Clinical Outcomes in Duchenne Muscular Dystrophy: A Study of 5345 Patients from the TREAT-NMD DMD Global Database

Zaïda Koeks, Catherine L Bladen, David Salgado, Erik van Zwet, Oksana Pogoryelova, Grace McMacken, Soledad Monges, Maria E Foncuberta, Kyriaki Kekou, Konstantina Kosma, Hugh Dawkins, Leanne Lamont, Matthew I Bellgard, Anna J Roy, Teodora Chamova, Velina Guergueltcheva, Sophelia Chan, Lawrence Korngut, Craig Campbell, Yi Dai, Jen Wang, Nina Barišić, Petr Brabec, Jaana Lähdetie, Maggie C Walter, Olivia Schreiber-Katz, Veronika Karcagi, Marta Garami, Agnes Herczegfalvi, Venkatarman Viswanathan, Farhad Bayat, Filippo Buccella, Alessandra Ferlini, En Kimura, Janneke C van den Bergen, Miriam Rodrigues, Richard Roxburgh, Anna Lusakowska, Anna Kostera-Pruszczyk, Rosário Santos, Elena Neagu, Svetlana Artemieva, Vedrana Milic Rasic, Dina Vojinovic, Manuel Posada, Clemens Bloetzer, Andrea Klein, Jordi Díaz-Manera, Eduard Gallardo, A Ayşe Karaduman, Tunca Oznur, Haluk Topaloğlu, Rasha El Sherif, Angela Stringer, Andriy V Shatillo, Ann S Martin, Holly L Peay, Jan Kirschner, Kevin M Flanigan, Volker Straub, Kate Bushby, Christophe Béroud, Jan J Verschuuren, Hanns Lochmüller, Zaïda Koeks, Catherine L Bladen, David Salgado, Erik van Zwet, Oksana Pogoryelova, Grace McMacken, Soledad Monges, Maria E Foncuberta, Kyriaki Kekou, Konstantina Kosma, Hugh Dawkins, Leanne Lamont, Matthew I Bellgard, Anna J Roy, Teodora Chamova, Velina Guergueltcheva, Sophelia Chan, Lawrence Korngut, Craig Campbell, Yi Dai, Jen Wang, Nina Barišić, Petr Brabec, Jaana Lähdetie, Maggie C Walter, Olivia Schreiber-Katz, Veronika Karcagi, Marta Garami, Agnes Herczegfalvi, Venkatarman Viswanathan, Farhad Bayat, Filippo Buccella, Alessandra Ferlini, En Kimura, Janneke C van den Bergen, Miriam Rodrigues, Richard Roxburgh, Anna Lusakowska, Anna Kostera-Pruszczyk, Rosário Santos, Elena Neagu, Svetlana Artemieva, Vedrana Milic Rasic, Dina Vojinovic, Manuel Posada, Clemens Bloetzer, Andrea Klein, Jordi Díaz-Manera, Eduard Gallardo, A Ayşe Karaduman, Tunca Oznur, Haluk Topaloğlu, Rasha El Sherif, Angela Stringer, Andriy V Shatillo, Ann S Martin, Holly L Peay, Jan Kirschner, Kevin M Flanigan, Volker Straub, Kate Bushby, Christophe Béroud, Jan J Verschuuren, Hanns Lochmüller

Abstract

Background: Recent short-term clinical trials in patients with Duchenne Muscular Dystrophy (DMD) have indicated greater disease variability in terms of progression than expected. In addition, as average life-expectancy increases, reliable data is required on clinical progression in the older DMD population.

Objective: To determine the effects of corticosteroids on major clinical outcomes of DMD in a large multinational cohort of genetically confirmed DMD patients.

Methods: In this cross-sectional study we analysed clinical data from 5345 genetically confirmed DMD patients from 31 countries held within the TREAT-NMD global DMD database. For analysis patients were categorised by corticosteroid background and further stratified by age.

Results: Loss of ambulation in non-steroid treated patients was 10 years and in corticosteroid treated patients 13 years old (p = 0.0001). Corticosteroid treated patients were less likely to need scoliosis surgery (p < 0.001) or ventilatory support (p < 0.001) and there was a mild cardioprotective effect of corticosteroids in the patient population aged 20 years and older (p = 0.0035). Patients with a single deletion of exon 45 showed an increased survival in contrast to other single exon deletions.

Conclusions: This study provides data on clinical outcomes of DMD across many healthcare settings and including a sizeable cohort of older patients. Our data confirm the benefits of corticosteroid treatment on ambulation, need for scoliosis surgery, ventilation and, to a lesser extent, cardiomyopathy. This study underlines the importance of data collection via patient registries and the critical role of multi-centre collaboration in the rare disease field.

Keywords: DMD; Duchenne muscular dystrophy; Neuromuscular diseases; TREAT-NMD.

Conflict of interest statement

All authors declare: no support from any organisation for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work. Professor Hanns Lochmüller was elected chair of the TREAT-NMD Alliance in April 2012. He and Jan Verschuuren both served as chairs of the oversight committee.

Figures

Fig.1
Fig.1
Overview of corticosteroid use within the global TREAT-NMD DMD database. Corticosteroid was reported as “corticosteroids yes” (current corticosteroid users/red bars), “corticosteroids never used ”(corticosteroids never used/green bars), “past corticosteroid use” (used corticosteroids in the past/blue bars) or “corticosteroid use unknown” (corticosteroid use unknown/orange bars”).
Fig.2
Fig.2
Turnbull analysis for loss of ambulation. The red line indicates the “corticosteroid yes” group, the green line the “corticosteroid no (never)” group and the blue line the “past corticosteroid use” group. P-value indicates the difference between the steroid: yes and steroid: no groups.
Fig.3
Fig.3
Assisted ventilation within the global TREAT-NMD DMD database.
Fig.4
Fig.4
Chi-square testing for scoliosis surgery (A), ventilation (B) and cardiomyopathy (C) in the patient group aged 20 years and older.
Fig.5
Fig.5
Turnbull analysis of loss of ambulation in patients under the age of 20 years, never (A) and ever (B) treated with corticosteroids and with a single exon deletion of exon 45 (red line), exon 51 (green line), exon 44 (purple line), exon 52 (black line) and exon 50 (blue line).
Fig.6
Fig.6
Turnbull analysis of loss of ambulation in patients under the age of 20 years in mutations rescued by exon skip 44 and 51. (A) represents patients never treated with corticosteroids and (B) represents patients ever treated with corticosteroids. In both figures the red line indicates patients with deletion of exon 45 mutation, the green line indicates patients with mutations amenable to exon skipping with exon 44 (but not deletion of exon 45 mutations), the blue line indicates patients with deletion of exon 50 mutation and the black line indicates patients with mutations amenable to exon skipping with exon 51 (but not deletion of exon 50 mutations).

References

    1. Bladen CL, Rafferty K, Straub V, Monges S, Moresco A, Dawkins H, et al. The TREAT-NMD duchenne muscular dystrophy registries: Conception, design, and utilization by industry and academia. Human Mutation. 2013;34(11):1449–57.
    1. Bladen CL, Salgado D, Monges S, Foncuberta ME, Kekou K, Kosma K, et al. The TREAT-NMD DMD global database: Analysis of more than 7,000 duchenne muscular dystrophy mutations. Human Mutation. 2015;36(4):395–402.
    1. Pane M, Mazzone ES, Sivo S, Sormani MP, Messina S, D′Amico A, et al. Long term natural history data in ambulant boys with duchenne muscular dystrophy: 36-month changes. PLoS One. 2014;9(10):e108205.
    1. Henricson EK, Abresch RT, Cnaan A, Hu F, Duong T, Arrieta A, et al. The cooperative international neuromuscular research group Duchenne natural history study: Glucocorticoid treatment preserves clinically meaningful functional milestones and reduces rate of disease progression as measured by manual muscle testing and other commonly used clinical trial outcome measures. Muscle & Nerve. 2013;48(1):55–67.
    1. Mendell JR, Shilling C, Leslie ND, Flanigan KM, al-Dahhak R, Gastier-Foster J, et al. Evidence-based path to newborn screening for Duchenne muscular dystrophy. Ann Neurol. 2012;71(3):304–13.
    1. Gowers WR, Taylor J. A manual of diseases of the nervous system London: J. & A. Chuchill; 1892.
    1. Humbertclaude V, Hamroun D, Bezzou K, Bérard C, Boespflug-Tanguy O, Bommelaer C, et al. Motor and respiratory heterogeneity in Duchenne patients: Implication forclinical trials. European Journal of Paediatric Neurology. 2012;16(2):149–60.
    1. Baxter P. Treatment of the heart in Duchenne muscular dystrophy. Developmental Medicine & Child Neurology. 2006;48(03):163.
    1. Emery AEH. The muscular dystrophies. The Lancet. 2002;359(9307):687–95.
    1. Hoffman EP, Reeves E, Damsker J, Nagaraju K, McCall JM, Connor EM, et al. Novel Approaches to Corticosteroid Treatment in Duchenne Muscular Dystrophy. Physical Medicine and Rehabilitation Clinics of North America. 2012;23(4):821–8.
    1. Sejerson T, Bushby K. Standards of Care for Duchenne Muscular Dystrophy: Brief Treat-NMD Recommendations In: Espinós C, Felipo V, Palau F, editors. Inherited Neuromuscular Diseases. Springer; Netherlands; 2009. pp. 13–21.
    1. Landfeldt E, Lindgren P, Bell CF, Schmitt C, Guglieri M, Straub V, et al. Compliance to care guidelines for duchenne muscular dystrophy. Journal of Neuromuscular Diseases. 2015;2(1):63–72.
    1. Bladen CL, Rafferty K, Straub V, Monges S, Moresco A, Dawkins H, et al. The TREAT-NMD Duchenne muscular dystrophy registries: Conception, design, and utilization by industry and academia. Hum Mutat. 2013;34(11):1449–57.
    1. Turnbull BW. The empirical distribution function with arbitrarily grouped, censored and truncated data. Journal of the Royal Statistical Society. Series B (Methodological). 1976;290–95.
    1. Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, et al. Diagnosis and management of Duchenne muscular dystrophy, part Diagnosis, and pharmacological and psychosocial management. The Lancet Neurology. 2010;9(1):77–93.
    1. Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, et al. Diagnosis and management of Duchenne muscular dystrophy, part Implementation of multidisciplinary care. The Lancet Neurology. 2010;9(2):177–89.
    1. Aartsma-Rus A, Fokkema I, Verschuuren J, Ginjaar I, van Deutekom J, van Ommen G-J, et al. Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Human Mutation. 2009;30(3):293–9.
    1. Aartsma-Rus A, Janson AAM, Kaman WE, Bremmer-Bout M, den Dunnen JT, Baas F, et al. Therapeutic antisense-induced exon skipping in cultured muscle cells from six different DMD patients. Human Molecular Genetics. 2003;12(8):907–14.
    1. Aartsma-Rus A, Janson AAM, Kaman WE, Bremmer-Bout M, van Ommen G-JB, den Dunnen JT, et al. Antisense-induced multiexon skipping for duchenne muscular dystrophy makes more sense. The American Journal of Human Genetics. 2004;74(1):83–92.
    1. van Ommen G-J, van Deutekom J, Aartsma-Rus A. The therapeutic potential of antisense-mediated exon skipping. Curr Opin Mol Ther. 2008;10(2):140–9.
    1. van Ommen G-JB, Aartsma-Rus A. Advances in therapeutic RNA-targeting. New Biotechnology. 2013;30(3):299–301.
    1. Bushby K, Finkel R, Wong B, Barohn R, Campbell C, Comi GP, et al. Ataluren treatment of patients with nonsense mutation dystrophinopathy. Muscle & Nerve. 2014;50(4):477–87.
    1. Gloss D, Moxley RT 3rd, Ashwal S, Oskoui M. Practice guideline update summary: Corticosteroid treatment of Duchenne muscular dystrophy: Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology. 2016;86(5):465–72.
    1. Bello L, Piva L, Barp A, Taglia A, Picillo E, Vasco G, et al. Importance of SPP1 genotype as a covariate in clinical trials in Duchenne muscular dystrophy. Neurology. 2012;79(2):159–62.
    1. van den Bergen JC, Ginjaar HB, Niks EH, Aartsma-Rus A, Verschuuren JJGM. Prolonged ambulation in duchenne patients with a mutation amenable to exon 44 skipping. Journal of Neuromuscular Diseases. 2014;1(1):91–4.
    1. Matthews E, Brassington R, Kuntzer T, Jichi F, Manzur AY. Corticosteroids for the treatment of Duchenne muscular dystrophy. Cochrane Database Syst Rev. 2016;(5):CD003725.
    1. Rifai Z, Welle S, Moxley RT, Lorenson M, Griggs RC. Effect of prednisone on protein metabolism in Duchenne dystrophy. American Journal of Physiology - Endocrinology and Metabolism. 1995;268(1):E67–E74.
    1. Spuler S, Engel AG. Unexpected sarcolemmal complement membrane attack complex deposits on nonnecrotic muscle fibers in muscular dystrophies. Neurology. 1998;50(1):41–6.
    1. Griggs RC, Moxley RT 3rd, Mendell JR, Fenichel GM, Brooke MH, Pestronk A, et al. Duchenne dystrophy: Randomized, controlled trial of prednisone (18 months) and azathioprine (12 months). Neurology. 1993;43(3 Pt 1):520–7.
    1. Pasquini F, Guerin C, Blake D, Davies K, Karpati G, Holland P. The effect of glucocorticoids on the accumulation of utrophin by cultured normal and dystrophic human skeletal muscle satellite cells. Neuromuscular Disorders. 1995;5(2):105–14.
    1. Sklar RM, Brown RH Jr. Methylprednisolone increases dystrophin levels by inhibiting myotube death during myogenesis of normal human muscle in vitro. Journal of the Neurological Sciences. 1991;101(1):73–81.
    1. Takeuchi F, Yonemoto N, Nakamura H, Shimizu R, Komaki H, Mori-Yoshimura M, et al. Prednisolone improves walking in Japanese Duchenne muscular dystrophy patients. J Neurol. 2013;260(12):3023–9.
    1. Barber BJ, Andrews JG, Lu Z, West NA, Meaney FJ, Price ET, et al. Oral Corticosteroids and Onset of Cardiomyopathy in Duchenne Muscular Dystrophy. The Journal of Pediatrics. 2013;163(4):1080–4.e1.
    1. Smith AD, Koreska J, Moseley CF. Progression of scoliosis in Duchenne muscular dystrophy. The Journal of Bone & Joint Surgery. 1989;71(7):1066–74.
    1. Alman BA, Raza SN, Biggar WD. Steroid treatment and the development of scoliosis in males with duchenne muscular dystrophy. The Journal of Bone & Joint Surgery. 2004;86(3):519–24.
    1. Yilmaz Ö, Karaduman A, Topaloğlu H. Prednisolone therapy in Duchenne muscular dystrophy prolongs ambulation and prevents scoliosis. European Journal of Neurology. 2004;11(8):541–4.
    1. Townsend D, Yasuda S, Chamberlain J, Metzger JM. Cardiac consequences to skeletal muscle-centric therapeutics for duchenne muscular dystrophy. Trends in Cardiovascular Medicine. 2009;19(2):49–54.
    1. van den Bergen JC, Hiller M, Bohringer S, Vijfhuizen L, Ginjaar HB, Chaouch A, et al. Validation of genetic modifiers for Duchenne muscular dystrophy: A multicentre study assessing SPP1 and LTBP4 variants. Journal of Neurology, Neurosurgery, and Psychiatry. 2015;86(10):1060–5.
    1. Flanigan KM, Ceco E, Lamar KM, Kaminoh Y, Dunn DM, Mendell JR, et al. LTBP4 genotype predicts age of ambulatory loss in Duchenne muscular dystrophy. Annals of Neurology. 2013;73(4):481–8.
    1. Pane M, Mazzone ES, Sormani MP, Messina S, Vita GL, Fanelli L, et al. 6 Minute walk test in duchenne MD patients with different mutations: 12 month changes. PLoS One. 2014;9(1):e83400.
    1. Findlay AR, Wein N, Kaminoh Y, Taylor LE, Dunn DM, Mendell JR, et al. Clinical phenotypes as predictors of the outcome of skipping around DMD exon 45. Annals of Neurology. 2015;77(4):668–74.

Source: PubMed

3
Abonnere