Smart triage: triage and management of sepsis in children using the point-of-care Pediatric Rapid Sepsis Trigger (PRST) tool

Alishah Mawji, Edmond Li, Clare Komugisha, Samuel Akech, Dustin Dunsmuir, Matthew O Wiens, Niranjan Kissoon, Nathan Kenya-Mugisha, Abner Tagoola, David Kimutai, Jeffrey N Bone, Guy Dumont, J Mark Ansermino, Alishah Mawji, Edmond Li, Clare Komugisha, Samuel Akech, Dustin Dunsmuir, Matthew O Wiens, Niranjan Kissoon, Nathan Kenya-Mugisha, Abner Tagoola, David Kimutai, Jeffrey N Bone, Guy Dumont, J Mark Ansermino

Abstract

Background: Sepsis is the leading cause of death and disability in children. Every hour of delay in treatment is associated with an escalating risk of morbidity and mortality. The burden of sepsis is greatest in low- and middle-income countries where timely treatment may not occur due to delays in diagnosis and prioritization of critically ill children. To circumvent these challenges, we propose the development and clinical evaluation of a digital triage tool that will identify high risk children and reduce time to treatment. We will also implement and clinically validate a Radio-Frequency Identification system to automate tracking of patients. The mobile platform (mobile device and dashboard) and automated patient tracking system will create a low cost, highly scalable solution for critically ill children, including those with sepsis.

Methods: This is pre-post intervention study consisting of three phases. Phase I will be a baseline period where data is collected on key predictors and outcomes before implementation of the digital triage tool. In Phase I, there will be no changes to healthcare delivery processes in place at the study hospitals. Phase II will involve model derivation, technology development, and usability testing. Phase III will be the intervention period where data is collected on key predictors and outcomes after implementation of the digital triage tool. The primary outcome, time to treatment initiation, will be compared to assess effectiveness of the digital health intervention.

Discussion: Smart technology has the potential to overcome the barrier of limited clinical expertise in the identification of the child at risk. This mobile health platform, with sensors and data-driven applications, will provide real-time individualized risk prediction to rapidly triage patients and facilitate timely access to life-saving treatments for children in low- and middle-income countries, where specialists are not regularly available and deaths from sepsis are common.

Trial registration: Clinical Trials.gov Identifier: NCT04304235, Registered 11 March 2020.

Keywords: Digital triage tool; Resource limited settings; Sepsis; Triage.

Conflict of interest statement

The authors declare that they have no competing interests.

References

    1. Global Burden of Disease Collaborative Network . Cause-specific mortality 1980-2016. Seattle: Institute for Health Metrics and Evaluation (IHME); 2016.
    1. Shankar-Hari M, Phillips GS, Levy ML, Seymour CW, Liu VX, Deutschman CS, Angus DC, Rubenfeld GD, Singer M, Sepsis Definitions Task Force & for the Sepsis Definitions Task Force Developing a new definition and assessing new clinical criteria for septic shock: for the third international consensus definitions for sepsis and septic shock (Sepsis-3) JAMA. 2016;315(8):775–787. doi: 10.1001/jama.2016.0289.
    1. Tan B, Wong JJ, Sultana R, Koh JCJW, Jit M, Mok YH, Lee JH. Global case-fatality rates in pediatric severe sepsis and septic shock: a systematic review and meta-analysis. JAMA Pediatr. 2019;173(4):352–362. doi: 10.1001/jamapediatrics.2018.4839.
    1. Global Sepsis Alliance . WHA adopts resolution on sepsis. Jena: Global Sepsis Alliance; 2017.
    1. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME, Rochwerg B, Rubenfeld GD, Angus DC, Annane D, Beale RJ, Bellinghan GJ, Bernard GR, Chiche J, Coopersmith C, de Backer DP, French CJ, Fujishima S, Gerlach H, Hidalgo JL, Hollenberg SM, Jones AE, Karnad DR, Kleinpell RM, Koh Y, Lisboa TC, Machado FR, Marini JJ, Marshall JC, Mazuski JE, McIntyre LA, McLean AS, Mehta S, Moreno RP, Myburgh J, Navalesi P, Nishida O, Osborn TM, Perner A, Plunkett CM, Ranieri M, Schorr CA, Seckel MA, Seymour CW, Shieh L, Shukri KA, Simpson SQ, Singer M, Thompson BT, Townsend SR, van der Poll T, Vincent J, Wiersinga WJ, Zimmerman JL, Dellinger RP. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43(3):304–377. doi: 10.1007/s00134-017-4683-6.
    1. World Health Organization, OECD & International Bank for Reconstruction and Development/The World Bank . Delivering quality health services: a global imperative for universal health coverage. 2018.
    1. Duke T. New WHO guidelines on emergency triage assessment and treatment. Lancet. 2016;387(10020):721–724. doi: 10.1016/S0140-6736(16)00148-3.
    1. Hategeka C, Mwai L, Tuyisenge L. Implementing the Emergency Triage, Assessment and Treatment plus admission care (ETAT+) clinical practice guidelines to improve quality of hospital care in Rwandan district hospitals: healthcare workers’ perspectives on relevance and challenges. BMC Health Serv Res. 2017;17(1):256–212. doi: 10.1186/s12913-017-2193-4.
    1. Evans IVR, Phillips GS, Alpern ER, Angus DC, Friedrich ME, Kissoon N, Lemeshow S, Levy MM, Parker MM, Terry KM, Watson RS, Weiss SL, Zimmerman J, Seymour CW. Association between the New York sepsis care mandate and in-hospital mortality for pediatric sepsis. JAMA. 2018;320(4):358–367. doi: 10.1001/jama.2018.9071.
    1. Hudson J, Nguku SM, Sleiman J, Karlen W, Dumont GA, Petersen CL, Warriner CB, Ansermino JM. Usability testing of a prototype Phone Oximeter with healthcare providers in high- and low-medical resource environments. Anaesthesia. 2012;67(9):957–967. doi: 10.1111/j.1365-2044.2012.07196.x.
    1. Gan H, Karlen W, Dunsmuir D, Zhou G, Chiu M, Dumont GA, Ansermino JM. The performance of a mobile phone respiratory rate counter compared to the WHO ARI Timer. J Healthc Eng. 2015;6(4):691–704. doi: 10.1260/2040-2295.6.4.691.
    1. Payne BA, Hutcheon JA, Ansermino JM, Hall DR, Bhutta ZA, Bhutta SZ, Biryabarema C, Grobman WA, Groen H, Haniff F, Li J, Magee LA, Merialdi M, Nakimuli A, Qu Z, Sikandar R, Sass N, Sawchuck D, Steyn DW, Widmer M, Zhou J, von Dadelszen P, miniPIERS Study Working Group & for the miniPIERS Study Working Group A risk prediction model for the assessment and triage of women with hypertensive disorders of pregnancy in low-resourced settings: the miniPIERS (Pre-eclampsia Integrated Estimate of RiSk) multi-country prospective cohort study. PLoS Med. 2014;11(1):e1001589. doi: 10.1371/journal.pmed.1001589.
    1. Wiens MO, Kumbakumba E, Larson CP, Ansermino JM, Singer J, Kissoon N, Wong H, Ndamira A, Kabakyenga J, Kiwanuka J, Zhou G. Postdischarge mortality in children with acute infectious diseases: derivation of postdischarge mortality prediction models. BMJ Open. 2015;5(11):e009449. doi: 10.1136/bmjopen-2015-009449.
    1. Lowlaavar N, Larson CP, Kumbakumba E, Zhou G, Ansermino JM, Singer J, Kissoon N, Wong H, Ndamira A, Kabakyenga J, Kiwanuka J, Wiens MO. Pediatric in-hospital death from infectious disease in Uganda: derivation of clinical prediction models. PLoS One. 2016;11(3):e0150683. doi: 10.1371/journal.pone.0150683.
    1. Fung JST, Akech S, Kissoon N, Wiens MO, English M, Ansermino JM. Determining predictors of sepsis at triage among children under 5 years of age in resource-limited settings: a modified Delphi process. PLoS One. 2019;14(1):e0211274. doi: 10.1371/journal.pone.0211274.
    1. Mawji A, Akech S, Mwaniki P, Dunsmuir D, Bone J, Wiens MO, Görges M, Kimutai D, Kissoon N, English M, Ansermino MJ. Derivation and internal validation of a data-driven prediction model to guide frontline health workers in triaging children under-five in Nairobi, Kenya. Wellcome Open Res. 2019;4:121. doi: 10.12688/wellcomeopenres.15387.1.
    1. Gale NK, Heath G, Cameron E, Rashid S, Redwood S. Using the framework method for the analysis of qualitative data in multi-disciplinary health research. BMC Med Res Methodol. 2013;13(1):117. doi: 10.1186/1471-2288-13-117.
    1. Jackson K, Bazeley P. Qualitative data analysis with NVivo. 3. London; Los Angeles [i.e. Thousand Oaks, Calif.]: Sage Publications; 2019.
    1. Duber HC, Hartford EA, Schaefer AM, Johanns CK, Colombara DV, Iriarte E, Palmisano EB, Rios-Zertuche D, Zuniga-Brenes P, Hernández-Prado B, Mokdad AH. Appropriate and timely antibiotic administration for neonatal sepsis in Mesoamérica. BMJ Glob Health. 2018;3(3):e000650. doi: 10.1136/bmjgh-2017-000650.
    1. van Smeden M, Moons KGM, de Groot JAH, Collins GS, Altman DG, Eijkemans MJC, Reitsma JB. Sample size for binary logistic prediction models: beyond events per variable criteria. Stat Methods Med Res. 2019;28(8):2455–2474. doi: 10.1177/0962280218784726.
    1. Steyerberg EW, SpringerLink (Online service) & SpringerLINK ebooks - Mathematics and Statistics . Clinical prediction models: a practical approach to development, validation, and updating, 2nd 2019.;2;2nd 2019; edn. Cham: Springer International Publishing; 2019.
    1. Jewell ES, Maile MD, Engoren M, Elliott M. Net reclassification improvement. Anesth Analg. 2016;122(3):818–824. doi: 10.1213/ANE.0000000000001141.
    1. Lu M, Zhong W, Liu Y, Miao H, Li Y, Ji M. Sample size for assessing agreement between two methods of measurement by Bland−Altman method. Int J Biostat. 2016;12(2):307. doi: 10.1515/ijb-2015-0039.
    1. Norton EC, Dowd BE, Maciejewski ML. Marginal effects-quantifying the effect of changes in risk factors in logistic regression models. JAMA. 2019;321(13):1304. doi: 10.1001/jama.2019.1954.
    1. R Core Team . R: a language and environment forcstatistical computing. Vienna: R Foundation for Statistical Computing; 2018.
    1. George EC, Walker AS, Kiguli S, Olupot-Olupot P, Opoka RO, Engoru C, Akech SO, Nyeko R, Mtove G, Reyburn H, Berkley JA, Mpoya A, Levin M, Crawley J, Gibb DM, Maitland K, Babiker AG. Predicting mortality in sick African children: the FEAST Pediatric Emergency Triage (PET) score. BMC Med. 2015;13(1):174. doi: 10.1186/s12916-015-0407-3.
    1. Tugwell P. Systematic reviews and knowledge translation. Bull World Health Organ. 2006;84(8):643–651. doi: 10.2471/BLT.05.026658.
    1. Wiens MO, Kumbakumba E, Larson CP, Moschovis PP, Barigye C, Kabakyenga J, Ndamira A, English L, Kissoon N, Zhou G, Ansermino JM. Scheduled follow-up referrals and simple prevention kits including counseling to improve post-discharge outcomes among children in Uganda: a proof-of-concept study. Glob Health Sci Pract. 2016;4(3):422–434. doi: 10.9745/GHSP-D-16-00069.
    1. Kruk ME, Gage AD, Arsenault C, Jordan K, Leslie HH, Roder-DeWan S, Adeyi O, Barker P, Daelmans B, Doubova SV, English M, Elorrio EG, Guanais F, Gureje O, Hirschhorn LR, Jiang L, Kelley E, Lemango ET, Liljestrand J, Malata A, Marchant T, Matsoso MP, Meara JG, Mohanan M, Ndiaye Y, Norheim OF, Reddy KS, Rowe AK, Salomon JA, Thapa G, Twum-Danso NAY, Pate M. High-quality health systems in the sustainable development goals era: time for a revolution. Lancet Glob Health. 2018;6(11):e1196–e1252. doi: 10.1016/S2214-109X(18)30386-3.

Source: PubMed

3
Abonnere