The neural origin of muscle synergies

Emilio Bizzi, Vincent C K Cheung, Emilio Bizzi, Vincent C K Cheung

Abstract

Muscle synergies are neural coordinative structures that function to alleviate the computational burden associated with the control of movement and posture. In this commentary, we address two critical questions: the explicit encoding of muscle synergies in the nervous system, and how muscle synergies simplify movement production. We argue that shared and task-specific muscle synergies are neurophysiological entities whose combination, orchestrated by the motor cortical areas and the afferent systems, facilitates motor control and motor learning.

Keywords: motor cortex; motor modules; motor primitive; non-negative matrix factorization; spinal interneurons.

References

    1. Attias H. (1999). Independent factor analysis. Neural Comput. 11 803–851
    1. Basmajian J. V. (1963). Control and training of individual motor units. Science 141 440–441
    1. Bell A. J., Sejnowski T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7 1129–1159
    1. Berniker M., Jarc A., Bizzi E., Tresch M. C. (2009). Simplified and effective motor control based on muscle synergies to exploit musculoskeletal dynamics. Proc. Natl. Acad. Sci. U.S.A. 106 7601–7606
    1. Bernstein N. (1967). The co-ordination and regulation of movements. Oxford: Pergamon
    1. Bicchi A., Gabiccini M., Santello M. (2011). Modelling natural and artificial hands with synergies. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366 3153–3161
    1. Bizzi E., Mussa-Ivaldi F. A., Giszter S. (1991). Computations underlying the execution of movement: a biological perspective. Science 253 287–291
    1. Cappellini G., Ivanenko Y. P., Poppele R. E., Lacquaniti F. (2006). Motor patterns in human walking and running. J. Neurophysiol. 95 3426–3437
    1. Cheung V. C. K., d’Avella A., Bizzi E. (2009a). Adjustments of motor pattern for load compensation via modulated activations of muscle synergies during natural behaviors. J. Neurophysiol. 101 1235–1257
    1. Cheung V. C. K., d’Avella A., Tresch M. C., Bizzi E. (2005). Central and sensory contributions to the activation and organization of muscle synergies during natural motor behaviors. J. Neurosci. 25 6419–6434
    1. Cheung V. C. K., Piron L., Agostini M., Silvoni S., Turolla A., Bizzi E. (2009b). Stability of muscle synergies for voluntary actions after cortical stroke in humans. Proc. Natl. Acad. Sci. U.S.A. 106 19563–19568
    1. Cheung V. C. K., Tresch M. (2005). Non-negative matrix factorization algorithms modeling noise distributions within the exponential family. Conf. Proc. IEEE Eng. Med. Biol. Soc. 5 4990–4993
    1. Cheung V. C. K., Turolla A., Agostini M., Silvoni S., Bennis C., Kasi P., et al. (2012). Muscle synergy patterns as physiological markers of motor cortical damage. Proc. Natl. Acad. Sci. U.S.A. 109 14652–14656
    1. Chvatal S. A., Torres-Oviedo G., Safavynia S. A., Ting L. H. (2011). Common muscle synergies for control of center of mass and force in nonstepping and stepping postural behaviors. J. Neurophysiol. 106 999–1015
    1. Clark D. J., Ting L. H., Zajac F. E., Neptune R. R., Kautz S. A. (2010). Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. J. Neurophysiol. 103 844–857
    1. d’Avella A., Bizzi E. (2005). Shared and specific muscle synergies in natural motor behaviors. Proc. Natl. Acad. Sci. U.S.A. 102 3076–3081
    1. d’Avella A., Fernandez L., Portone A., Lacquaniti F. (2008). Modulation of phasic and tonic muscle synergies with reaching direction and speed. J. Neurophysiol. 100 1433–1454
    1. d’Avella A., Pai D. K. (2010). Modularity for sensorimotor control: evidence and a new prediction. J. Mot. Behav. 42 361–369
    1. d’Avella A., Saltiel P., Bizzi E. (2003). Combinations of muscle synergies in the construction of a natural motor behavior. Nat. Neurosci. 6 300–308
    1. Dominici N., Ivanenko Y. P., Cappellini G., d’Avella A., Mondì V., Cicchese M., et al. (2011). Locomotor primitives in newborn babies and their development. Science 334 997–999
    1. Ethier C., Brizzi L., Darling W. G., Capaday C. (2006). Linear summation of cat motor cortex outputs. J. Neurosci. 26 5574–5581
    1. Fetz E. E., Perlmutter S. I., Prut Y., Seki K., Votaw S. (2002). Roles of primate spinal interneurons in preparation and execution of voluntary hand movement. Brain Res. Brain Res. Rev. 40 53–65
    1. Flash T., Hochner B. (2005). Motor primitives in vertebrates and invertebrates. Curr. Opin. Neurobiol. 15 660–666
    1. Frère J., Hug F. (2012). Between-subject variability of muscle synergies during a complex motor skill. Front. Comput. Neurosci. 6:99 10.3389/fncom.2012.00099
    1. Full R. J., Koditschek D. E. (1999). Templates and anchors: neuromechanical hypotheses of legged locomotion on land. J. Exp. Biol. 202 3325–3332
    1. Gentner R., Classen J. (2006). Modular organization of finger movements by the human central nervous system. Neuron 52 731–742
    1. Gentner R., Gorges S., Weise D., aufm Kampe K., Buttmann M., Classen J. (2010). Encoding of motor skill in the corticomuscular system of musicians. Curr. Biol. 20 1869–1874
    1. Giszter S. F., Mussa-Ivaldi F. A., Bizzi E. (1993). Convergent force fields organized in the frog’s spinal cord. J. Neurosci. 13 467–491
    1. Giszter S., Patil V., Hart C. (2007). Primitives, premotor drives, and pattern generation: a combined computational and neuroethological perspective. Prog. Brain Res. 165 323–346
    1. Gizzi L., Nielsen J. F., Felici F., Ivanenko Y. P., Farina D. (2011). Impulses of activation but not motor modules are preserved in the locomotion of subacute stroke patients. J. Neurophysiol. 106 202–210
    1. Hart C. B., Giszter S. F. (2004). Modular premotor drives and unit bursts as primitives for frog motor behaviors. J. Neurosci. 24 5269–5282
    1. Hart C. B., Giszter S. F. (2010). A neural basis for motor primitives in the spinal cord. J. Neurosci. 30 1322–1336
    1. Hubel D. H., Wiesel T. N. (1959). Receptive fields of single neurons in the cat’s striate cortex. J. Physiol. 148 574–591
    1. Ivanenko Y. P., Poppele R. E., Lacquaniti F. (2004). Five basic muscle activation patterns account for muscle activity during human locomotion. J. Physiol. 556 267–282
    1. Jing J., Cropper E. C., Hurwitz I., Weiss K. R. (2004). The construction of movement with behavior-specific and behavior-independent modules. J. Neurosci. 24 6315–6325
    1. Jolliffe I. T. (2002). Principal component analysis. New York: Springer
    1. Kargo W. J., Giszter S. F. (2000). Rapid correction of aimed movements by summation of force-field primitives. J. Neurosci. 20 409–426
    1. Kargo W. J., Giszter S. F. (2008). Individual premotor drive pulses, not time-varying synergies, are the units of adjustment for limb trajectories constructed in spinal cord. J. Neurosci. 28 2409–2425
    1. Kargo W. J., Nitz D. A. (2003). Early skill learning is expressed through selection and tuning of cortically represented muscle synergies. J. Neurosci. 23 11255–11269
    1. Krishnamoorthy V., Latash M. L., Scholz J. P., Zatsiorsky V. M. (2003). Muscle synergies during shifts of the center of pressure by standing persons. Exp. Brain Res. 152 281–292
    1. Krouchev N., Kalaska J. F., Drew T. (2006). Sequential activation of muscle synergies during locomotion in the intact cat as revealed by cluster analysis and direct decomposition. J. Neurophysiol. 96 1991–2010
    1. Kutch J. J., Kuo A. D., Bloch A. M., Rymer W. Z. (2008). Endpoint force fluctuations reveal flexible rather than synergistic patterns of muscle cooperation. J. Neurophysiol. 100 2455–2471
    1. Kutch J. J., Valero-Cuevas F. J. (2012). Challenges and new approaches to proving the existence of muscle synergies of neural origin. PLoS Comput. Biol. 8:e1002434 10.1371/journal.pcbi.1002434
    1. Lacquaniti F., Ivanenko Y. P., Zago M. (2012). Development of human locomotion. Curr. Opin. Neurobiol. 22 822–828
    1. Lee D. D., Seung H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature 401 788–791
    1. Lee D. D., Seung H. S. (2001). “Algorithms for non-negative matrix factorization,” in Advances in Neural Information Processing Systems vol. 13 eds Leen T. K., Dietterich T. G., Tresp V. (Cambridge: MIT Press; ) 556–562
    1. Lemay M. A., Galagan J. E., Hogan N., Bizzi E. (2001). Modulation and vectorial summation of the spinalized frog’s hindlimb end-point force produced by intraspinal electrical stimulation of the cord. IEEE Trans. Neural Syst. Rehabil. Eng. 9 12–23
    1. Lemay M. A., Grill W. M. (2004). Modularity of motor output evoked by intraspinal microstimulation in cats. J. Neurophysiol. 91 502–514
    1. Loeb E. P., Giszter S. F., Borghesani P., Bizzi E. (1993). Effects of dorsal root cut on the forces evoked by spinal microstimulation in the spinalized frog. Somatosens. Mot. Res. 10 81–95
    1. Loeb E. P., Giszter S. F., Saltiel P., Bizzi E., Mussa-Ivaldi F. A. (2000). Output units of motor behavior: an experimental and modeling study. J. Cogn. Neurosci. 12 78–97
    1. McKay J. L., Ting L. H. (2008). Functional muscle synergies constrain force production during postural tasks. J. Biomech. 41 299–306
    1. Monaco V., Ghionzoli A., Micera S. (2010). Age-related modifications of muscle synergies and spinal cord activity during locomotion. J. Neurophysiol. 104 2092–2102
    1. Muceli S., Boye A. T., d’Avella A., Farina D. (2010). Identifying representative synergy matrices for describing muscular activation patterns during multidirectional reaching in the horizontal plane. J. Neurophysiol. 103 1532–1542
    1. Mussa-Ivaldi F. A., Giszter S. F., Bizzi E. (1994). Linear combinations of primitives in vertebrate motor control. Proc. Natl. Acad. Sci. U.S.A. 91 7534–7538
    1. Overduin S. A., d’Avella A., Carmena J. M., Bizzi E. (2012). Microstimulation activates a handful of muscle synergies. Neuron 76 1071–1077
    1. Overduin S. A., d’Avella A., Roh J., Bizzi E. (2008). Modulation of muscle synergy recruitment in primate grasping. J. Neurosci. 28 880–892
    1. Poggio T., Bizzi E. (2004). Generalization in vision and motor control. Nature 431 768–774
    1. Rathelot J. A., Strick P. L. (2006). Muscle representation in the macaque motor cortex: an anatomical perspective. Proc. Natl. Acad. Sci. U.S.A. 103 8257–8262
    1. Rathelot J. A., Strick P. L. (2009). Subdivisions of primary motor cortex based on cortico-motoneuronal cells. Proc. Natl. Acad. Sci. U.S.A. 106 918–923
    1. Roh J., Rymer W. Z., Perreault E. J., Yoo S. B., Beer R. F. (2013). Alterations in upper limb muscle synergy structure in chronic stroke survivors. J. Neurophysiol. 109 768–781
    1. Safavynia S. A., Ting L. H. (2012). Task-level feedback can explain temporal recruitment of spatially fixed muscle synergies throughout postural perturbations. J. Neurophysiol. 107 159–177
    1. Saltiel P., Wyler-Duda K., d’Avella A., Tresch M. C., Bizzi E. (2001). Muscle synergies encoded within the spinal cord: evidence from focal intraspinal NMDA iontophoresis in the frog. J. Neurophysiol. 85 605–619
    1. Saltiel P., Wyler-Duda K., d’Avella A., Ajemian R., Bizzi E. (2005). Localization and connectivity in spinal interneuronal networks: the adduction-caudal extension-flexion rhythm in the frog. J. Neurophysiol. 94 2120–2138
    1. Santello M., Flanders M., Soechting J. F. (1998). Postural synergies for tool use. J. Neurosci. 18 10105–10115
    1. Ting L. H., Chvatal S. A., Safavynia S. A., McKay J. L. (2012). Review and perspective: neuromechanical considerations for predicting muscle activation patterns for movement. Int. J. Numer. Method. Biomed. Eng. 28 1003–1014
    1. Ting L. H., Macpherson J. M. (2005). A limited set of muscle synergies for force control during a postural task. J. Neurophysiol. 93 609–613
    1. Torres-Oviedo G., Ting L. H. (2007). Muscle synergies characterizing human postural responses. J. Neurophysiol. 98 2144–2156
    1. Torres-Oviedo G., Ting L. H. (2010). Subject-specific muscle synergies in human balance control are consistent across different biomechanical contexts. J. Neurophysiol. 103 3084–3098
    1. Tresch M. C., Bizzi E. (1999). Responses to spinal microstimulation in the chronically spinalized rat and their relationship to spinal systems activated by low threshold cutaneous stimulation. Exp. Brain Res. 129 401–416
    1. Tresch M. C., Cheung V. C. K, d’Avella A. (2006). Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets. J. Neurophysiol. 95 2199–2212
    1. Tresch M. C., Jarc A. (2009). The case for and against muscle synergies. Curr. Opin. Neurobiol. 19 601–607
    1. Tresch M. C., Saltiel P., Bizzi E. (1999). The construction of movement by the spinal cord. Nat. Neurosci. 2 162–167
    1. Tuller B., Turvey M. T., Fitch H. L. (1982). “The Bernstein perspective: II: the concept of muscle linkage or coordinative structure,” in Human Motor Behavior: an Introduction ed. Kelso J. A. S. (Hillsdale: Lawrence Erlbaum Associates; ) 253–270
    1. Turvey M. T., Fitch H. L., Tuller B. (1982). “The Bernstein perspective: I. The problems of degrees of freedom and context-conditioned variability,” in Human Motor Behavior: An Introduction ed Kelso J. A. S. (Hillsdale: Lawrence Erlbaum Associates; ) 239–252
    1. Valero-Cuevas F. J., Venkadesan M., Todorov E. (2009). Structured variability of muscle activations supports the minimal intervention principle of motor control. J. Neurophysiol. 102 59–68
    1. Weiss E. J., Flanders M. (2004). Muscular and postural synergies of the human hand. J. Neurophysiol. 92 523–535
    1. Yakovenko S., Krouchev N., Drew T. (2011). Sequential activation of motor cortical neurons contributes to intralimb coordination during reaching in the cat by modulating muscle synergies. J. Neurophysiol. 105 388–409

Source: PubMed

3
Abonnere