Frailty assessment based on trunk kinematic parameters during walking

Alicia Martínez-Ramírez, Ion Martinikorena, Marisol Gómez, Pablo Lecumberri, Nora Millor, Leocadio Rodríguez-Mañas, Francisco José García García, Mikel Izquierdo, Alicia Martínez-Ramírez, Ion Martinikorena, Marisol Gómez, Pablo Lecumberri, Nora Millor, Leocadio Rodríguez-Mañas, Francisco José García García, Mikel Izquierdo

Abstract

Background: Physical frailty has become the center of attention of basic, clinical and demographic research due to its incidence level and gravity of adverse outcomes with age. Frailty syndrome is estimated to affect 20 % of the population older than 75 years. Thus, one of the greatest current challenges in this field is to identify parameters that can discriminate between vulnerable and robust subjects. Gait analysis has been widely used to predict frailty. The aim of the present study was to investigate whether a collection of parameters extracted from the trunk acceleration signals could provide additional accurate information about frailty syndrome.

Methods: A total of 718 subjects from an elderly population (319 males, 399 females; age: 75.4 ± 6.1 years, mass: 71.8 ± 12.4 kg, height: 158 ± 6 cm) volunteered to participate in this study. The subjects completed a 3-m walk test at their own gait velocity. Kinematic data were acquired from a tri-axial inertial orientation tracker.

Findings: The spatio-temporal and frequency parameters measured in this study with an inertial sensor are related to gait disorders and showed significant differences among groups (frail, pre-frail and robust). A selection of those parameters improves frailty classification obtained to gait velocity, compared to classification model based on gait velocity solely.

Interpretation: Gait parameters simultaneously used with gait velocity are able to provide useful information for a more accurate frailty classification. Moreover, this technique could improve the early detection of pre-frail status, allowing clinicians to perform measurements outside of a laboratory environment with the potential to prescribe a treatment for reversing their physical decline.

Figures

Fig. 1
Fig. 1
Mean antero-posterior, medio-lateral and vertical accelerations over multiple steps for one subject of each group (frail, pre-frail and robust)
Fig. 2
Fig. 2
95 % Confidence Intervals (CI) for the difference of means between three groups are shown for all parameters measured in VT direction
Fig. 3
Fig. 3
Decision Tree model to identify selected gait parameters
Fig. 4
Fig. 4
ROC curves of the two classificatory performance

References

    1. Morley JE. Diabetes, Sarcopenia, and Frailty. Clin Geriatr Med. 2008;24:455–469. doi: 10.1016/j.cger.2008.03.004.
    1. Janssen I, Heymsfield SB, Ross R. Low Relative Skeletal Muscle Mass (Sarcopenia) in Older Persons Is Associated with Functional Impairment and Physical Disability. J Am Geriatr Soc. 2002;50:889–896. doi: 10.1046/j.1532-5415.2002.50216.x.
    1. Guralnik JM, Ferrucci L, Simonsick EM, Salive ME, Wallace RB. Lower-Extremity Function in Persons over the Age of 70 Years as a Predictor of Subsequent Disability. N Engl J Med. 1995;332:556–562. doi: 10.1056/NEJM199503023320902.
    1. Hogan DB, MacKnight C, Bergman H, Steering Committee. Canadian Initiative on Frailty and Aging Models, definitions, and criteria of frailty. Aging Clin Exp Res. 2003;15:1–29. doi: 10.1007/BF03324472.
    1. Visser M, Deeg DJ, Lips P, Longitudinal Aging Study Amsterdam Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): the Longitudinal Aging Study Amsterdam. J Clin Endocrinol Metab. 2003;88:5766–5772. doi: 10.1210/jc.2003-030604.
    1. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, Seeman T, Tracy R, Kop WJ, Burke G, McBurnie MA. Frailty in Older Adults: Evidence for a Phenotype. J Gerontol A: Biol Med Sci. 2001;56:M146–M157. doi: 10.1093/gerona/56.3.M146.
    1. Hausdorff JM and NB Alexander. Gait disorders: Evaluation and Management. 6000 Broken Sound Parkway NW, Suite 300, Boca Raton 7: CRC Press. 2005.
    1. Studenski S, Perera S, Wallace D, Chandler JM, Duncan PW, Rooney E, Fox M, Guralnik JM. Physical Performance Measures in the Clinical Setting. J Am Geriatr Soc. 2003;51:314–322. doi: 10.1046/j.1532-5415.2003.51104.x.
    1. Montero-Odasso M, Schapira M, Duque G, Soriano E, Kaplan R, Camera L. Gait disorders are associated with non-cardiovascular falls in elderly people: a preliminary study. BMC Geriatr. 2005;5:15. doi: 10.1186/1471-2318-5-15.
    1. Cesari M, Kritchevsky SB, Penninx BWHJ, Nicklas BJ, Simonsick EM, Newman AB, Tylavsky FA, Brach JS, Satterfield S, Bauer DC, Visser M, Rubin SM, Harris TB, Pahor M. Prognostic Value of Usual Gait Speed in Well-Functioning Older People?Results from the Health, Aging and Body Composition Study. J Am Geriatr Soc. 2005;53:1675–1680. doi: 10.1111/j.1532-5415.2005.53501.x.
    1. Berg K, Norman KE. Functional assessment of balance and gait. Clin Geriatr Med. 1996;12:705–723.
    1. Tinetti ME, Williams TF, Mayewski R. Fall risk index for elderly patients based on number of chronic disabilities. Am J Med. 1986;80:429–434. doi: 10.1016/0002-9343(86)90717-5.
    1. Purser JL, Kuchibhatla MN, Fillenbaum GG, Harding T, Peterson ED, Alexander KP. Identifying Frailty in Hospitalized Older Adults with Significant Coronary Artery Disease. J Am Geriatr Soc. 2006;54:1674–1681. doi: 10.1111/j.1532-5415.2006.00914.x.
    1. Callisaya ML, Blizzard L, Schmidt MD, McGinley JL, Srikanth VK. Ageing and gait variability—a population-based study of older people. Age Ageing. 2010;39:191–197. doi: 10.1093/ageing/afp250.
    1. Menz HB, Lord SR, Fitzpatrick RC. Age-related differences in walking stability. Age Ageing. 2003;32:137–142. doi: 10.1093/ageing/32.2.137.
    1. Osaka H, Shinkoda K, Watanabe S, Fujita D, Ishida H, Kobara K, Yoshimura Y, Ito T. Validity of Evaluation Index Utilizing Three Components of Trunk Acceleration during Walking. J Phys Ther Sci. 2013;25:81–84. doi: 10.1589/jpts.25.81.
    1. Alaqtash M, Sarkodie-Gyan T, Yu H, Fuentes O, Brower R, and Abdelgawad A. Automatic classification of pathological gait patterns using ground reaction forces and machine learning algorithms. In: 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC): 2011. 453-457.
    1. Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda GN. Hip contact forces and gait patterns from routine activities. J Biomech. 2001;34:859–871. doi: 10.1016/S0021-9290(01)00040-9.
    1. Horváth M, Tihanyi T, Tihanyi J. Kinematic and kinetic analyses of gait patterns in hemiplegic patients. Facta Univ Series: Phys Educ Sport. 2001;1:25–35.
    1. Millor N, Lecumberri P, Gomez M, Martinez-Ramirez A, Izquierdo M. An evaluation of the 30-s chair stand test in older adults: frailty detection based on kinematic parameters from a single inertial unit. J Neuroeng Rehabil. 2013;10:86-0003-10-86.
    1. Martínez-Ramírez A, Lecumberri P, Gómez M, Rodriguez-Mañas L, García FJ, Izquierdo M. Frailty assessment based on wavelet analysis during quiet standing balance test. J Biomech. 2011;44:2213–2220. doi: 10.1016/j.jbiomech.2011.06.007.
    1. Yang CC, Hsu YL, Shih KS, Lu JM. Real-time gait cycle parameter recognition using a wearable accelerometry system. Sensors (Basel) 2011;11:7314–7326. doi: 10.3390/s110807314.
    1. García Garcíaa FJ, Sánchez Ayalab MI, Martín Correaa E, Marsal Alonsoc C, Rodríguez Ferrera G, Colmenerod CG, Romero Rizosa L, Rodríguez Barqueroa MJ. Prevalencia de demencia y de sus subtipos principales en sujetos mayores de 65 ań os: efecto de la educación y ocupación. Estudio Toledo. Med Clin. 2001;116:401–407. doi: 10.1016/S0025-7753(01)71849-0.
    1. Garcia-Garcia FJ, Gutierrez Avila G, Alfaro-Acha A, Amor Andres MS, De Los Angeles De La Torre Lanza M. Escribano Aparicio MV, Humanes Aparicio S, Larrion Zugasti JL, Gomez-Serranillo Reus M, Rodriguez-Artalejo F, Rodriguez-Manas L, Toledo Study Group The prevalence of frailty syndrome in an older population from Spain. The Toledo Study for Healthy Aging. J Nutr Health Aging. 2011;15:852–856. doi: 10.1007/s12603-011-0075-8.
    1. Schuit AJ, Schouten EG, Westerterp KR, Saris WH. Validity of the Physical Activity Scale for the Elderly (PASE): according to energy expenditure assessed by the doubly labeled water method. J Clin Epidemiol. 1997;50:541–546. doi: 10.1016/S0895-4356(97)00010-3.
    1. Moe-Nilssen R, Helbostad JL. Estimation of gait cycle characteristics by trunk accelerometry. J Biomech. 2004;37:121–126. doi: 10.1016/S0021-9290(03)00233-1.
    1. Karmakar CK, Khandoker AH, Begg RK, Palaniswami M, and Taylor S. Understanding Ageing Effects by Approximate Entropy Analysis of gait variability. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC): 2007. 1965-1968.
    1. Montero-Odasso M, Muir SW, Hall M, Doherty TJ, Kloseck M, Beauchet O, Speechley M. Gait Variability Is Associated With Frailty in Community-dwelling Older Adults. J Gerontol A: Biol Med Sci. 2011;66A:568–576. doi: 10.1093/gerona/glr007.
    1. Brach JS, McGurl D, Wert D, VanSwearingen JM, Perera S, Cham R, Studenski S. Validation of a Measure of Smoothness of Walking. J Gerontol A: Biol Med Sci. 2011;66A:136–141. doi: 10.1093/gerona/glq170.
    1. Ho KKL, Moody GB, Peng C, Mietus JE, Larson MG, Levy D, Goldberger AL. Predicting Survival in Heart Failure Case and Control Subjects by Use of Fully Automated Methods for Deriving Nonlinear and Conventional Indices of Heart Rate Dynamics. Circulation. 1997;96:842–848. doi: 10.1161/01.CIR.96.3.842.
    1. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–845. doi: 10.2307/2531595.
    1. Greene BR, Doheny EP, O'Halloran A, Anne Kenny R. Frailty status can be accurately assessed using inertial sensors and the TUG test. Age Ageing. 2014;43:406–411. doi: 10.1093/ageing/aft176.
    1. Yang M, Zheng H, Wang H, McClean S, Hall J, Harris N. Proceedings of the 3rd International Conference on PErvasive Technologies Related to Assistive EnvironmentsAnonymous : Association for Computing Machinery (ACM) 2010. “Assessing accelerometer based gait features to support gait analysis for people with Complex Regional Pain Syndrome.”.
    1. Menz HB, Lord SR, Fitzpatrick RC. Acceleration patterns of the head and pelvis when walking on level and irregular surfaces. Gait Posture. 2003;18:35–46. doi: 10.1016/S0966-6362(02)00159-5.
    1. Hamacher D, Singh NB, Van Dieen JH, Heller MO, Taylor WR. Kinematic measures for assessing gait stability in elderly individuals: a systematic review. J R Soc Interface. 2011;8:1682–1698. doi: 10.1098/rsif.2011.0416.
    1. Moe-Nilssen R, Helbostad JL. Interstride trunk acceleration variability but not step width variability can differentiate between fit and frail older adults. Gait Posture. 2005;21:164–170. doi: 10.1016/j.gaitpost.2004.01.013.
    1. Tao W, Liu T, Zheng R, Feng H. Gait Analysis Using Wearable Sensors. Sensors. 2012;12:2255–2283. doi: 10.3390/s120202255.
    1. Hausdorff J. Gait variability: methods, modeling and meaning. J NeuroEngineering Rehab. 2005;2:19. doi: 10.1186/1743-0003-2-19.
    1. Yack HJ, Berger RC. Dynamic Stability in the Elderly: Identifying a Possible Measure. J Gerontol. 1993;48:M225–M230. doi: 10.1093/geronj/48.5.M225.

Source: PubMed

3
Abonnere