardi D, Hunt RW, Toet MC, et al.. Amplitude-integrated electroencephalography in newborns with inborn errors of metabolism. Neonatology. 2012;102(3): 203–211. doi: 10.1159/000339567
    1. Helderman JB, Welch CD, Leng X, O’Shea TM. Sepsis-associated electroencephalographic changes in extremely low gestational age neonates. Early Hum Dev. 2010;86(8): 509–513. doi: 10.1016/j.earlhumdev.2010.06.006
    1. ter Horst HJ, Mud M, Roofhooft MTR, Bos AF. Amplitude integrated electroencephalographic activity in infants with congenital heart disease before surgery. Early Hum Dev. 2010;86(12): 759–764. doi: 10.1016/j.earlhumdev.2010.08.028
    1. Latal B, Wohlrab G, Brotschi B, Beck I, Knirsch W, Bernet V. Postoperative amplitude-integrated electroencephalography predicts four-year neurodevelopmental outcome in children with complex congenital heart disease. J Pediatr. 2016;178: 55–60. doi: 10.1016/j.jpeds.2016.06.050
    1. Dodge-Khatami J, Gottschalk U, Eulenburg C, Wendt U, Schnegg C, Rebel M, et al.. Prognostic value of perioperative near-infrared spectroscopy during neonatal and infant congenital heart surgery for adverse in-hospital clinical events. World J Pediatr Congenit Heart Surg. 2012;3(2): 221–228. doi: 10.1177/2150135111426298
    1. Colasacco C, Worthen M, Peterson B, Lamberti J, Spear R. Near-Infrared Spectroscopy Monitoring to Predict Postoperative Renal Insufficiency Following repair of Congenital Heart Disease. World J Pediatr Congenit Heart Surg. 2011;2(4): 536–540. doi: 10.1177/2150135111411932
    1. Hoffman GM, Guanayem NS, Scott JP, Tweddell JS, Mitchell ME, Mussatto KA. Postoperative Cerebral and Somatic Near-Infrared Spectroscopy Saturations and Outcome in Hypoplastic Left Heart Syndrome. Ann Thorac Surg. 2017;103(5): 1527–1535. doi: 10.1016/j.athoracsur.2016.09.100
    1. Clair MP, Rambaud J, Flahault A, Guedj R, Guilbert J, Guellec I, et al.. Prognostic value of cerebral tissue oxygen saturation during neonatal extracorporeal membrane oxygenation. PLoS One. 2017;12(3): e0172991. doi: 10.1371/journal.pone.0172991
    1. Sood BG, McLaughlin K, Cortez J. Near-infrared spectroscopy: applications in neonates. Semin Fetal Neonatal Med. 2015;20(3): 164–172. doi: 10.1016/j.siny.2015.03.008
    1. Johnson BA, Hoffman GM, Tweddell JS, Cava JR, Basir M, Mitchell ME, et al.. Near-infrared spectroscopy in neonates before palliation of hypoplastic left heart syndrome. Ann Thorac Surg. 2009;87(2): 571–577. doi: 10.1016/j.athoracsur.2008.10.043
    1. Hanson SJ, Berens RJ, Havens PL, Kim MK, Hoffman GM. Effect of volume resuscitation on regional perfusion in dehydrated pediatric patients as measured by two-site near-infrared spectroscopy. Pediatr Emerg Care. 2009;25(3): 150–153. doi: 10.1097/PEC.0b013e31819a7f60
    1. Pichler G, Höller N, Baik-Schneditz N, Schwaberger B, Mileder L, Stadler J, et al.. Avoiding arterial hypotension in preterm neonates (AHIP)–a single center randomised controlled study investigating simultaneous near infrared spectroscopy measurements of cerebral and peripheral regional tissue oxygenation and dedicated interventions. Front Pediatr. 2018;6: 15. doi: 10.3389/fped.2018.00015
    1. Variane GFT, Chock VY, Netto A, Pietrobom RFR, Van Meurs KP. Simultaneous Near-Infrared Spectroscopy (NIRS) and Amplitude-Integrated Electroencephalography (aEEG): Dual Use of Brain Monitoring Techniques Improves Our Understanding of Physiology. Front Pediatr. 2020;7: 560. doi: 10.3389/fped.2019.00560
    1. Pauliah SS, Shankaran S, Wade A, Cady EB, Thayyil. Therapeutic hypothermia for neonatal encephalopathy in low-and middle-income countries: a systematic review and meta-analysis. PLoS One. 2013;8(3): e58834. doi: 10.1371/journal.pone.0058834
    1. Frenkel N, Friger M, Meledin I, Berger I, Marks K, Bassan H, et al.. Neonatal seizure recognition–comparative study of continuous-amplitude integrated EEG versus short conventional EEG recordings. Clin Neurophysiol. 2011;122(6): 1091–1097. doi: 10.1016/j.clinph.2010.09.028
    1. Rakshasbhuvankar A, Paul S, Nagarajan L, Ghosh S, Rao S. Amplitude-integrated EEG for detection of neonatal seizures: a systematic review. Seizure. 2015;33: 90–98. doi: 10.1016/j.seizure.2015.09.014
    1. Udeh C, Udeh B, Rahman N, Canfield C, Campbell J, Hata JS. Telemedicine/Virtual ICU: Where Are We and Where Are We Going? Methodist Debakey Cardiovasc J. 2018;14(2): 126–133. doi: 10.14797/mdcj-14-2-126
    1. Kahn JM, Le TQ, Barnato AE, Hravnak M, Kuza CC, Pike F, et al.. ICU telemedicine and critical care mortality: a national effectiveness study. Med Care. 2016;54(3): 319–325. doi: 10.1097/MLR.0000000000000485
    1. Maldonado JM, Marque AB, Cruz A. Telemedicine: challenges to dissemination in Brazil. Cad Saúde Pública. 2016;32(Suppl 2): e00155615. doi: 10.1590/0102-311X00155615

Source: PubMed

3
Abonnere