A pilot study of cognitive training with and without transcranial direct current stimulation to improve cognition in older persons with HIV-related cognitive impairment

Raymond L Ownby, Amarilis Acevedo, Raymond L Ownby, Amarilis Acevedo

Abstract

Background: In spite of treatment advances, HIV infection is associated with cognitive deficits. This is even more important as many persons with HIV infection age and experience age-related cognitive impairments. Both computer-based cognitive training and transcranial direct current stimulation (tDCS) have shown promise as interventions to improve cognitive function. In this study, we investigate the acceptability and efficacy of cognitive training with and without tDCS in older persons with HIV.

Patients and methods: In this single-blind randomized study, participants were 14 individuals of whom 11 completed study procedures (mean age =51.5 years; nine men and two women) with HIV-related mild neurocognitive disorder. Participants completed a battery of neuropsychological and self-report measures and then six 20-minute cognitive training sessions while receiving either active or sham anodal tDCS over the left dorsolateral prefrontal cortex. After training, participants completed the same measures. Success of the blind and participant reactions were assessed during a final interview. Assessments were completed by an assessor blind to treatment assignment. Pre- and post-training changes were evaluated via analysis of covariance yielding estimates of effect size.

Results: All participants believed that they had been assigned to active treatment; nine of the 11 believed that the intervention had improved their cognitive functioning. Both participants who felt the intervention was ineffective were assigned to the sham condition. None of the planned tested interactions of time with treatment was significant, but 12 of 13 favored tDCS (P=0.08). All participants indicated that they would participate in similar studies in the future.

Conclusion: Results show that both cognitive training via computer game playing and tDCS were well accepted by older persons with HIV infection. Results are suggestive that tDCS may improve cognitive function in persons with HIV infection. Further study of tDCS as an intervention for HIV-related cognitive dysfunction is warranted.

Keywords: HIV; cognitive aging; tDCS; transcranial direct current stimulation.

Conflict of interest statement

The authors report no conflicts of interest in this work.

Figures

Figure 1
Figure 1
HVLT-R total by group and time. Abbreviations: HVLT-R, Hopkins Verbal Learning Test-Revised; tDCS, transcranial direct current stimulation.
Figure 2
Figure 2
Grooved Pegboard dominant hand by group and time. Abbreviation: tDCS, transcranial direct current stimulation.
Figure 3
Figure 3
PAOF by group and time. Abbreviations: PAOF, Patients Assessment of Own Functioning; tDCS, transcranial direct current stimulation.

References

    1. Heaton RK, Clifford DB, Franklin DR, Jr, et al. CHARTER Group HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology. 2010;75(23):2087–2096.
    1. Thames AD, Becker BW, Marcotte TD, et al. Depression, cognition, and self-appraisal of functional abilities in HIV: an examination of subjective appraisal versus objective performance. Clin Neuropsychol. 2011;25(2):224–243.
    1. Thames AD, Kim MS, Becker BW, et al. Medication and finance management among HIV-infected adults: the impact of age and cognition. J Clin Exp Neuropsychol. 2011;33(2):200–209.
    1. Thames AD, Arentoft A, Rivera-Mindt M, Hinkin CH. Functional disability in medication management and driving among individuals with HIV: a 1-year follow-up study. J Clin Exp Neuropsychol. 2013;35(1):49–58.
    1. Hinkin CH, Hardy DJ, Mason KI, et al. Medication adherence in HIV-infected adults: effect of patient age, cognitive status, and substance abuse. AIDS. 2004;18(suppl 1):S19–S25.
    1. Hinkin CH, Castellon SA, Durvasula RS, et al. Medication adherence among HIV+ adults: effects of cognitive dysfunction and regimen complexity. Neurology. 2002;59(12):1944–1950.
    1. Degroote S, Vogelaers D, Vandijck DM. What determines health-related quality of life among people living with HIV: an updated review of the literature. Arch Public Health. 2014;72(1):40.
    1. Degroote S, Vogelaers DP, Vermeir P, et al. Socio-economic, behavioural, (neuro)psychological and clinical determinants of HRQoL in people living with HIV in Belgium: a pilot study. J Int AIDS Soc. 2013;16:18643.
    1. Moore RC, Fazeli PL, Jeste DV, et al. HIV Neurobehavioral Research Program (HNRP) Group Successful cognitive aging and health-related quality of life in younger and older adults infected with HIV. AIDS Behav. 2014;18(6):1186–1197.
    1. Tozzi V, Balestra P, Galgani S, et al. Neurocognitive performance and quality of life in patients with HIV infection. AIDS Res Hum Retroviruses. 2003;19(8):643–652.
    1. Valcour V, Shikuma C, Shiramizu B, et al. Higher frequency of dementia in older HIV-1 individuals: the Hawaii aging with HIV-1 cohort. Neurology. 2004;63(5):822–827.
    1. Wendelken LA, Valcour V. Impact of HIV and aging on neuropsychological function. J Neurovirol. 2012;18(4):256–263.
    1. Hinkin CH, Castellon SA, Hardy DJ, Farinpour R, Newton T, Singer E. Methylphenidate improves HIV-1-associated cognitive slowing. J Neuropsychiatry Clin Neurosci. 2001;13(2):248–254.
    1. Watkins CC, Treisman GJ. Cognitive impairment in patients with AIDS – prevalence and severity. HIV AIDS (Auckl) 2015;7:35–47.
    1. Cody SL, Vance DE. The neurobiology of HIV and its impact on cognitive reserve: a review of cognitive interventions for an aging population. Neurobiol Dis. 2016;92(Pt B):144–156.
    1. Vance DE, Fazeli PL, Ross LA, Wadley VG, Ball KK. Speed of processing training with middle-age and older adults with HIV: a pilot study. J Assoc Nurses AIDS Care. 2012;23(6):500–510.
    1. Zelinski EM, Reyes R. Cognitive benefits of computer games for older adults. Gerontechnology. 2009;8(4):220–235.
    1. Green CS, Seitz AR. The impacts of video games on cognition (and how the government can guide the industry) Policy Insights Behav Brain Sci. 2015;2(1):101–110.
    1. Wu S, Spence I. Playing shooter and driving videogames improves top-down guidance in visual search. Atten Percept Psychophys. 2013;75(4):673–686.
    1. Anguera JA, Boccanfuso J, Rintoul JL, et al. Video game training enhances cognitive control in older adults. Nature. 2013;501(7465):97–101.
    1. Belchior P, Marsiske M, Sisco S, Yam A, Mann W. Older adults’ engagement with a video game training program. Act Adapt Aging. 2012;36(4):269–279.
    1. Belchior P, Marsiske M, Leite WL, Yam A, Thomas K, Mann W. Older adults’ engagement during an intervention involving off-the-shelf videogame. Games Health J. 2016;5(3):151–156.
    1. Bavelier D, Green CS, Han DH, Renshaw PF, Merzenich MM, Gentile DA. Brains on video games. Nat Rev Neurosci. 2011;12(12):763–768.
    1. Basak C, Boot WR, Voss MW, Kramer AF. Can training in a real-time strategy video game attenuate cognitive decline in older adults? Psychol Aging. 2008;23(4):765–777.
    1. Cardoso-Leite P, Bavelier D. Video game play, attention, and learning: how to shape the development of attention and influence learning? Curr Opin Neurol. 2014;27(2):185–191.
    1. Cerruti C, Schlaug G. Anodal transcranial direct current stimulation of the prefrontal cortex enhances complex verbal associative thought. J Cogn Neurosci. 2009;21(10):1980–1987.
    1. Fregni F, Boggio PS, Nitsche M, et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res. 2005;166(1):23–30.
    1. Zaehle T, Sandmann P, Thorne JD, Jancke L, Herrmann CS. Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioural and electrophysiological evidence. BMC Neurosci. 2011;12(1):2.
    1. Heimrath K, Sandmann P, Becke A, Muller NG, Zaehle T. Behavioral and electrophysiological effects of transcranial direct current stimulation of the parietal cortex in a visuo-spatial working memory task. Front Psychiatry. 2012;3:56.
    1. Clark VP, Coffman BA, Mayer AR, et al. TDCS guided using fMRI significantly accelerates learning to identify concealed objects. Neuroimage. 2012;59(1):117–128.
    1. Floel A, Suttorp W, Kohl O, et al. Non-invasive brain stimulation improves object-location learning in the elderly. Neurobiol Aging. 2012;33(8):1682–1689.
    1. Brunoni AR, Valiengo L, Baccaro A, et al. The sertraline vs. electrical current therapy for treating depression clinical study: results from a factorial, randomized, controlled trial. JAMA Psychiatry. 2013;70(4):383–391.
    1. Fritsch B, Reis J, Martinowich K, et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron. 2010;66(2):198–204.
    1. Avdoshina V, Bachis A, Mocchetti I. Synaptic dysfunction in human immunodeficiency virus type-1-positive subjects: inflammation or impaired neuronal plasticity? J Intern Med. 2013;273(5):454–465.
    1. Bachis A, Avdoshina V, Zecca L, Parsadanian M, Mocchetti I. Human immunodeficiency virus type 1 alters brain-derived neurotrophic factor processing in neurons. J Neurosci. 2012;32(28):9477–9484.
    1. Buchman AS, Yu L, Boyle PA, Schneider JA, De Jager PL, Bennett DA. Higher brain BDNF gene expression is associated with slower cognitive decline in older adults. Neurology. 2016;86(8):735–741.
    1. Shimizu E, Hashimoto K, Okamura N, et al. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry. 2003;54(1):70–75.
    1. Galvez V, Alonzo A, Martin D, Mitchell PB, Sachdev P, Loo CK. Hypomania induction in a patient with bipolar II disorder by transcranial direct current stimulation (tDCS) J ECT. 2011;27(3):256–258.
    1. Medeiros LF, de Souza IC, Vidor LP, et al. Neurobiological effects of transcranial direct current stimulation: a review. Front Psychiatry. 2012;3:110.
    1. European AIDS Clinical Society . Guidelines 8.0. Brussels: European AIDS Clinical Society; 2015.
    1. Wechsler D. Manual for the Wechsler Adult Intelligence Scale – IV. San Antonio TX: Pearson Assessment; 2008.
    1. Lezak M. Neuropsychological Assessment. 5th ed. New York: Oxford University Press; 2004.
    1. Brandt J, Benedict RH. Hopkins Verbal Learning Test – Revised: Professional Manual. Odessa, FL: Psychological Assessment Resources; 2001.
    1. Lafayette Instrument . Grooved Pegboard Test User Instructions. Lafayette, IN: Lafayette Instrument; 2002.
    1. Antinori A, Arendt G, Becker JT, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 2007;69(18):1789–1799.
    1. Chelune GJ, Heaton RK, Lehman RAW. Neuropsychological and personality correlates of patients’ complaints of disability. In: Goldstein G, Tarter RE, editors. Advances in Clinical Neuropsychology. Vol. 3. New York: Springer; 1986. pp. 95–126.
    1. Rourke SB, Halman MH, Bassel C. Neurocognitive complaints in HIV-infection and their relationship to depressive symptoms and neuropsychological functioning. J Clin Exp Neuropsychol. 1999;21(6):737–756.
    1. Radloff LS. The CES-D Scale: a self-report depression scale for research in the general population. Appl Psychol Measurement. 1977;1(3):385–401.
    1. Acharya JN, Hani A, Cheek J, Thirumala P, Tsuchida TN. American Clinical Neurophysiology Society guideline 2: guidelines for standard electrode position nomenclature. J Clin Neurophysiol. 2016;33(4):308–311.
    1. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. New York: Routledge; 1988.
    1. Boggio PS, Ferrucci R, Rigonatti SP, et al. Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease. J Neurol Sci. 2006;249(1):31–38.
    1. Tremblay S, Lepage JF, Latulipe-Loiselle A, Fregni F, Pascual-Leone A, Theoret H. The uncertain outcome of prefrontal tDCS. Brain Stimul. 2014;7(6):773–783.
    1. Nitsche MA, Boggio PS, Fregni F, Pascual-Leone A. Treatment of depression with transcranial direct current stimulation (tDCS): a review. Exp Neurol. 2009;219(1):14–19.
    1. Brunoni AR, Ferrucci R, Fregni F, Boggio PS, Priori A. Transcranial direct current stimulation for the treatment of major depressive disorder: a summary of preclinical, clinical and translational findings. Prog Neuropsychopharmacol Biol Psychiatry. 2012;39(1):9–16.
    1. Knotkova H, Rosedale M, Strauss SM, et al. Using transcranial direct current stimulation to treat depression in HIV-infected persons: the outcomes of a feasibility study. Front Psychiatry. 2012;3:59.
    1. Fagerlund AJ, Freili JL, Danielsen TL, Aslaksen PM. No effect of 2 mA anodal tDCS over the M1 on performance and practice effect on Grooved Pegboard Test and Trail Making Test B. eNeuro. 2015;2(4)
    1. Brunoni AR, Tortella G, Bensenor IM, Lotufo PA, Carvalho AF, Fregni F. Cognitive effects of transcranial direct current stimulation in depression: results from the SELECT-TDCS trial and insights for further clinical trials. J Affect Disord. 2016;202:46–52.

Source: PubMed

3
Abonnere