Maternal speech decreases pain scores and increases oxytocin levels in preterm infants during painful procedures

Manuela Filippa, Maria Grazia Monaci, Carmen Spagnuolo, Paolo Serravalle, Roberta Daniele, Didier Grandjean, Manuela Filippa, Maria Grazia Monaci, Carmen Spagnuolo, Paolo Serravalle, Roberta Daniele, Didier Grandjean

Abstract

Preterm infants undergo early separation from parents and are exposed to frequent painful clinical procedures, with resultant short- and long-term effects on their neurodevelopment. We aimed to establish whether the mother's voice could provide an effective and safe analgesia for preterm infants and whether endogenous oxytocin (OXT) could be linked to pain modulation. Twenty preterm infants were exposed to three conditions-mother's live voice (speaking or singing) and standard care-in random order during a painful procedure. OXT levels (pg/mL) in saliva and plasma cortisol levels were quantified, and the Premature Infant Pain Profile (PIPP) was blindly coded by trained psychologists. During the mother's live voice, PIPP scores significantly decreased, with a concomitant increase in OXT levels over baseline. The effect on pain perception was marginally significant for singing. No effects on cortisol levels were found. The mother's live voice modulated preterm infants' pain indicators. Endogenous OXT released during vocal contact is a promising protective mechanism during early painful interventions in at-risk populations.

Conflict of interest statement

The authors declare no competing interests.

© 2021. The Author(s).

Figures

Figure 1
Figure 1
Procedure diagram of the sample collections, assessments and intervention.
Figure 2
Figure 2
Preterm infants Pain Profile scores presentation in the Control, Singing and Speaking conditions during painful procedures.
Figure 3
Figure 3
Preterm infants’ oxytocin levels (pg/mL) before and after painful procedures in the Control, Singing and Speaking conditions.

References

    1. Blencowe H, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications. The Lancet. 2012;379(9832):2162–2172. doi: 10.1016/S0140-6736(12)60820-4.
    1. Jarjour IT. Neurodevelopmental outcome after extreme prematurity: A review of the literature. Pediatr. Neurol. 2015;52(2):143–152. doi: 10.1016/j.pediatrneurol.2014.10.027.
    1. Adams-Chapman I, et al. Neurodevelopmental impairment among extremely preterm infants in the neonatal research network. Pediatrics. 2018;141(5):e20173091. doi: 10.1542/peds.2017-3091.
    1. McCormick MC, et al. Prematurity: An overview and public health implications. Annu. Rev. Public Health. 2011;32:367–379. doi: 10.1146/annurev-publhealth-090810-182459.
    1. WHO. Born Too Soon: The Global Action Report on Preterm Birth. (2012).
    1. Anand K, Scalzo FM. Can adverse neonatal experiences alter brain development and subsequent behavior? Neonatology. 2000;77(2):69–82. doi: 10.1159/000014197.
    1. Grunau, R.E., L. Holsti, and J.W. Peters. Long-term consequences of pain in human neonates. In Seminars in Fetal and Neonatal Medicine. (Elsevier, 2006).
    1. Flacking R, et al. Closeness and separation in neonatal intensive care. Acta Paediatr. 2012;101(10):1032–1037. doi: 10.1111/j.1651-2227.2012.02787.x.
    1. Filippa M, et al. Pain, parental involvement, and oxytocin in the neonatal intensive care unit. Front. Psychol. 2019;10:715. doi: 10.3389/fpsyg.2019.00715.
    1. Sanchez MM, Ladd CO, Plotsky PM. Early adverse experience as a developmental risk factor for later psychopathology: Evidence from rodent and primate models. Dev. Psychopathol. 2001;13(3):419–449. doi: 10.1017/S0954579401003029.
    1. Korja R, Latva R, Lehtonen L. The effects of preterm birth on mother–infant interaction and attachment during the infant's first two years. Acta Obstet. Gynecol. Scand. 2012;91(2):164–173. doi: 10.1111/j.1600-0412.2011.01304.x.
    1. Morelius E, et al. A randomised trial of continuous skin-to-skin contact after preterm birth and the effects on salivary cortisol, parental stress, depression, and breastfeeding. Early Hum. Dev. 2015;91(1):63–70. doi: 10.1016/j.earlhumdev.2014.12.005.
    1. Montirosso R, et al. Measuring maternal stress and perceived support in 25 Italian NICUs. Acta Paediatr. 2012;101(2):136–142. doi: 10.1111/j.1651-2227.2011.02440.x.
    1. Montirosso R, et al. Maternal stress and depressive symptoms associated with quality of developmental care in 25 Italian Neonatal Intensive Care Units: A cross sectional observational study. Int. J. Nurs. Stud. 2014;51(7):994–1002. doi: 10.1016/j.ijnurstu.2013.11.001.
    1. Kommers D, et al. Suboptimal bonding impairs hormonal, epigenetic and neuronal development in preterm infants, but these impairments can be reversed. Acta Paediatr. 2016;105(7):738–751. doi: 10.1111/apa.13254.
    1. Provenzi L, et al. Maternal sensitivity buffers the association between SLC6A4 methylation and socio-emotional stress response in 3-month-old full term, but not very preterm infants. Front. Psych. 2017;8:171. doi: 10.3389/fpsyt.2017.00171.
    1. Ranger M, Grunau RE. Early repetitive pain in preterm infants in relation to the developing brain. Pain management. 2014;4(1):57–67. doi: 10.2217/pmt.13.61.
    1. Grunau RE, et al. Neonatal procedural pain exposure predicts lower cortisol and behavioral reactivity in preterm infants in the NICU. Pain. 2005;113(3):293–300. doi: 10.1016/j.pain.2004.10.020.
    1. Roofthooft DW, et al. Eight years later, are we still hurting newborn infants? Neonatology. 2014;105(3):218–226. doi: 10.1159/000357207.
    1. Johnston C, et al. Pain in Canadian NICUs: Have we improved over the past 12 years? Clin. J. Pain. 2011;27(3):225–232. doi: 10.1097/AJP.0b013e3181fe14cf.
    1. Allegaert K, Van Den Anker JN. Neonatal pain management: Still in search of the Holy Grail. Int. J. Clin. Pharmacol. Ther. 2016;54(7):514. doi: 10.5414/CP202561.
    1. Carbajal R, et al. Epidemiology and treatment of painful procedures in neonates in intensive care units. JAMA. 2008;300(1):60–70. doi: 10.1001/jama.300.1.60.
    1. Hartley C, et al. Analgesic efficacy and safety of morphine in the Procedural Pain in Premature Infants (Poppi) study: Randomised placebo-controlled trial. The Lancet. 2018;392(10164):2595–2605. doi: 10.1016/S0140-6736(18)31813-0.
    1. Poisbeau P, Grinevich V, Charlet A. Behavioral Pharmacology of Neuropeptides: Oxytocin. Springer; 2017. Oxytocin signaling in pain: Cellular, circuit, system, and behavioral levels; pp. 193–211.
    1. Piira T, et al. The role of parental presence in the context of children's medical procedures: A systematic review. Child Care Health Dev. 2005;31(2):233–243. doi: 10.1111/j.1365-2214.2004.00466.x.
    1. Pillai Riddell RR, et al. Cochrane review: Non-pharmacological management of infant and young child procedural pain. Evidence Based Child Health A Cochrane Rev. J. 2012;7(6):1905–2121. doi: 10.1002/ebch.1883.
    1. Cignacco E, et al. The efficacy of non-pharmacological interventions in the management of procedural pain in preterm and term neonates: A systematic literature review. Eur. J. Pain. 2007;11(2):139–152. doi: 10.1016/j.ejpain.2006.02.010.
    1. Mooncey S, et al. The effect of mother-infant skin-to-skin contact on plasma cortisol and β-endorphin concentrations in preterm newborns. Infant Behav. Dev. 1997;20(4):553–557. doi: 10.1016/S0163-6383(97)90045-X.
    1. Johnston, C. et al. Skin‐to‐skin care for procedural pain in neonates. Cochrane Database Syst. Rev. (2), CD008435. 10.1002/14651858.CD008435.pub3 (2017).
    1. Nishitani S, et al. The calming effect of a maternal breast milk odor on the human newborn infant. Neurosci. Res. 2009;63(1):66–71. doi: 10.1016/j.neures.2008.10.007.
    1. Baudesson de Chanville A, et al. Analgesic effect of maternal human milk odor on premature neonates: A randomized controlled trial. J. Hum. Lact. 2017;33(2):300–308. doi: 10.1177/0890334417693225.
    1. Jones L, et al. The impact of parental contact upon cortical noxious‐related activity in human neonates. Eur. J. Pain. 2020;25(1):149–159. doi: 10.1002/ejp.1656.
    1. Filippa M, Kuhn P, Westrup B. Early Vocal Contact and Preterm Infant Brain Development. New York: Springer; 2017.
    1. Filippa M, et al. Live maternal speech and singing have beneficial effects on hospitalized preterm infants. Acta Paediatr. 2013;102(10):1017–1020. doi: 10.1111/apa.12356.
    1. Caskey M, et al. Adult talk in the NICU with preterm infants and developmental outcomes. Pediatrics. 2014;133(3):e578–e584. doi: 10.1542/peds.2013-0104.
    1. Pineda RG, et al. Alterations in brain structure and neurodevelopmental outcome in preterm infants hospitalized in different neonatal intensive care unit environments. J. Pediatrics. 2014;164(1):52–60. doi: 10.1016/j.jpeds.2013.08.047.
    1. Filippa M, et al. Live maternal speech and singing increase self-touch and eye-opening in preterm newborns: A preliminary study. J. Nonverbal Behav. 2020;44:453–473. doi: 10.1007/s10919-020-00336-0.
    1. Filippa M, Monaci MG, Grandjean D. Emotion attribution in nonverbal vocal communication directed to preterm infants. J. Nonverbal Behav. 2019;43(1):91–104. doi: 10.1007/s10919-018-0288-1.
    1. Filippa M, et al. Changes in infant-directed speech and song are related to preterm infant facial expression in the neonatal intensive care unit. Interact. Stud. 2018;19(3):427–444. doi: 10.1075/is.16019.fil.
    1. Saliba S, et al. Fathers’ and mothers’ infant directed speech influences preterm infant behavioral state in the NICU. J. Nonverbal Behav. 2020;44(4):437–451. doi: 10.1007/s10919-020-00335-1.
    1. Eliava M, et al. A new population of parvocellular oxytocin neurons controlling magnocellular neuron activity and inflammatory pain processing. Neuron. 2016;89(6):1291–1304. doi: 10.1016/j.neuron.2016.01.041.
    1. Zinni M, et al. Modulating the oxytocin system during the perinatal period: A new strategy for neuroprotection of the immature brain? Front. Neurol. 2018;9:229. doi: 10.3389/fneur.2018.00229.
    1. Walker SC, et al. C-tactile afferents: Cutaneous mediators of oxytocin release during affiliative tactile interactions? Neuropeptides. 2017;64:27–38. doi: 10.1016/j.npep.2017.01.001.
    1. Theofanopoulou C, Boeckx C, Jarvis ED. A hypothesis on a role of oxytocin in the social mechanisms of speech and vocal learning. Proc. R. Soc. B Biol. Sci. 1861;2017(284):20170988.
    1. Tops M, et al. Oxytocin receptor gene associated with the efficiency of social auditory processing. Front. Psych. 2011;2:60.
    1. Burkett JP, et al. Oxytocin-dependent consolation behavior in rodents. Science. 2016;351(6271):375–378. doi: 10.1126/science.aac4785.
    1. Ziabreva I, et al. Separation-induced receptor changes in the hippocampus and amygdala of Octodon degus: Influence of maternal vocalizations. J. Neurosci. 2003;23(12):5329–5336. doi: 10.1523/JNEUROSCI.23-12-05329.2003.
    1. Braun S, Scheich H. Influence of experience on the representation of the “mothering call” in frontoparietal and auditory cortex of pups of the rodent Octodon degus: FDG mapping. J. Comp. Physiol. A. 1997;181(6):697–709. doi: 10.1007/s003590050151.
    1. Poeggel G, Braun K. Early auditory filial learning in degus (Octodon degus): Behavioral and autoradiographic studies. Brain Res. 1996;743(1–2):162–170. doi: 10.1016/S0006-8993(96)01039-6.
    1. Braun K, et al. Influence of parental deprivation on the behavioral development in Octodon degus: Modulation by maternal vocalizations. Dev. Psychobiol. J. Int. Soc. Dev. Psychobiol. 2003;42(3):237–245. doi: 10.1002/dev.10096.
    1. Veenema AH. Toward understanding how early-life social experiences alter oxytocin-and vasopressin-regulated social behaviors. Horm. Behav. 2012;61(3):304–312. doi: 10.1016/j.yhbeh.2011.12.002.
    1. Lukas M, et al. Maternal separation interferes with developmental changes in brain vasopressin and oxytocin receptor binding in male rats. Neuropharmacology. 2010;58(1):78–87. doi: 10.1016/j.neuropharm.2009.06.020.
    1. Champagne F, et al. Naturally occurring variations in maternal behavior in the rat are associated with differences in estrogen-inducible central oxytocin receptors. Proc. Natl. Acad. Sci. 2001;98(22):12736–12741. doi: 10.1073/pnas.221224598.
    1. Champagne FA, Meaney MJ. Transgenerational effects of social environment on variations in maternal care and behavioral response to novelty. Behav. Neurosci. 2007;121(6):1353. doi: 10.1037/0735-7044.121.6.1353.
    1. Meaney MJ. Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu. Rev. Neurosci. 2001;24(1):1161–1192. doi: 10.1146/annurev.neuro.24.1.1161.
    1. Francis DD, Champagne FC, Meaney MJ. Variations in maternal behaviour are associated with differences in oxytocin receptor levels in the rat. J. Neuroendocrinol. 2000;12(12):1145–1148. doi: 10.1046/j.1365-2826.2000.00599.x.
    1. Feldman R, et al. Natural variations in maternal and paternal care are associated with systematic changes in oxytocin following parent–infant contact. Psychoneuroendocrinology. 2010;35(8):1133–1141. doi: 10.1016/j.psyneuen.2010.01.013.
    1. Chisholm, J. S. et al.Early Stress: Perspectives from Developmental Evolutionary Ecology. 2005.
    1. Antonucci, L. A. et al.The Interaction Between OXTR rs2268493 and Perceived Maternal Care is Associated With Amygdala–Dorsolateral Prefrontal Effective Connectivity During Explicit Emotion Processing 1–13 (European Archives of Psychiatry and Clinical Neuroscience, 2019).
    1. Ross HE, Young LJ. Oxytocin and the neural mechanisms regulating social cognition and affiliative behavior. Front. Neuroendocrinol. 2009;30(4):534–547. doi: 10.1016/j.yfrne.2009.05.004.
    1. Cong X, et al. Parental oxytocin responses during skin-to-skin contact in pre-term infants. Early Hum. Dev. 2015;91(7):401–406. doi: 10.1016/j.earlhumdev.2015.04.012.
    1. Vittner D, et al. Increase in oxytocin from skin-to-skin contact enhances development of parent–infant relationship. Biol. Res. Nurs. 2018;20(1):54–62. doi: 10.1177/1099800417735633.
    1. González-Hernández A, et al. Peripheral oxytocin receptors inhibit the nociceptive input signal to spinal dorsal horn wide-dynamic-range neurons. Pain. 2017;158(11):2117–2128. doi: 10.1097/j.pain.0000000000001024.
    1. Matthiesen AS, et al. Postpartum maternal oxytocin release by newborns: Effects of infant hand massage and sucking. Birth. 2001;28(1):13–19. doi: 10.1046/j.1523-536x.2001.00013.x.
    1. Neumann ID, Wigger A, Torner L, Holsboer F, Landgraf R. Brain oxytocin inhibits basal and stress-induced activity of the hypothalamo-pituitary adrenal axis in male and female rats: Partial action within the paraventricular nucleus. J. Neuroendocrinol. 2000;12:235–243. doi: 10.1046/j.1365-2826.2000.00442.x.
    1. Mazzuca M, Minlebaev M, Shakirzyanova A, Tyzio R, Taccola G, Janackova S, Khazipov R. Newborn analgesia mediated by oxytocin during delivery. Front. Cell. Neurosci. 2011;5:3. doi: 10.3389/fncel.2011.00003.
    1. Boll S, De Minas AA, Raftogianni A, Herpertz SC, Grinevich V. Oxytocin and pain perception: From animal models to human research. Neuroscience. 2018;387:149–161. doi: 10.1016/j.neuroscience.2017.09.041.
    1. Bushnell, M. C., & Apkarian, A. V. Representation of pain in the brain. In Wall and Melzack’s Textbook of Pain, 5th edition 107–124 (Elsevier, 2006).
    1. Rash JA, Aguirre-Camacho A, Campbell TS. Oxytocin and pain: A systematic review and synthesis of findings. Clin. J. Pain. 2014;30(5):453–462. doi: 10.1097/AJP.0b013e31829f57df.
    1. Yang J. Intrathecal administration of oxytocin induces analgesia in low back pain involving the endogenous opiate peptide system. Spine. 1994;19(8):867–871. doi: 10.1097/00007632-199404150-00001.
    1. Louvel D, Delvaux M, Felez A, Fioramonti J, Bueno L, Lazorthes Y, et al. Oxytocin increases thresholds of colonic visceral perception in patients with irritable bowel syndrome. Gut. 1996;39:741–747. doi: 10.1136/gut.39.5.741.
    1. Wang YL, Yuan Y, Yang J, Wang CH, Pan YJ, Lu L, et al. The interaction between the oxytocin and pain modulation in headache patients. Neuropeptides. 2013;47:93–97. doi: 10.1016/j.npep.2012.12.003.
    1. Herpertz SC, Bertsch K. A new perspective on the pathophysiology of borderline personality disorder: A model of the role of oxytocin. Am. J. Psychiatry. 2015;172:840–851. doi: 10.1176/appi.ajp.2015.15020216.
    1. Wigton R, Radua J, Allen P, Averbeck B, Meyer-Lindenberg A, McGuire P, et al. Neurophysiological effects of acute oxytocin administration: Systematic review and meta-analysis of placebo-controlled imaging studies. J. Psychiatry Neurosci. 2015;40:E1–E22. doi: 10.1503/jpn.130289.
    1. Tracy LM, Georgiou-Karistianis N, Gibson SJ, Giummarra MJ. Oxytocin and the modulation of pain experience: Implications for chronic pain management. Neurosci. Biobehav. Rev. 2015;55:53–67. doi: 10.1016/j.neubiorev.2015.04.013.
    1. Neumann ID. Involvement of the brain oxytocin system in stress coping: Interactions with the hypothalamo-pituitary-adrenal axis. Prog. Brain Res. 2002;139:147–162. doi: 10.1016/S0079-6123(02)39014-9.
    1. Moberg KU, Prime DK. Oxytocin effects in mothers and infants during breastfeeding. Infant. 2013;9(6):201–206.
    1. Grunau RE, Weinberg J, Whitfield MF. Neonatal procedural pain and preterm infant cortisol response to novelty at 8 months. Pediatrics. 2004;114(1):e77–e84. doi: 10.1542/peds.114.1.e77.
    1. Grunau RE, et al. Altered basal cortisol levels at 3, 6, 8 and 18 months in infants born at extremely low gestational age. J. Pediatr. 2007;150(2):151–156. doi: 10.1016/j.jpeds.2006.10.053.
    1. Kuhn P, et al. Infants born very preterm react to variations of the acoustic environment in their incubator from a minimum signal-to-noise ratio threshold of 5 to 10 dBA. Pediatr. Res. 2012;71(1):386–392. doi: 10.1038/pr.2011.76.
    1. White RD, Smith JA, Shepley MM. Recommended standards for newborn ICU design. J. Perinatol. 2013;33(1):S2–S16. doi: 10.1038/jp.2013.10.
    1. Stevens B, et al. Premature infant pain profile: Development and initial validation. Clin. J. Pain. 1996;12(1):13–22. doi: 10.1097/00002508-199603000-00004.
    1. Team, R. C. R: A Language and Environment for Statistical Computing (2013).
    1. Maestripieri D, Lindell SG, Higley JD. Intergenerational transmission of maternal behavior in rhesus macaques and its underlying mechanisms. Dev. Psychobiol. 2007;49(2):165–171. doi: 10.1002/dev.20200.
    1. Carbajal R, Gall O, Annequin D. Pain management in neonates. Expert Rev. Neurother. 2004;4(3):491–505. doi: 10.1586/14737175.4.3.491.
    1. Westrup B, Sizun J, Lagercrantz H. Family-centered developmental supportive care: A holistic and humane approach to reduce stress and pain in neonates. J. Perinatol. 2007;27(1):S12–S18. doi: 10.1038/sj.jp.7211724.
    1. Melnyk BM, et al. Reducing premature infants' length of stay and improving parents' mental health outcomes with the Creating Opportunities for Parent Empowerment (COPE) neonatal intensive care unit program: A randomized, controlled trial. Pediatrics. 2006;118(5):e1414–e1427. doi: 10.1542/peds.2005-2580.
    1. Filippa M, et al. Effects of early vocal contact in the neonatal intensive care unit: Study protocol for a multi-centre, randomised clinical trial. Int. J. Environ. Res. Public Health. 2021;18(8):3915. doi: 10.3390/ijerph18083915.
    1. Moultrie F, et al. A universal right to pain relief: Balancing the risks in a vulnerable patient population. Lancet Child Adolescent Health. 2019;3(2):62–64. doi: 10.1016/S2352-4642(18)30269-4.

Source: PubMed

3
Abonnere