Tritordeum: Creating a New Crop Species-The Successful Use of Plant Genetic Resources

Carmen M Ávila, Cristina Rodríguez-Suárez, Sergio G Atienza, Carmen M Ávila, Cristina Rodríguez-Suárez, Sergio G Atienza

Abstract

Hexaploid tritordeum is the amphiploid derived from the cross between the wild barley Hordeum chilense and durum wheat. This paper reviews the main advances and achievements in the last two decades that led to the successful development of tritordeum as a new crop. In particular, we summarize the progress in breeding for agronomic performance, including the potential of tritordeum as a genetic bridge for wheat breeding; the impact of molecular markers in genetic studies and breeding; and the progress in quality and development of innovative food products. The success of tritordeum as a crop shows the importance of the effective utilization of plant genetic resources for the development of new innovative products for agriculture and industry. Considering that wild plant genetic resources have made possible the development of this new crop, the huge potential of more accessible resources, such as landraces conserved in gene banks, goes beyond being sources of resistance to biotic and abiotic stresses. In addition, the positive result of tritordeum also shows the importance of adequate commercialization strategies and demonstrative experiences aimed to integrate the whole food chain, from producers to end-point sellers, in order to develop new products for consumers.

Keywords: Hordeum chilense; genetic resources; pre-breeding; tritordeum.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

    1. International Wheat Genome Sequencing Consortium A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345:1251788. doi: 10.1126/science.1251788.
    1. Mergoum M., Singh P.K., Peña R.J., Lozano-del Río A.J., Cooper K.V., Salmon D.F., Gómez Macpherson H. Cereals. Springer; Berlin/Heidelberg, Germany: 2009. Triticale: A “New” Crop with Old Challenges; pp. 267–287.
    1. Martín A., Alvarez J.B., Martín L.M., Barro F., Ballesteros J. The development of tritordeum: A novel cereal for food processing. J. Cereal Sci. 1999;30:85–95. doi: 10.1006/jcrs.1998.0235.
    1. Pujadas A.J. ×Tritordeum martinii A. pujadas (Poaceae) Nothosp. Nov. Acta Bot. Malacit. 2016;41:325–338. doi: 10.24310/abm.v41i0.2486.
    1. Martin A., Chapman V. A hybrid between Hordeum chilense and Triticum aestivum. Cereal Res. Commun. 1977;5:365–368.
    1. Martin A., Sánchez-Monge E. Cytology and morphology of the amphiploid Hordeum chilense × Triticum turgidum conv durum. Euphytica. 1982;31:261–267. doi: 10.1007/BF00028329.
    1. Martin A., Martínez C., Rubiales D., Ballesteros J. Tritordeum: Triticale’s new brother cereal. In: Güedes-Pinto H., Darvey N., Carnide V.P., editors. Triticale: Today and Tomorrow. Kluwer Academic Publishers; Dordrecht, The Netherlands: 1996. pp. 57–72.
    1. Rodríguez-Suárez C., Ramírez M.C., Martínez C., Nadal S., Martín A., Atienza S.G. Selection and molecular characterization of imidazolinone resistant mutation-derived lines of Tritordeum HT621. Mol. Breed. 2009;23:565–572. doi: 10.1007/s11032-009-9256-0.
    1. Ball D., Peterson C. Wheat Production in Stressed Environments. Springer; Dordrecht, The Netherlands: 2007. Herbicide Tolerance in Imidazolinone-Resistant Wheat for Weed Management in the Pacific Northwest U.S.A; pp. 243–250.
    1. Domínguez-Mendez R., Alcántara-De La Cruz R., Rojano-Delgado A.M., Fernández-Moreno P.T., Aponte R., De Prado R. Multiple mechanisms are involved in new imazamox-resistant varieties of durum and soft wheat. Sci. Rep. 2017;7 doi: 10.1038/s41598-017-13874-3.
    1. Faris J.D., Fellers J.P., Brooks S.A., Gill B.S. A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics. 2003;164:311–321. doi: 10.1093/genetics/164.1.311.
    1. Simons K.J., Fellers J.P., Trick H.N., Zhang Z., Tai Y.S., Gill B.S., Faris J.D. Molecular Characterization of the Major Wheat Domestication Gene Q. Genetics. 2006;172:547–555. doi: 10.1534/genetics.105.044727.
    1. Atienza S.G., Martín A.C., Martín A. Introgression of wheat chromosome 2D or 5D into tritordeum leads to free-threshing habit. Genome. 2007;50:994–1000. doi: 10.1139/G07-081.
    1. Gil-Humanes J., Piston F., Martin A., Barro F. Comparative genomic analysis and expression of the APETALA2-like genes from barley, wheat, and barley-wheat amphiploids. BMC Plant Biol. 2009;9:66. doi: 10.1186/1471-2229-9-66.
    1. Jantasuriyarat C., Vales M.I., Watson C.J.W., Riera-Lizarazu O. Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.) Theor. Appl. Genet. 2004;108:261–273. doi: 10.1007/s00122-003-1432-8.
    1. Villegas D., Casadesús J., Atienza S.G., Martos V., Maalouf F., Karam F., Aranjuelo I., Nogués S. Tritordeum, wheat and triticale yield components under multi-local mediterranean drought conditions. Field Crop. Res. 2010;116:68–74. doi: 10.1016/j.fcr.2009.11.012.
    1. Visioli G., Lauro M., Vamerali T., Dal Cortivo C., Panozzo A., Folloni S., Piazza C., Ranieri R. A comparative study of organic and conventional management on the rhizosphere microbiome, growth and grain quality traits of tritordeum. Agronomy. 2020;10:1717. doi: 10.3390/agronomy10111717.
    1. Kakabouki I., Beslemes D.F., Tigka E.L., Folina A., Karydogianni S., Zisi C., Papastylianou P. Performance of six genotypes of tritordeum compare to bread wheat under east mediterranean condition. Sustainability. 2020;12:9700. doi: 10.3390/su12229700.
    1. Barceló P. Jornadas Técnicas “Rotaciones y Diversidad en Agricultura”. Fundación Ibercaja; Zaragoza, Spain: 2014. Tritordeum, un nuevo cereal natural. Agrocon e Ibercide.
    1. Rubiales D., Niks R.E., Carver T.L.W., Ballesteros J., Martín A. Prospects for Exploitation of Disease Resistance from Hordeum chilense in Cultivated Cereals. Hereditas. 2001;135:161–169. doi: 10.1111/j.1601-5223.2001.t01-1-00161.x.
    1. Brown J.K.M., Chartrain L., Lasserre-Zuber P., Saintenac C. Genetics of resistance to Zymoseptoria tritici and applications to wheat breeding. Fungal Genet. Biol. 2015;79:33–41. doi: 10.1016/j.fgb.2015.04.017.
    1. Martinek P., Svobodová I., Věchet L. Selection of the Wheat Genotypes and Related Species with Resistance to Mycosphaerella graminicola. Agriculture. 2013;59:65–73. doi: 10.2478/agri-2013-0006.
    1. Calderón M.C.C., Ramírez M.C.C., Martín A., Prieto P. Development of Hordeum chilense 4Hch introgression lines in durum wheat: A tool for breeders and complex trait analysis. Plant Breed. 2012;131:733–738. doi: 10.1111/j.1439-0523.2012.02010.x.
    1. Cherif-Mouaki S., Said M., Alvarez J.B., Cabrera A. Sub-arm location of prolamin and EST-SSR loci on chromosome 1Hch from Hordeum chilense. Euphytica. 2011;178:63–69. doi: 10.1007/s10681-010-0268-y.
    1. Palomino C., Cabrera A. Development of wheat—Hordeum chilense Chromosome 2Hch Introgression Lines Potentially Useful for Improving Grain Quality Traits. Agronomy. 2019;9:493. doi: 10.3390/agronomy9090493.
    1. Martin A.C., Atienza S.G., Ramirez M.C., Barro F., Martin A. Chromosome engineering in wheat to restore male fertility in the msH1 CMS system. Mol. Breed. 2009;24:397–408. doi: 10.1007/s11032-009-9301-z.
    1. Martín A.C., Atienza S.G., Ramírez M.C., Barro F., Martín A. Male fertility restoration of wheat in Hordeum chilense cytoplasm is associated with 6HchS chromosome addition. Aust. J. Agric. Res. 2008;59:206–213. doi: 10.1071/AR07239.
    1. Mattera M.G., Ávila C.M., Atienza S.G., Cabrera A. Cytological and molecular characterization of wheat-Hordeum chilense chromosome 7Hch introgression lines. Euphytica. 2015;203:165–176. doi: 10.1007/s10681-014-1292-0.
    1. Mattera M.G., Cabrera A. Characterization of a set of common wheat—Hordeum chilense chromosome 7Hch introgression lines and its potential use in research on grain quality traits. Plant Breed. 2017;136:344–350. doi: 10.1111/pbr.12470.
    1. Said M., Recio R., Cabrera A. Development and characterisation of structural changes in chromosome 3Hch from Hordeum chilense in common wheat and their use in physical mapping. Euphytica. 2012;188:429–440. doi: 10.1007/s10681-012-0712-2.
    1. Rey M.-D., Calderón M.-C., Rodrigo M.J., Zacarías L., Alós E., Prieto P. Novel bread wheat lines enriched in carotenoids carrying Hordeum chilense chromosome arms in the ph1b background. PLoS ONE. 2015:10. doi: 10.1371/journal.pone.0134598.
    1. Said M., Cabrera A. A physical map of chromosome 4Hch from H. chilense containing SSR, STS and EST-SSR molecular markers. Euphytica. 2009;167:253–259. doi: 10.1007/s10681-009-9895-6.
    1. Castillo A., Atienza S.G., Martín A.C. Fertility of CMS wheat is restored by two Rf loci located on a recombined acrocentric chromosome. J. Exp. Bot. 2014;65:6667–6677. doi: 10.1093/jxb/eru388.
    1. Castillo A., Rodríguez-Suárez C., Martín A.C., Pistón F. Contribution of chromosomes 1HchS and 6HchS to fertility restoration in the wheat msH1 CMS system under different environmental conditions. PLoS ONE. 2015:10. doi: 10.1371/journal.pone.0121479.
    1. Yousfi S., Serret M.D., Voltas J., Araus J.L. Effect of salinity and water stress during the reproductive stage on growth, ion concentrations, delta C-13, and delta N-15 of durum wheat and related amphiploids. J. Exp. Bot. 2010;61:3529–3542. doi: 10.1093/jxb/erq184.
    1. Martín A.C.C., Atienza S.G.G., Ramírez M.C., Barro F., Martin A., Martín A.C.C. Molecular and cytological characterization of an extra acrocentric chromosome that restores male fertility of wheat in the msH1 CMS system. Theor. Appl. Genet. 2010;121:1093–1101. doi: 10.1007/s00122-010-1374-x.
    1. Rodríguez-Suárez C., Bagnaresi P., Cattivelli L., Pistón F., Castillo A., Martín A.C., Atienza S.G., Ramírez C., Martín A.C. Transcriptomics, chromosome engineering and mapping identify a restorer-of-fertility region in the CMS wheat system msH1. Theor. Appl. Genet. 2020;133:283–295. doi: 10.1007/s00122-019-03457-3.
    1. Martín A.C., Castillo A., Atienza S.G., Rodríguez-Suárez C. A cytoplasmic male sterility (CMS) system in durum wheat. Mol. Breed. 2018;38 doi: 10.1007/s11032-018-0848-4.
    1. Rodríguez-Suárez C., Atienza S.G.G. Hordeum chilense genome, a useful tool to investigate the endosperm yellow pigment content in the Triticeae. BMC Plant Biol. 2012;12:200. doi: 10.1186/1471-2229-12-200.
    1. Rodríguez-Suárez C., Atienza S.G. Polyphenol oxidase genes in Hordeum chilense and implications in tritordeum breeding. Mol. Breed. 2014;34:1867–1877. doi: 10.1007/s11032-014-0145-9.
    1. Rodríguez-Suárez C., Mellado-Ortega E., Hornero-Méndez D., Atienza S.G. Increase in transcript accumulation of Psy1 and e-Lcy genes in grain development is associated with differences in seed carotenoid content between durum wheat and tritordeum. Plant Mol. Biol. 2014;84:659–673. doi: 10.1007/s11103-013-0160-y.
    1. Forster B.P., Phillips M.S., Miller T.E., Baird E., Powell W. Chromosome location of genes controlling tolerance to salt (NaCl) and vigour in Hordeum vulgare and H. chilense. Heredity. 1990;65:99–107. doi: 10.1038/hdy.1990.75.
    1. Rey M.-D., Calderon M.C., Prieto P. The use of the ph1b mutant to induce recombination between the chromosomes of wheat and barley. Front. Plant Sci. 2015;6 doi: 10.3389/fpls.2015.00160.
    1. Alvarez J.B., Martin L.M., Martin A. Chromosomal localization of genes for carotenoid pigments using addition lines of Hordeum chilense in wheat. Plant Breed. 1998;117:287–289. doi: 10.1111/j.1439-0523.1998.tb01942.x.
    1. Mattera M.G., Cabrera A., Hornero-Méndez D., Atienza S.G. Lutein esterification in wheat endosperm is controlled by the homoeologous group 7, and is increased by the simultaneous presence of chromosomes 7D and 7Hch from Hordeum chilense. Crop Pasture Sci. 2015;66:912–921. doi: 10.1071/CP15091.
    1. Requena-Ramírez M.D., Atienza S.G., Hornero-Méndez D., Rodríguez-Suárez C. Mediation of a GDSL Esterase/Lipase in Carotenoid Esterification in Tritordeum Suggests a Common Mechanism of Carotenoid Esterification in Triticeae Species. Front. Plant Sci. 2020;11:2032. doi: 10.3389/fpls.2020.592515.
    1. Alvarez J.B., Castellano L., Recio R., Cabrera A. Wx Gene in Hordeum chilense: Chromosomal Location and Characterisation of the Allelic Variation in the Two Main Ecotypes of the Species. Agronomy. 2019;9:261. doi: 10.3390/agronomy9050261.
    1. Hernandez P. Comparison among available marker systems for cereal introgression breeding: A practical perspective. Euphytica. 2005;146:95–100. doi: 10.1007/s10681-005-7676-4.
    1. Hernández P., Dorado G., Prieto P., Giménez M.J., Ramírez M.C., Laurie D.A., Snape J.W., Martín A. A core genetic map of Hordeum chilense and comparisons with maps of barley (Hordeum vulgare) and wheat (Triticum aestivum) Theor. Appl. Genet. 2001;102:1259–1264. doi: 10.1007/s001220000514.
    1. Vaz Patto M.C., Rubiales D., Martín A., Hernández P., Lindhout P., Niks R.E., Stam P. QTL mapping provides evidence for lack of association of the avoidance of leaf rust in Hordeum chilense with stomata density. Theor. Appl. Genet. 2003;106:1283–1292. doi: 10.1007/s00122-003-1195-2.
    1. Atienza S.G., Ramírez C.M., Hernández P., Martín A. Chromosomal location of genes for carotenoid pigments in Hordeum chilense. Plant Breed. 2004;123 doi: 10.1111/j.1439-0523.2004.00918.x.
    1. Hagras A.A.A., Kishii M., Sato K., Tanaka H., Tsujimoto H. Extended application of barley EST markers for the analysis of alien chromosomes added to wheat genetic background. Breed. Sci. 2005;55:335–341. doi: 10.1270/jsbbs.55.335.
    1. Hagras A.A.-A., Kishii M., Tanaka H., Sato K., Tsujimoto H. Genomic differentiation of Hordeum chilense from H. vulgare as revealed by repetitive and EST sequences. Genes Genet. Syst. 2005;80:147–159. doi: 10.1266/ggs.80.147.
    1. Ozkan H., Levy A.A., Feldman M. Allopolyploidy-Induced Rapid Genome Evolution in the Wheat (Aegilops-Triticum) Group. Plant Cell. 2001;13:1735–1747. doi: 10.1105/TPC.010082.
    1. Cabo S., Ferreira L., Carvalho A., Martins-Lopes P., Martín A., Lima-Brito J.E. Potential of Start Codon Targeted (SCoT) markers for DNA fingerprinting of newly synthesized tritordeums and their respective parents. J. Appl. Genet. 2014;55:307–312. doi: 10.1007/s13353-014-0211-3.
    1. Cabo S., Carvalho A., Rocha L., Martin A., Lima-Brito J. IRAP, REMAP and ISSR Fingerprinting in Newly Formed Hexaploid Tritordeum (×Tritordeum Ascherson et Graebner) and Respective Parental Species. Plant Mol. Biol. Rep. 2014;32:761–770. doi: 10.1007/s11105-013-0684-y.
    1. Rodríguez-Suárez C., Giménez M.J., Gutiérrez N., Ávila C.M., Machado A., Huttner E., Ramírez M.C., Martín A.C., Castillo A., Kilian A., et al. Development of wild barley (Hordeum chilense)-derived DArT markers and their use into genetic and physical mapping. Theor. Appl. Genet. 2012;124:713–722. doi: 10.1007/s00122-011-1741-2.
    1. Castillo A., Ramírez M.C., Martín A.C., Kilian A., Martín A.C., Atienza S.G. High-throughput genotyping of wheat-barley amphiploids utilising diversity array technology (DArT) BMC Plant Biol. 2013:13. doi: 10.1186/1471-2229-13-87.
    1. Nasuda S., Kikkawa Y., Ashida T., Rafiqul Islam A.K.M., Sato K., Endo T.R. Chromosomal assignment and deletion mapping of barley EST markers. Genes Genet. Syst. 2005;80:357–366. doi: 10.1266/ggs.80.357.
    1. Quraishi U.M., Abrouk M., Bolot S., Pont C., Throude M., Guilhot N., Confolent C., Bortolini F., Praud S., Murigneux A., et al. Genomics in cereals: From genome-wide conserved orthologous set (COS) sequences to candidate genes for trait dissection. Funct. Integr. Genomics. 2009;9:473–484. doi: 10.1007/s10142-009-0129-8.
    1. The International Barley Genome Sequencing Consortium A physical, genetic and functional sequence assembly of the barley genome. Nature. 2012;491:711–716. doi: 10.1038/nature11543.
    1. Ávila C.M., Mattera M.G., Rodríguez-Suárez C., Palomino C., Ramírez M.C., Martin A., Kilian A., Hornero-Méndez D., Atienza S.G. Diversification of seed carotenoid content and profile in wild barley (Hordeum chilense Roem. et Schultz.) and Hordeum vulgare L.—H. chilense synteny as revealed by DArTSeq markers. Euphytica. 2019;215:45. doi: 10.1007/s10681-019-2369-6.
    1. Elouafi I., Nachit M.M., Martin L.M. Identification of a microsatellite on chromosome 7B showing a strong linkage with yellow pigment in durum wheat (Triticum turgidum L. var. durum) Hereditas. 2001;135:255–261. doi: 10.1111/j.1601-5223.2001.t01-1-00255.x.
    1. Alvarez J.B., Ballesteros J., Sillero J.A., Martin L.M. Tritordeum: A new crop of potential importance in the food industry. Hereditas. 1992;116:193–197. doi: 10.1111/j.1601-5223.1992.tb00822.x.
    1. Bhave M., Morris C.F. Molecular genetics of puroindolines and related genes: Allelic diversity in wheat and other grasses. Plant Mol. Biol. 2008;66:205–219. doi: 10.1007/s11103-007-9263-7.
    1. Guzmán C., Alvarez J.B. Molecular characterization of two novel alleles of Hordoindoline genes in Hordeum chilense Roem. et Schult. Genet. Resour. Crop Evol. 2014;61:307–312. doi: 10.1007/s10722-013-0077-y.
    1. Yanaka M., Takata K., Terasawa Y., Ikeda T.M. Chromosome 5H of Hordeum species involved in reduction in grain hardness in wheat genetic background. Theor. Appl. Genet. 2011;123:1013–1018. doi: 10.1007/s00122-011-1643-3.
    1. Payne P.I., Nightingale M.A., Krattiger A.F., Holt L.M. The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J. Sci. Food Agric. 1987;40:51–65. doi: 10.1002/jsfa.2740400108.
    1. Barro F., Barceló P., Lazzeri P.A., Shewry P.R., Martín A., Ballesteros J. Functional properties and agronomic performance of transgenic tritordeum expressing high molecular weight glutenin subunit genes 1Ax1 and 1Dx5. J. Cereal Sci. 2003;37:65–70. doi: 10.1006/jcrs.2002.0479.
    1. Barro F., Barcelo P., Lazzeri P.A., Shewry P.R., Ballesteros J., Martin A. Functional properties of flours from field grown transgenic wheat lines expressing the HMW glutenin subunit 1Ax1 and 1Dx5 genes. Mol. Breed. 2003;12:223–229. doi: 10.1023/A:1026367214120.
    1. Ballesteros J., Alvarez J.B., Gimenez M.J., Ramirez M.C., Cabrera A., Martin A. Introgression of 1Dx5+1Dy10 into Tritordeum. Theor. Appl. Genet. 2003;106:644–648. doi: 10.1007/s00122-002-1110-2.
    1. Ballesteros J., Ramírez M.C., Martínez C., Barro F., Martín A. Bread-making quality in hexaploid tritordeum with substitutions involving chromosome 1D. Plant Breed. 2003;122:89–91. doi: 10.1046/j.1439-0523.2003.00806.x.
    1. Alvarez J.B., Martín A., Martín L.M. Variation in the high-molecular-weight glutenin subunits coded at the Glu-Hch1 locus in Hordeum chilense. Theor. Appl. Genet. 2001;102:134–137. doi: 10.1007/s001220051628.
    1. Atienza S.G., Gimenez M.J., Martin A., Martin L.M. Variability in monomeric prolamins in Hordeum chilense. Theor. Appl. Genet. 2000;101:970–976. doi: 10.1007/s001220051569.
    1. Atienza S.G., Alvarez J.B., Villegas A.M., Gimenez M.J., Ramirez M.C., Martin A., Martin L.M. Variation for the low-molecular-weight glutenin subunits in a collection of Hordeum chilense. Euphytica. 2002;128:269–277. doi: 10.1023/A:1020879610215.
    1. Alvarez J.B., Broccoli A., Martín L.M. Variability and Genetic Diversity for Gliadins in Natural Populations of Hordeum chilense Roem. et Schult. Genet. Resour. Crop Evol. 2006;53:1419–1425. doi: 10.1007/s10722-005-5805-5.
    1. Alvarez J.B., Moral A., Martín L.M., Martín A. Linkage relationships between prolamin genes located on chromosome 1Hch in Hordeum chilense. Theor. Appl. Genet. 2004;108:891–895. doi: 10.1007/s00122-003-1496-5.
    1. Caballero L., Alvarez J.B., Martin L.M. Analysis of D-prolamins synthesized by the Hordeum chilense genome and their effects on gluten strength in hexaploid tritordeum. Plant Breed. 2001;120:185–187. doi: 10.1046/j.1439-0523.2001.00571.x.
    1. Vaquero L., Comino I., Vivas S., Rodríguez-Martín L., Giménez M.J., Pastor J., Sousa C., Barro F. Tritordeum: A novel cereal for food processing with good acceptability and significant reduction in gluten immunogenic peptides in comparison with wheat. J. Sci. Food Agric. 2018;98:2201–2209. doi: 10.1002/jsfa.8705.
    1. Sánchez-León S., Haro C., Villatoro M., Vaquero L., Comino I., González-Amigo A.B., Vivas S., Pastor J., Sousa C., Landa B.B., et al. Tritordeum breads are well tolerated with preference over gluten-free breads in non-celiac wheat-sensitive patients and its consumption induce changes in gut bacteria. J. Sci. Food Agric. 2020:jsfa.10982. doi: 10.1002/jsfa.10982.
    1. Idehen E., Tang Y., Sang S. Bioactive phytochemicals in barley. J. Food Drug Anal. 2017;25:148–161. doi: 10.1016/j.jfda.2016.08.002.
    1. Navas-Lopez J.F., Ostos-Garrido F.J., Castillo A., Martín A., Gimenez M.J., Pistón F. Phenolic content variability and its chromosome location in tritordeum. Front. Plant Sci. 2014;5 doi: 10.3389/fpls.2014.00010.
    1. Eliášová M., Paznocht L. Total phenolic content and antioxidant activity of tritordeum wheat and barley. Agron. Res. 2017;15:1287–1294.
    1. Lachman J., Hejtmánková A., Orsák M., Popov M., Martinek P. Tocotrienols and tocopherols in colored-grain wheat, tritordeum and barley. Food Chem. 2018;240:725–735. doi: 10.1016/j.foodchem.2017.07.123.
    1. Rakha A., Saulnier L., Åman P., Andersson R. Enzymatic fingerprinting of arabinoxylan and β-glucan in triticale, barley and tritordeum grains. Carbohydr. Polym. 2012;90:1226–1234. doi: 10.1016/j.carbpol.2012.06.054.
    1. Phuong L.E., Lachman J., Kotíková Z., Orsák M., Michlová T., Martinek P. Selenium in colour-grained winter wheat and spring tritordeum. Plant Soil Environ. 2017;63:315–321. doi: 10.17221/259/2017-PSE.
    1. Tufarelli V., Cazzato E., Ceci E., Laudadio V. Selenium-Fertilized Tritordeum (×Tritordeum Ascherson et Graebner) as Dietary Selenium Supplement in Laying Hens: Effects on Egg Quality. Biol. Trace Elem. Res. 2016;173:219–224. doi: 10.1007/s12011-016-0652-0.
    1. Gómez M., Manchón L., Oliete B., Ruiz E., Caballero P.A. Adequacy of wholegrain non-wheat flours for layer cake elaboration. LWT Food Sci. Technol. 2010;43:507–513. doi: 10.1016/j.lwt.2009.09.019.
    1. Zdaniewicz M., Pater A., Hrabia O., Duliński R., Cioch-Skoneczny M. Tritordeum malt: An innovative raw material for beer production. J. Cereal Sci. 2020;96:103095. doi: 10.1016/j.jcs.2020.103095.
    1. Nocente F., Natale C., Galassi E., Taddei F., Gazza L. Using Einkorn and Tritordeum Brewers’ Spent Grain to Increase the Nutritional Potential of Durum Wheat Pasta. Foods. 2021;10:502. doi: 10.3390/foods10030502.
    1. Ballesteros J., Ramirez M.C., Martinez C., Atienza S.G., Martin A. Registration of HT621, a high carotenoid content tritordeum germplasm line. Crop Sci. 2005;45:2662–2663. doi: 10.2135/cropsci2004.0641.
    1. Atienza S.G., Avila C.M., Ramírez M.C., Martín A. Application of near infrared reflectance spectroscopy to the determination of carotenoid content in tritordeum for breeding purposes. Aust. J. Agric. Res. 2005;56:85–89. doi: 10.1071/AR04154.
    1. Atienza S.G., Avila C.M., Martín A. The development of a PCR-based marker for PSY1 from Hordeum chilense, a candidate gene for carotenoid content accumulation in tritordeum seeds. Aust. J. Agric. Res. 2007;58:767–773. doi: 10.1071/AR06338.
    1. Rodríguez-Suárez C., Atienza S.G., Pistón F. Allelic variation, alternative splicing and expression analysis of Psy1 gene in Hordeum chilenseRoem. et Schult. PLoS ONE. 2011;6 doi: 10.1371/journal.pone.0019885.
    1. Atienza S.G., Ballesteros J., Martin A., Hornero-Mendez D. Genetic variability of carotenoid concentration and degree of esterification among tritordeum (×Tritordeum Ascherson et Graebner) and durum wheat accessions. J. Agric. Food Chem. 2007;55:4244–4251. doi: 10.1021/jf070342p.
    1. Berry H.M., Rickett D.V., Baxter C.J., Enfissi E.M.A., Fraser P.D. Carotenoid biosynthesis and sequestration in red chilli pepper fruit and its impact on colour intensity traits. J. Exp. Bot. 2019;70:2637–2650. doi: 10.1093/jxb/erz086.
    1. Mattera M.G., Hornero-Méndez D., Atienza S.G. Carotenoid content in tritordeum is not primarily associated with esterification during grain development. Food Chem. 2020;310 doi: 10.1016/j.foodchem.2019.125847.
    1. Ahmad F.T., Asenstorfer R.E., Soriano I.R., Mares D.J. Effect of temperature on lutein esterification and lutein stability in wheat grain. J. Cereal Sci. 2013;58:408–413. doi: 10.1016/j.jcs.2013.08.004.
    1. Subagio A., Wakaki H., Morita N. Stability of lutein and its myristate esters. Biosci. Biotechnol. Biochem. 1999;63:1784–1786. doi: 10.1271/bbb.63.1784.
    1. Mellado-Ortega E., Atienza S.G., Hornero-Méndez D. Carotenoid evolution during postharvest storage of durum wheat (Triticum turgidum conv. durum) and tritordeum (×Tritordeum Ascherson et Graebner) grains. J. Cereal Sci. 2015;62:134–142. doi: 10.1016/j.jcs.2015.01.006.
    1. Mellado-Ortega E., Hornero-Méndez D. Carotenoid evolution during short-storage period of durum wheat (Triticum turgidum conv. durum) and tritordeum (×Tritordeum Ascherson et Graebner) whole-grain flours. Food Chem. 2016;192:714–723. doi: 10.1016/j.foodchem.2015.07.057.
    1. Mellado-Ortega E., Hornero-Méndez D. Effect of long-term storage on the free and esterified carotenoids in durum wheat (Triticum turgidum conv. durum) and tritordeum (×Tritordeum Ascherson et Graebner) grains. Food Res. Int. 2017;99:877–890. doi: 10.1016/j.foodres.2016.05.012.
    1. Mellado-Ortega E., Hornero-Mendez D. Isolation and identification of lutein esters, including their regioisomers, in tritordeum (×Tritordeum Ascherson et Graebner) grains: Evidence for a preferential xanthophyll acyltransferase activity. Food Chem. 2012;135:1344–1352. doi: 10.1016/j.foodchem.2012.05.046.
    1. Mellado-Ortega E., Hornero-Méndez D. Effect of lutein esterification on the differential distribution of carotenoids in germ and endosperm fractions from tritordeum grains. J. Cereal Sci. 2018;79:462–468. doi: 10.1016/j.jcs.2017.12.006.
    1. Paznocht L., Burešová B., Kotíková Z., Martinek P. Carotenoid content of extruded and puffed products made of colored-grain wheats. Food Chem. 2021;340 doi: 10.1016/j.foodchem.2020.127951.
    1. Watkins J.L., Li M., McQuinn R.P., Chan K.X., McFarlane H.E., Ermakova M., Furbank R.T., Mares D.J., Dong C., Chalmers K.J., et al. A GDSL Esterase/Lipase Catalyzes the Esterification of Lutein in Bread Wheat. Plant Cell. 2019 doi: 10.1105/tpc.19.00272.
    1. Watkins J., Pogson B., Mather D. XAT Catalyzes Carotenoid Esterification in Wheat. [(accessed on 20 May 2021)]; Available online:
    1. Mellado-Ortega E., Hornero-Méndez D. Carotenoid profiling of Hordeum chilense grains: The parental proof for the origin of the high carotenoid content and esterification pattern of tritordeum. J. Cereal Sci. 2015;62:15–21. doi: 10.1016/j.jcs.2014.12.005.
    1. Ávila C.M., Palomino M.C., Hornero-Méndez D., Atienza S.G. Identification of candidate genes for lutein esterification in common wheat (Triticum aestivum) using physical mapping and genomics tools. Crop Pasture Sci. 2019;70:567–574. doi: 10.1071/CP18531.

Source: PubMed

3
Abonnere