Iron and zinc nutrition in the economically-developed world: a review

Karen H C Lim, Lynn J Riddell, Caryl A Nowson, Alison O Booth, Ewa A Szymlek-Gay, Karen H C Lim, Lynn J Riddell, Caryl A Nowson, Alison O Booth, Ewa A Szymlek-Gay

Abstract

This review compares iron and zinc food sources, dietary intakes, dietary recommendations, nutritional status, bioavailability and interactions, with a focus on adults in economically-developed countries. The main sources of iron and zinc are cereals and meat, with fortificant iron and zinc potentially making an important contribution. Current fortification practices are concerning as there is little regulation or monitoring of intakes. In the countries included in this review, the proportion of individuals with iron intakes below recommendations was similar to the proportion of individuals with suboptimal iron status. Due to a lack of population zinc status information, similar comparisons cannot be made for zinc intakes and status. Significant data indicate that inhibitors of iron absorption include phytate, polyphenols, soy protein and calcium, and enhancers include animal tissue and ascorbic acid. It appears that of these, only phytate and soy protein also inhibit zinc absorption. Most data are derived from single-meal studies, which tend to amplify impacts on iron absorption in contrast to studies that utilize a realistic food matrix. These interactions need to be substantiated by studies that account for whole diets, however in the interim, it may be prudent for those at risk of iron deficiency to maximize absorption by reducing consumption of inhibitors and including enhancers at mealtimes.

Figures

Figure 1
Figure 1
Relationship between dietary iron and zinc content of selected foods of plant origin (indicated by black triangles), foods of animal origin (indicated by red circles) (adapted from USDA National Nutrient Database [20]), and fortified breakfast cereals (indicated by green squares [15,16,17,18,19]). For foods of plant origin (black solid line): r = 0.68, P = 0.005. For foods of animal origin (red dash line): r = 0.71, P = 0.001. For fortified breakfast cereals (green dash-dot line): r = 0.87, P = 0.086. Significance does not change when the two outliers, Pacific oysters and US Cheerios®, are omitted. Values are based on uncooked nuts, carrot, oysters, raisins, oats and dairy products, and plain breakfast cereals; all other foods are cooked.

References

    1. King J., Cousins R. Zinc. In: Shils M., editor. Modern Nutrition in Health and Disease. 10th ed. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2006. pp. 271–285.
    1. Wood R., Ronnenberg A. Iron. In: Shils M., editor. Modern Nutrition in Health and Disease. 10th ed. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2006. pp. 248–270.
    1. Kordas K., Stoltzfus R.J. New evidence of iron and zinc interplay at the enterocyte and neural tissues. J. Nutr. 2004;134:1295–1298.
    1. Sandstead H.H. Causes of iron and zinc deficiencies and their effects on brain. J. Nutr. 2000;130:347S–349S.
    1. Hunt J.R. Moving toward a plant-based diet: Are iron and zinc at risk? Nutr. Rev. 2002;60:127–134.
    1. Donovan U.M., Gibson R.S. Iron and zinc status of young women aged 14 to 19 years consuming vegetarian and omnivorous diets. J. Am. Coll. Nutr. 1995;14:463–472.
    1. Gibson R., Heath A.L., Prosser N., Parnell W., Donovan U., Green T., McLaughlin K., O’Connor D., Bettger W., Skeaff C. Are Young Women with Low Iron Stores at Risk of Zinc as Well as Iron Deficiency? In: Roussel A.M., Favier A.E., Anderson R.A., editors. Trace Elements in Man and Animals 10. Kluwer Academic Publishers; New York, NY, USA: 1999. pp. 323–328.
    1. Hunt J.R. Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. Am. J. Clin. Nutr. 2003;78:633S–639S.
    1. Nair K.M., Brahmam G.N., Radhika M.S., Dripta R.C., Ravinder P., Balakrishna N., Chen Z., Hawthorne K.M., Abrams S.A. Inclusion of guava enhances non-heme iron bioavailability but not fractional zinc absorption from a rice-based meal in adolescents. J. Nutr. 2013;143:852–858.
    1. Minitab. State College; Pennsylvania, PA, USA: 2007. Minitab 15.
    1. McLennan W., Podger A. National Nutrition Survey: Nutrient Intakes and Physical Measurements, Australia, 1995. Australian Bureau of Statistics; Canberra, Australia: 1998.
    1. University of Otago and Ministry of Health. A Focus on Nutrition: Key Findings of the 2008/09 New Zealand Adult Nutrition Survey. Ministry of Health; Wellington, New Zealand: 2011.
    1. Henderson L., Irving K., Gregory J., Bates C., Prentice A., Perks J., Swan G., Farron M. The National Diet and Nutrition Survey: Adults Aged 19 to 64 Years—Vitamin and Mineral Intake and Urinary Analytes. The Stationery Office; London, UK: 2003.
    1. O’Neil C.E., Keast D.R., Fulgoni V.L., Nicklas T.A. Food sources of energy and nutrients among adults in the US: NHANES 2003–2006. Nutrients. 2012;4:2097–2120.
    1. Kellogg Canada All-Bran® Original Cereal, 2012. [(accessed on 24 May 2013)]. Available online: .
    1. Kellogg Company Kellogg (Aust) All-Bran® Original Cereal, 2012. [(accessed on 24 May 2013)]. Available online: .
    1. Kellogg NA Co Kellogg’s® All-Bran® Original Cereal, 2013. [(accessed on 24 May 2013)]. Available online: .
    1. General Mills Cheerios®, 2013. [(accessed on 24 May 2013)]. Available online: .
    1. General Mills (Canada) Cheerios®, 2012. [(accessed on 24 May 2013)]. Available online: .
    1. US Department of Agriculture. Agricultural Research Service [(accessed 20 April 2013)];USDA National Nutrient Database for Standard Reference. 2012 Release 25. Available online: .
    1. Foster M., Chu A., Petocz P., Samman S. Effect of vegetarian diets on zinc status: A systematic review and meta-analysis of studies in humans. J. Sci. Food Agric. 2013;93:2362–2371.
    1. Ball M.J., Bartlett M.A. Dietary intake and iron status of Australian vegetarian women. Am. J. Clin. Nutr. 1999;70:353–358.
    1. Reddy S., Sanders T.A. Haematological studies on pre-menopausal Indian and Caucasian vegetarians compared with Caucasian omnivores. Br. J. Nutr. 1990;64:331–338.
    1. Worthington-Roberts B.S., Breskin M.W., Monsen E.R. Iron status of premenopausal women in a university community and its relationship to habitual dietary sources of protein. Am. J. Clin. Nutr. 1988;47:275–279.
    1. Deriemaeker P., Aerenhouts D., de Ridder D., Hebbelinck M., Clarys P. Health aspects, nutrition and physical characteristics in matched samples of institutionalized vegetarian and non-vegetarian elderly (>65years) Nutr. Metab. 2011;8:37.
    1. Li D., Sinclair A.J., Mann N.J., Turner A., Ball M.J. Selected micronutrient intake and status in men with differing meat intakes, vegetarians and vegans. Asia Pac. J. Clin. Nutr. 2000;9:18–23.
    1. American Dietetic Association. Dietitians of Canada. Position of the American Dietetic Association and Dietitians of Canada: Vegetarian diets. J. Am. Diet Assoc. 2003;103:748–765.
    1. Allen L., de Benoist B., Dary O., Hurrell R. Guidelines on Food Fortification with Micronutrients. World Health Organisation/Food and Agricultural Organisation; Geneva, Switzerland: 2006.
    1. Institute of Medicine, Food and Nutrition Board. Dietary Reference Intakes: Guiding Principles for Nutrition Labeling and Fortification. National Academies Press; Washington, DC, USA: 2003.
    1. Scientific Advisory Committee on Nutrition. Iron and Health. The Stationery Office; London, UK: 2010.
    1. Flour Fortification Initiative. Flour Fortification Initiative: Country Profiles, 2012. [(accessed on 1 March 2013)]. Available online: .
    1. Brown K.H., Hambidge K.M., Ranum P. Zinc fortification of cereal flours: Current recommendations and research needs. Food Nutr. Bull. 2010;31:S62–S74.
    1. Food Standards Australia New Zealand. Australia New Zealand Food Standards Code—Standard 1.3.2: Vitamins and Minerals, 2013. [(accessed on 26 April 2013)]; Available online: .
    1. Health Canada. Food and Drug Regulations, 2013. [(accessed on 26 April 2013)]. Available online: .
    1. The European Parliament. The Council of The European Union Commission of the European Communities, Regulation (EC). No. 1925/2006 of the European Parliament and of the Council of 20 December 2006 on the addition of vitamins and minerals and of certain other substances to foods. Off. J. Eur. Union. 2006;404:26–38.
    1. Schwitters B., Achanta G., van der Vlies D., Bast A., Hanekamp J.C. The European regulation of food supplements and food fortification. Environ. Law. Manag. 2007;19:19–29.
    1. Food Standards Agency. Safe Upper Levels for Vitamins and Minerals. Report of Expert Group on Vitamins and Minerals, 2003. [(accessed on 26 April 2013)]; Available online: .
    1. UK Parliament. Food Safety Act, 1990. [(accessed on 26 April 2013)]; Available online: .
    1. Kohgo Y., Ikuta K., Ohtake T., Torimoto Y., Kato J. Body iron metabolism and pathophysiology of iron overload. Int. J. Hematol. 2008;88:7–15.
    1. Fosmire G.J. Zinc toxicity. Am. J. Clin. Nutr. 1990;51:225–227.
    1. Lawrence M. Food Fortification: The Evidence, Ethics, and Politics of Adding Nutrients to Food. Oxford University Press; Oxford, UK: 2013.
    1. Lawrence M., Robertson A. Reference Standards and Guidelines. In: Lawrence M., Worsley T., editors. Public Health Nutrition—From Principle to Practice. Allen & Unwin; Crows Nest, Australia: 2007. pp. 39–70.
    1. Institute of Medicine, Food and Nutrition Board. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. National Academies Press; Washington, DC, USA: 2001.
    1. Dhonukshe-Rutten R.A., Timotijevic L., Cavelaars A.E., Raats M.M., de Wit L.S., Doets E.L., Tabacchi G., Roman B., Ngo-de la Cruz J., Gurinovic M., et al. European micronutrient recommendations aligned: A general framework developed by EURRECA. Eur. J. Clin. Nutr. 2010;64:S2–S10.
    1. Statistics Canada. Canadian Community Health Survey Cycle 2.2, Nutrition (2004) Minister of Health Canada; Ottawa, Canada: 2009.
    1. UK Department of Health. National Diet and Nutrition Survey: Headline Results from Years 1 and 2 (Combined) of the Rolling Programme, 2008/09–2009/10; Headline Results from Years 1 and 2 (Combined) Tables, 2011. [(accessed on 27 April 2013)]; Available online: .
    1. US Department of Agriculture. Agricultural Research Service 2009–2010 What We Eat In America, NHANES Tables 1–40, 2010. [(accessed on 29 April 2013)]; Available online: .
    1. Moshfegh A., Goldman J., Cleveland L. What We Eat in America, NHANES 2001–2002: Usual Nutrient Intakes From Food Compared to Dietary Reference Intakes. US Department of Agriculture, Agricultural Research Service; Washington, DC, USA: 2005.
    1. National Health and Medical Research Council. Nutrient Reference Values for Australia and New Zealand Including Recommended Dietary Intakes. National Health and Medical Research Council; Canberra, Australia: 2006.
    1. Department of Health. Dietary Reference Values for Food Energy and Nutrients for the United Kingdom. Her Majesty’s Stationary Office; London, UK: 1991.
    1. Gibson R.S. Principles of Nutritional Assessment. 2nd ed. Oxford University Press; New York, NY, USA: 2005.
    1. Knutson M.D. Iron-sensing proteins that regulate hepcidin and enteric iron absorption. Annu. Rev. Nutr. 2010;30:149–171.
    1. Conrad M.E., Umbreit J.N. Iron absorption and transport—An update. Am. J. Hematol. 2000;64:287–298.
    1. Gibson R.S. The role of diet- and host-related factors in nutrient bioavailability and thus in nutrient-based dietary requirement estimates. Food Nutr. Bull. 2007;28:S77–S100.
    1. Solomons N.W., Jacob R.A., Pineda O., Viteri F. Studies on the bioavailability of zinc in man. II. Absorption of zinc from organic and inorganic sources. J. Lab. Clin. Med. 1979;94:335–343.
    1. Sandström B. Bioavailability of zinc. Eur. J. Clin. Nutr. 1997;51:S17–S19.
    1. Lönnerdal B. Dietary factors influencing zinc absorption. J. Nutr. 2000;130:1378S–1383S.
    1. Hurrell R., Egli I. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr. 2010;91:1461S–1467S. doi: 10.3945/ajcn.2010.28674F.
    1. Layrisse M., Martínez-Torres C. Model for measuring dietary absorption of heme iron: Test with a complete meal. Am. J. Clin. Nutr. 1972;25:401–411.
    1. Cook J.D., Layrisse M., Martinez-Torres C., Walker R., Monsen E., Finch C.A. Food iron absorption measured by an extrinsic tag. J. Clin. Investig. 1972;51:805–815.
    1. Fairweather-Tait S.J., Dainty J. Use of stable isotopes to assess the bioavailability of trace elements: A review. Food Addit. Contam. 2002;19:939–947.
    1. Cosgrove D. The chemistry and biochemistry of inositol phosphates. Rev. Pure Appl. Chem. 1966;16:209–224.
    1. Reddy N., Sathe S. Introduction. In: Reddy N.R., Sathe S., editors. Food Phytates. CRC Press; Boca Raton, FL, USA: 2001. pp. 1–6.
    1. Shears S., Turner B. Nomenclature and Terminology of Inositol Phosphates: Clarification and a Glossary of Terms. In: Turner B., Richardson A., Mullaney E., editors. Inositol Phosphates. Linking Agriculture and the Environment. CAB International; Wallingford, England, UK: 2007. pp. 1–6.
    1. Hallberg L., Brune M., Rossander L. Iron absorption in man: Ascorbic acid and dose-dependent inhibition by phytate. Am. J. Clin. Nutr. 1989;49:140–144.
    1. Hallberg L., Rossander L., Skanberg A. Phytates and the inhibitory effect of bran on iron absorption in man. Am. J. Clin. Nutr. 1987;45:988–996.
    1. Hurrell R.F., Reddy M.B., Juillerat M.A., Cook J.D. Degradation of phytic acid in cereal porridges improves iron absorption by human subjects. Am. J. Clin. Nutr. 2003;77:1213–1219.
    1. Larsson M., Rossander-Hulthen L., Sandstrom B., Sandberg A.S. Improved zinc and iron absorption from breakfast meals containing malted oats with reduced phytate content. Br. J. Nutr. 1996;76:677–688.
    1. Sandberg A.S., Brune M., Carlsson N.G., Hallberg L., Skoglund E., Rossander-Hulthen L. Inositol phosphates with different numbers of phosphate groups influence iron absorption in humans. Am. J. Clin. Nutr. 1999;70:240–246.
    1. Fredlund K., Isaksson M., Rossander-Hulthen L., Almgren A., Sandberg A.S. Absorption of zinc and retention of calcium: Dose-dependent inhibition by phytate. J. Trace Elem. Med. Biol. 2006;20:49–57.
    1. Reddy N.R. Occurrence, Distribution, Content, and Dietary Intake of Phytate. In: Reddy N.R., Sathe S.K., editors. Food Phytates. CRC Press; Boca Raton, FL, USA: 2001. pp. 25–52.
    1. Weaver C., Kannan S. Phytate and Mineral Bioavailability. In: Reddy N.R., Sathe S.K., editors. Food Phytates. CRC Press; Boca Raton, USA: 2001. pp. 211–219.
    1. Bach Kristensen M., Tetens I., Alstrup Jørgensen A.B., Dal Thomsen A., Milman N., Hels O., Sandström B., Hansen M. A decrease in iron status in young healthy women after long-term daily consumption of the recommended intake of fibre-rich wheat bread. Eur. J. Nutr. 2005;44:334–340.
    1. Manach C., Scalbert A., Morand C., Remesy C., Jimenez L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004;79:727–747.
    1. Disler P.B., Lynch S.R., Charlton R.W., Torrance J.D., Bothwell T.H., Walker R.B., Mayet F. The effect of tea on iron absorption. Gut. 1975;16:193–200.
    1. Hallberg L., Rossander L. Effect of different drinks on the absorption of non-heme iron from composite meals. Hum. Nutr. Appl. Nutr. 1982;36:116–123.
    1. Hurrell R.F., Reddy M., Cook J.D. Inhibition of non-haem iron absorption in man by polyphenolic-containing beverages. Br. J. Nutr. 1999;81:289–295.
    1. Morck T.A., Lynch S.R., Cook J.D. Inhibition of food iron absorption by coffee. Am. J. Clin. Nutr. 1983;37:416–420.
    1. Thankachan P., Walczyk T., Muthayya S., Kurpad A.V., Hurrell R.F. Iron absorption in young Indian women: The interaction of iron status with the influence of tea and ascorbic acid. Am. J. Clin. Nutr. 2008;87:881–886.
    1. Kim E.Y., Ham S.K., Shigenaga M.K., Han O. Bioactive dietary polyphenolic compounds reduce nonheme iron transport across human intestinal cell monolayers. J. Nutr. 2008;138:1647–1651.
    1. Peterson J., Dwyer J., Bhagwat S., Haytowitz D., Holden J., Eldridge A., Beecher G., Aladesanmi J. Major flavonoids in dry tea. J. Food Compost. Anal. 2005;18:487–501.
    1. Ganji V., Kies C.V. Zinc bioavailability and tea consumption: Studies in healthy humans consuming self-selected and laboratory-controlled diets. Plant Foods Hum. Nutr. 1994;46:267–276.
    1. Bjorn-Rasmussen E., Hallberg L. Effect of animal proteins on the absorption of food iron in man. Nutr. Metab. 1979;23:192–202.
    1. Cook J.D., Monsen E.R. Food iron absorption in human subjects. III. Comparison of the effect of animal proteins on nonheme iron absorption. Am. J. Clin. Nutr. 1976;29:859–867.
    1. Hurrell R.F., Lynch S.R., Trinidad T.P., Dassenko S.A., Cook J.D. Iron absorption in humans as influenced by bovine milk proteins. Am. J. Clin. Nutr. 1989;49:546–552.
    1. Navas-Carretero S., Perez-Granados A.M., Sarria B., Carbajal A., Pedrosa M.M., Roe M.A., Fairweather-Tait S.J., Vaquero M.P. Oily fish increases iron bioavailability of a phytate rich meal in young iron deficient women. J. Am. Coll. Nutr. 2008;27:96–101.
    1. Bæch S.B., Hansen M., Bukhave K., Jensen M., Sørensen S.S., Kristensen L., Purslow P.P., Skibsted L.H., Sandström B. Nonheme-iron absorption from a phytate-rich meal is increased by the addition of small amounts of pork meat. Am. J. Clin. Nutr. 2003;77:173–179.
    1. Reddy M.B., Hurrell R.F., Cook J.D. Meat consumption in a varied diet marginally influences nonheme iron absorption in normal individuals. J. Nutr. 2006;136:576–581.
    1. Sandström B., Almgren A., Kivisto B., Cederblad A. Effect of protein level and protein source on zinc absorption in humans. J. Nutr. 1989;119:48–53.
    1. Hurrell R.F., Juillerat M.A., Reddy M.B., Lynch S.R., Dassenko S.A., Cook J.D. Soy protein, phytate, and iron absorption in humans. Am. J. Clin. Nutr. 1992;56:573–578.
    1. Lönnerdal B., Cederblad A., Davidsson L., Sandstrom B. The effect of individual components of soy formula and cows’ milk formula on zinc bioavailability. Am. J. Clin. Nutr. 1984;40:1064–1070.
    1. Cook J.D., Morck T.A., Lynch S.R. The inhibitory effect of soy products on nonheme iron absorption in man. Am. J. Clin. Nutr. 1981;34:2622–2629.
    1. Davidsson L., Almgren A., Sandstrom B., Juillerat M., Hurrell R.F. Zinc absorption in adult humans: The effect of protein sources added to liquid test meals. Br. J. Nutr. 1996;75:607–613.
    1. Hallberg L., Brune M., Erlandsson M., Sandberg A., Rossander-Hulten L. Calcium: Effect of different amounts on nonheme- and heme-iron absorption in humans. Am. J. Clin. Nutr. 1991;53:112–119.
    1. Galan P., Cherouvrier F., Preziosi P., Hercberg S. Effects of the increasing consumption of dairy products upon iron absorption. Eur. J. Clin. Nutr. 1991;45:553–559.
    1. Gleerup A., Rossander-Hulthen L., Gramatkovski E., Hallberg L. Iron absorption from the whole diet: Comparison of the effect of two different distributions of daily calcium intake. Am. J. Clin. Nutr. 1995;61:97–104.
    1. Reddy M., Cook J. Effect of calcium intake on nonheme-iron absorption from a complete diet. Am. J. Clin. Nutr. 1997;65:1820–1825.
    1. Minihane A.M., Fairweather-Tait S.J. Effect of calcium supplementation on daily nonheme-iron absorption and long-term iron status. Am. J. Clin. Nutr. 1998;68:96–102.
    1. Cook J.D., Dassenko S.A., Whittaker P. Calcium supplementation: Effect on iron absorption. Am. J. Clin. Nutr. 1991;53:106–111.
    1. Hallberg L., Rossander-Hulthen L., Brune M., Gleerup A. Inhibition of haem-iron absorption in man by calcium. Br. J. Nutr. 1993;69:533–540.
    1. Sokoll L.J., Dawson-Hughes B. Calcium supplementation and plasma ferritin concentrations in premenopausal women. Am. J. Clin. Nutr. 1992;56:1045–1048.
    1. Dawson-Hughes B., Seligson F.H., Hughes V.A. Effects of calcium carbonate and hydroxyapatite on zinc and iron retention in postmenopausal women. Am. J. Clin. Nutr. 1986;44:83–88.
    1. Spencer H., Kramer L., Norris C., Osis D. Effect of calcium and phosphorus on zinc metabolism in man. Am. J. Clin. Nutr. 1984;40:1213–1218.
    1. McKenna A.A., Ilich J.Z., Andon M.B., Wang C., Matkovic V. Zinc balance in adolescent females consuming a low- or high-calcium diet. Am. J. Clin. Nutr. 1997;65:1460–1464.
    1. Hallberg L., Brune M., Rossander L. Effect of ascorbic acid on iron absorption from different types of meals: Studies with ascorbic-acid-rich foods and synthetic ascorbic acid given in different amounts with different meals. Hum. Nutr. Appl. Nutr. 1986;40:97–113.
    1. Diaz M., Rosado J.L., Allen L.H., Abrams S., Garcia O.P. The efficacy of a local ascorbic acid-rich food in improving iron absorption from Mexican diets: A field study using stable isotopes. Am. J. Clin. Nutr. 2003;78:436–440.
    1. Cook J.D., Reddy M.B. Effect of ascorbic acid intake on nonheme-iron absorption from a complete diet. Am. J. Clin. Nutr. 2001;73:93–98.
    1. Beck K., Conlon C.A., Kruger R., Coad J., Stonehouse W. Gold kiwifruit consumed with an iron-fortified breakfast cereal meal improves iron status in women with low iron stores: A 16-week randomised controlled trial. Br. J. Nutr. 2011;105:101–109.
    1. Garcia O.P., Diaz M., Rosado J.L., Allen L.H. Ascorbic acid from lime juice does not improve the iron status of iron-deficient women in rural Mexico. Am. J. Clin. Nutr. 2003;78:267–273.
    1. Gillooly M., Bothwell T.H., Torrance J.D., MacPhail A.P., Derman D.P., Bezwoda W.R., Mills W., Charlton R.W., Mayet F. The effects of organic acids, phytates and polyphenols on the absorption of iron from vegetables. Br. J. Nutr. 1983;49:331–342.
    1. Sandström B., Cederblad A. Effect of ascorbic acid on the absorption of zinc and calcium in man. Int. J. Vitam. Nutr. Res. 1987;57:87–90.
    1. Nemeth E., Ganz T. Regulation of iron metabolism by hepcidin. Annu. Rev. Nutr. 2006;26:323–342. doi: 10.1146/annurev.nutr.26.061505.111303.
    1. Brown K.H., Rivera J.A., Bhutta Z., Gibson R.S., King J.C., Lonnerdal B., Ruel M.T., Sandstrom B., Wasantwisut E., Hotz C. International Zinc Nutrition Consultative Group (IZiNCG) technical document #1. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr. Bull. 2004;25:S99–S203.
    1. Sian L., Mingyan X., Miller L.V., Tong L., Krebs N.F., Hambidge K.M. Zinc absorption and intestinal losses of endogenous zinc in young Chinese women with marginal zinc intakes. Am. J. Clin. Nutr. 1996;63:348–353.
    1. Cooper M., Greene-Finestone L., Lowell H., Levesque J., Robinson S. Iron Sufficiency of Canadians. Minister of Industry; Ottawa, Canada: 2012.
    1. UK Department of Health. National Diet and Nutrition Survey: Headline Results from Years 1 and 2 (combined) of the Rolling Programme, 2008/09–2009/10; Supplementary Report: Blood Analytes, 2011. [(accessed on 27 April 2013)]; Available online: .
    1. US Centers for Disease Control and Prevention. Second National Report on Biochemical Indicators of Diet and Nutrition in the US Population 2012, 2012. [(accessed 29 April 2013)]; Available online: .
    1. Lowe N.M., Fekete K., Decsi T. Methods of assessment of zinc status in humans: A systematic review. Am. J. Clin. Nutr. 2009;89:2040S–2051S.
    1. Hess S.Y., Peerson J.M., King J.C., Brown K.H. Use of serum zinc concentration as an indicator of population zinc status. Food Nutr. Bull. 2007;28:S403–S429.
    1. Gibson R.S., Hess S.Y., Hotz C., Brown K.H. Indicators of zinc status at the population level: A review of the evidence. Br. J. Nutr. 2008;99:S14–S23.
    1. Hotz C., Brown K.H. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr. Bull. 2004;25:S94–S203.
    1. Hotz C., Peerson J.M., Brown K.H. Suggested lower cutoffs of serum zinc concentrations for assessing zinc status: Reanalysis of the second National Health and Nutrition Examination Survey data (1976–1980) Am. J. Clin. Nutr. 2003;78:756–764.
    1. Yokoi K., Sandstead H.H., Egger N.G., Alcock N.W., Sadagopa Ramanujam V.M., Dayal H.H., Penland J.G. Association between zinc pool sizes and iron stores in premenopausal women without anaemia. Br. J. Nutr. 2007;98:1214–1223.
    1. Cole C.R., Grant F.K., Swaby-Ellis E.D., Smith J.L., Jacques A., Northrop-Clewes C.A., Caldwell K.L., Pfeiffer C.M., Ziegler T.R. Zinc and iron deficiency and their interrelations in low-income African American and Hispanic children in Atlanta. Am. J. Clin. Nutr. 2010;91:1027–1034.
    1. Hettiarachchi M., Liyanage C., Wickremasinghe R., Hilmers D.C., Abrahams S.A. Prevalence and severity of micronutrient deficiency: A cross-sectional study among adolescents in Sri Lanka. Asia Pac. J. Clin. Nutr. 2006;15:56–63.
    1. Yokoi K., Alcock N.W., Sandstead H.H. Iron and zinc nutriture of premenopausal women: Associations of diet with serum ferritin and plasma zinc disappearance and of serum ferritin with plasma zinc and plasma zinc disappearance. J. Lab. Clin. Med. 1994;124:852–861.
    1. Solomons N.W. Competitive interaction of iron and zinc in the diet: Consequences for human nutrition. J. Nutr. 1986;116:927–935.
    1. Olivares M., Pizarro F., Ruz M., Lopez de Romana D. Acute inhibition of iron bioavailability by zinc: Studies in humans. Biometals. 2012;25:657–664. doi: 10.1007/s10534-012-9524-z.
    1. Solomons N.W., Jacob R.A. Studies on the bioavailability of zinc in humans: Effects of heme and nonheme iron on the absorption of zinc. Am. J. Clin. Nutr. 1981;34:475–482.
    1. Solomons N.W., Pineda O., Viteri F., Sandstead H.H. Studies on the bioavailability of zinc in humans: Mechanism of the intestinal interaction of nonheme iron and zinc. J. Nutr. 1983;113:337–349.
    1. Meadows N.J., Grainger S.L., Ruse W., Keeling P.W., Thompson R.P. Oral iron and the bioavailability of zinc. Br. Med. J. (Clin. Res. Ed.). 1983;287:1013–1014.
    1. Solomons N.W. Dietary sources of zinc and factors affecting its bioavailability. Food Nutr. Bull. 2001;22:138–154.
    1. Dijkhuizen M.A., Wieringa F.T., West C.E., Martuti S. Muhilal effects of iron and zinc supplementation in Indonesian infants on micronutrient status and growth. J. Nutr. 2001;131:2860–2865.
    1. Sheldon W.L., Aspillaga M.O., Smith P.A., Lind T. The effects of oral iron supplementation on zinc and magnesium levels during pregnancy. Br. J. Obstet. Gynaecol. 1985;92:892–898. doi: 10.1111/j.1471-0528.1985.tb03068.x.
    1. Yip R., Reeves J.D., Lonnerdal B., Keen C.L., Dallman P.R. Does iron supplementation compromise zinc nutrition in healthy infants? Am. J. Clin. Nutr. 1985;42:683–687.
    1. Friel J.K., Aziz K., Andrews W.L., Harding S.V., Courage M.L., Adams R.J. A double-masked, randomized control trial of iron supplementation in early infancy in healthy term breast-fed infants. J. Pediatr. 2003;143:582–586.
    1. Makrides M., Crowther C.A., Gibson R.A., Gibson R.S., Skeaff C.M. Efficacy and tolerability of low-dose iron supplements during pregnancy: A randomized controlled trial. Am. J. Clin. Nutr. 2003;78:145–153.
    1. Dawson E.B., Albers J., McGanity W.J. Serum zinc changes due to iron supplementation in teen-age pregnancy. Am. J. Clin. Nutr. 1989;50:848–852.
    1. Prosser N.R., Heath A.L., Williams S.M., Gibson R.S. Influence of an iron intervention on the zinc status of young adult New Zealand women with mild iron deficiency. Br. J. Nutr. 2010;104:742–750. doi: 10.1017/S0007114510001091.
    1. Whittaker P. Iron and zinc interactions in humans. Am. J. Clin. Nutr. 1998;68:442S–446S.
    1. Fairweather-Tait S.J. Iron-zinc and calcium-Fe interactions in relation to Zn and Fe absorption. Proc. Nutr. Soc. 1995;54:465–473. doi: 10.1079/PNS19950015.
    1. Valberg L.S., Flanagan P.R., Chamberlain M.J. Effects of iron, tin, and copper on zinc absorption in humans. Am. J. Clin. Nutr. 1984;40:536–541.
    1. Sandström B., Davidsson L., Cederblad A., Lonnerdal B. Oral iron, dietary ligands and zinc absorption. J. Nutr. 1985;115:411–414.
    1. Davidsson L., Almgren A., Sandstrom B., Hurrell R.F. Zinc absorption in adult humans: The effect of iron fortification. Br. J. Nutr. 1995;74:417–425. doi: 10.1079/BJN19950145.
    1. Donangelo C.M., Woodhouse L.R., King S.M., Viteri F.E., King J.C. Supplemental zinc lowers measures of iron status in young women with low iron reserves. J. Nutr. 2002;132:1860–1864.
    1. Yadrick M.K., Kenney M.A., Winterfeldt E.A. Iron, copper, and zinc status: Response to supplementation with zinc or zinc and iron in adult females. Am. J. Clin. Nutr. 1989;49:145–150.
    1. Fahmida U., Rumawas J.S., Utomo B., Patmonodewo S., Schultink W. Zinc-iron, but not zinc-alone supplementation, increased linear growth of stunted infants with low haemoglobin. Asia Pac. J. Clin. Nutr. 2007;16:301–309.
    1. Wuehler S.E., Sempertegui F., Brown K.H. Dose-response trial of prophylactic zinc supplements, with or without copper, in young Ecuadorian children at risk of zinc deficiency. Am. J. Clin. Nutr. 2008;87:723–733.
    1. Rosado J.L., Diaz M., Gonzalez K., Griffin I., Abrams S.A., Preciado R. The addition of milk or yogurt to a plant-based diet increases zinc bioavailability but does not affect iron bioavailability in women. J. Nutr. 2005;135:465–468.
    1. Penny M.E., Marin R.M., Duran A., Peerson J.M., Lanata C.F., Lonnerdal B., Black R.E., Brown K.H. Randomized controlled trial of the effect of daily supplementation with zinc or multiple micronutrients on the morbidity, growth, and micronutrient status of young Peruvian children. Am. J. Clin. Nutr. 2004;79:457–465.
    1. Brown K.H., Peerson J.M., Baker S.K., Hess S.Y. Preventive zinc supplementation among infants, preschoolers, and older prepubertal children. Food Nutr. Bull. 2009;30:S12–S40.
    1. Friel J.K., Serfass R.E., Fennessey P.V., Miller L.V., Andrews W.L., Simmons B.S., Downton G.F., Kwa P.G. Elevated intakes of zinc in infant formulas do not interfere with iron absorption in premature infants. J. Pediatr. Gastroenterol. Nutr. 1998;27:312–316. doi: 10.1097/00005176-199809000-00008.
    1. Rossander-Hulten L., Brune M., Sandstrom B., Lonnerdal B., Hallberg L. Competitive inhibition of iron absorption by manganese and zinc in humans. Am. J. Clin. Nutr. 1991;54:152–156.
    1. Olivares M., Pizarro F., Ruz M. Zinc inhibits nonheme iron bioavailability in humans. Biol. Trace Elem. Res. 2007;117:7–14. doi: 10.1007/BF02698079.
    1. Lopez de Romana D., Ruz M., Pizarro F., Landeta L., Olivares M.A. Supplementation with zinc between meals has no effect on subsequent iron absorption or on iron status of Chilean women. Nutrition. 2008;24:957–963. doi: 10.1016/j.nut.2008.04.007.

Source: PubMed

3
Abonnere