Whole shaft visibility and mechanical performance for active MR catheters using copper-nitinol braided polymer tubes

Ozgur Kocaturk, Christina E Saikus, Michael A Guttman, Anthony Z Faranesh, Kanishka Ratnayaka, Cengizhan Ozturk, Elliot R McVeigh, Robert J Lederman, Ozgur Kocaturk, Christina E Saikus, Michael A Guttman, Anthony Z Faranesh, Kanishka Ratnayaka, Cengizhan Ozturk, Elliot R McVeigh, Robert J Lederman

Abstract

Background: Catheter visualization and tracking remains a challenge in interventional MR.Active guidewires can be made conspicuous in "profile" along their whole shaft exploiting metallic core wire and hypotube components that are intrinsic to their mechanical performance. Polymer-based catheters, on the other hand, offer no conductive medium to carry radio frequency waves. We developed a new "active" catheter design for interventional MR with mechanical performance resembling braided X-ray devices. Our 75 cm long hybrid catheter shaft incorporates a wire lattice in a polymer matrix, and contains three distal loop coils in a flexible and torquable 7Fr device. We explored the impact of braid material designs on radiofrequency and mechanical performance.

Results: The incorporation of copper wire into in a superelastic nitinol braided loopless antenna allowed good visualization of the whole shaft (70 cm) in vitro and in vivo in swine during real-time MR with 1.5 T scanner. Additional distal tip coils enhanced tip visibility. Increasing the copper:nitinol ratio in braiding configurations improved flexibility at the expense of torquability. We found a 16-wire braid of 1:1 copper:nitinol to have the optimum balance of mechanical (trackability, flexibility, torquability) and antenna (signal attenuation) properties. With this configuration, the temperature increase remained less than 2 degrees C during real-time MR within 10 cm horizontal from the isocenter. The design was conspicuous in vitro and in vivo.

Conclusion: We have engineered a new loopless antenna configuration that imparts interventional MR catheters with satisfactory mechanical and imaging characteristics. This compact loopless antenna design can be generalized to visualize the whole shaft of any general-purpose polymer catheter to perform safe interventional procedures.

Figures

Figure 1
Figure 1
Braiding setup and catheter shaft structure. (a) Copper and nitinol braiding layer (arrow) exposed after outer Pebax layer is removed. (b) Four grooves (arrows) are created in the inner polymer shaft to house transmission lines. (c) Schematic of a finished 7 Fr guide catheter with a 0.035" guidewire compatible lumen. (1) Three solenoid coils incorporated in the distal shaft for tip profiling (2) Inner nitinol-copper braiding layer used as a core conductor of the loopless antenna (3) Outer braiding layer used as a shield for the loopless antenna. (4) micro-miniature connectors (MMCX).
Figure 2
Figure 2
(a) Flexibility test setup and result. The catheter distal tip was fixed perpendicular to force meter that was mounted on a motorized stage. (b) The schematic representation of tip flexibility measurement setup. (c) Distal tip flexibility for different braiding layer configurations. Resistance force at the catheter distal tip was measured while the shaft was bent from 5 cm away until the tip reaches 1.5 cm vertical displacement.
Figure 3
Figure 3
Torque transmission test fixture setup and test result. (a) The distal shaft is fixed to a freely-rotating collet (arrow) that indicates the angular response to torque. (b) A meter on the proximal shaft recorded transmitted torque after 90–270° tip rotation. (c) Comparative torquability values for different braiding layer configurations. Higher torque response values indicate greater torquability.
Figure 4
Figure 4
The active catheter prototype. (a) The atraumatic distal tip of the catheter (arrow). (b) Three channel active catheter with matching circuit boxes. (c) Schematic of the loop antenna matching/tuning and decoupling circuit a) MMCX (micro BNC) connector b) DC block section c) matching/tuning section d) decoupling section e) BNC connector. (d) Schematic of the loopless antenna matching/tuning and decoupling circuit a) MMCX connector b) DC block section c) matching/tuning section d) decoupling section e) BNC connector.
Figure 5
Figure 5
in vitro and in vivo visibility performance. (a) Phantom MR image acquired with three channel catheter. (b) The active catheter was inserted percutaneously from the femoral artery, through the aorta, and into the left subclavian artery. (c) Multi-slice volume-rendered real-time MR of procedure described in panel (b) depicting the anatomic context. Device-related signal is evident in all slices. Independent catheter receiver channels allow colorized reconstruction of the tip (first (arrow) and third coil, green; middle coil, red; catheter shaft, blue).
Figure 6
Figure 6
Signal-to-noise ratio profile of the active laser catheter is mapped in normalized SNR units.
Figure 7
Figure 7
The heating test results. (a) maximum temperature rise versus insertion length graph when the active catheter placed to the isocenter. (b) maximum temperature rise measurements for different horizontal offset position relative to isocenter.

References

    1. Elgort DR, Wong EY, Hillenbrand CM, Wacker FK, Lewin JS, Duerk JL. Real-time catheter tracking and adaptive imaging. J Magn Reson Imaging. 2003;18(5):621–626. doi: 10.1002/jmri.10402.
    1. Guttman MA, Ozturk C, Raval AN, Raman VK, Dick AJ, DeSilva R, Karmarkar P, Lederman RJ, McVeigh ER. Interventional cardiovascular procedures guided by real-time MR imaging: an interactive interface using multiple slices, adaptive projection modes and live 3D renderings. J Magn Reson Imaging. 2007;26(6):1429–1435. doi: 10.1002/jmri.21199.
    1. Nayak KS, Cunningham CH, Santos JM, Pauly JM. Real-time cardiac MRI at 3 tesla. Magn Reson Med. 2004;51(4):655–660. doi: 10.1002/mrm.20053.
    1. Santos JM, Wright GA, Pauly JM. Flexible real-time magnetic resonance imaging framework. Conf Proc IEEE Eng Med Biol Soc. 2004;2:1048–1051.
    1. Yutzy SR, Duerk JL. Pulse sequences and system interfaces for interventional and real-time MRI. J Magn Reson Imaging. 2008;27(2):267–275. doi: 10.1002/jmri.21268.
    1. Dick AJ, Raman VK, Raval AN, Guttman MA, Thompson RB, Ozturk C, Peters DC, Stine A, Wright VJ, Schenke WH, Lederman RJ. Invasive human magnetic resonance imaging: feasibility during revascularization in a combined XMR suite. Catheter Cardiovasc Interv. 2005;64(3):265–274. doi: 10.1002/ccd.20302.
    1. Raval AN, Telep JD, Guttman MA, Ozturk C, Jones M, Thompson RB, Wright VJ, Schenke WH, DeSilva R, Aviles R, Raman VK, Slack MC, Lederman RJ. Real-time magnetic resonance imaging-guided stenting of aortic coarctation with commercially available catheter devices in Swine. Circulation. 2005;112(5):699–706. doi: 10.1161/CIRCULATIONAHA.105.542647.
    1. Buecker A, Neuerburg JM, Adam GB, Glowinski A, Schaeffter T, Rasche V, van Vaals JJ, Nielsen AM, Guenther RW. Real-time MR fluoroscopy for MR-guided iliac artery stent placement. J Magn Reson Imaging. 2000;12(4):616–622. doi: 10.1002/1522-2586(200010)12:4<616::AID-JMRI15>;2-F.
    1. Feng L, Dumoulin CL, Dashnaw S, Darrow RD, DelaPaz RL, Bishop PL, Pile-Spellman J. Feasibility of stent placement in carotid arteries with real-time MR imaging guidance in pigs. Radiology. 2005;234(2):558–562. doi: 10.1148/radiol.2341031950.
    1. Omary RA, Gehl JA, Schirf BE, Green JD, Lu B, Pereles S, Huang J, Larson AC, Li D. MR imaging-versus conventional X-ray fluoroscopy-guided renal angioplasty in swine: prospective randomized comparison. Radiology. 2006;238(2):489–496. doi: 10.1148/radiol.2382050109.
    1. Krueger JJ, Ewert P, Yilmaz S, Gelernter D, Peters B, Pietzner K, Bornstedt A, Schnackenburg B, Abdul-Khaliq H, Fleck E. Magnetic resonance imaging-guided balloon angioplasty of coarctation of the aorta: a pilot study. Circulation. 2006;113(8):1093–1100. doi: 10.1161/CIRCULATIONAHA.105.578112.
    1. Manke C, Nitz WR, Djavidani B, Strotzer M, Lenhart M, Völk M, Feuerbach S, Link J. MR imaging-guided stent placement in iliac arterial stenoses: a feasibility study. Radiology. 2001;219(2):527–534.
    1. Razavi R, Hill DL, Keevil SF, Miquel ME, Muthurangu V, Hedge S, Barnett M, van Vaals J, Hwakes DJ, Baker E. Cardiac catheterisation guided by MRI in children and adults with congenital heart disease. Lancet. 2003;362(9399):1877–1882. doi: 10.1016/S0140-6736(03)14956-2.
    1. Nazarian S, Kolandaivelu A, Zviman MM, Meininger GR, Kato R, Susil RC, Roguin A, Dickfield TL, Ashikaga H, Calkins H, Berger RD, Bluemke DA, Lardo AC, Halperin HR. Feasibility of real-time magnetic resonance imaging for catheter guidance in electrophysiology studies. Circulation. 2008;118(3):223–229. doi: 10.1161/CIRCULATIONAHA.107.742452.
    1. Ozturk C, Guttman M, McVeigh ER, Lederman RJ. Magnetic resonance imaging-guided vascular interventions. Top Magn Reson Imaging. 2005;16(5):369–381. doi: 10.1097/00002142-200510000-00004.
    1. Bock M, Wacker FK. MR-guided intravascular interventions: techniques and applications. J Magn Reson Imaging. 2008;27(2):326–338. doi: 10.1002/jmri.21271.
    1. Rubin DL, Ratner AV, Young SW. Magnetic susceptibility effects and their application in the development of new ferromagnetic catheters for magnetic resonance imaging. Invest Radiol. 1990;25(12):1325–1332.
    1. Bakker CJ, Hoogeveen RM, Weber J, van Vaals JJ, Viergever MA, Mali WP. Visualization of dedicated catheters using fast scanning techniques with potential for MR-guided vascular interventions. Magn Reson Med. 1996;36(6):816–820. doi: 10.1002/mrm.1910360603.
    1. Miquel ME, Hegde S, Muthurangu V, Corcoran BJ, Keevil SF, Hill DL, Razavi RS. Visualization and tracking of an inflatable balloon catheter using SSFP in a flow phantom and in the heart and great vessels of patients. Magn Reson Med. 2004;51(5):988–995. doi: 10.1002/mrm.20041.
    1. Kozerke S, Hegde S, Schaeffter T, Lamerichs R, Razavi R, Hill DL. Catheter tracking and visualization using 19F nuclear magnetic resonance. Magn Reson Med. 2004;52(3):693–697. doi: 10.1002/mrm.20202.
    1. Magnusson P, Johansson E, Mansson S, Petersson JS, Chai CM, Hannson G, Axelsson O, Golman K. Passive catheter tracking during interventional MRI using hyperpolarized 13C. Magn Reson Med. 2007;57(6):1140–1147. doi: 10.1002/mrm.21239.
    1. Edelman RR, Storey P, Dunkle E, Li W, Carrillo A, Vu A, Carroll TJ. Gadolinium-enhanced off-resonance contrast angiography. Magn Reson Med. 2007;57(3):475–484. doi: 10.1002/mrm.21175.
    1. Dharmakumar R, Koktzoglou I, Tang R, Harris KR, Beohar N, Li D. Off-resonance positive contrast imaging of a passive endomyocardial catheter in swine. Phys Med Biol. 2008;53(13):N249–257. doi: 10.1088/0031-9155/53/13/N02.
    1. Kuehne T, Fahrig R, Butts K. Pair of resonant fiducial markers for localization of endovascular catheters at all catheter orientations. J Magn Reson Imaging. 2003;17(5):620–624. doi: 10.1002/jmri.10307.
    1. Quick HH, Zenge MO, Kuehl H, Kaiser G, Aker S, Massing S, Bosk S, Ladd ME. Interventional magnetic resonance angiography with no strings attached: wireless active catheter visualization. Magn Reson Med. 2005;53(2):446–455. doi: 10.1002/mrm.20347.
    1. Wong EY, Zhang Q, Duerk JL, Lewin JS, Wendt M. An optical system for wireless detuning of parallel resonant circuits. J Magn Reson Imaging. 2000;12(4):632–638. doi: 10.1002/1522-2586(200010)12:4<632::AID-JMRI17>;2-J.
    1. Eggers H, Weiss S, Boernert P, Boesiger P. Image-based tracking of optically detunable parallel resonant circuits. Magn Reson Med. 2003;49(6):1163–1174. doi: 10.1002/mrm.10459.
    1. Celik H, Uluturk A, Tali T, Atalar E. A catheter tracking method using reverse polarization for MR-guided interventions. Magn Reson Med. 2007;58(6):1224–1231. doi: 10.1002/mrm.21419.
    1. Dumoulin CL, Souza SP, Darrow RD. Real-time position monitoring of invasive devices using magnetic resonance. Magn Reson Med. 1993;29(3):411–415. doi: 10.1002/mrm.1910290322.
    1. Zhang Q, Wendt M, Aschoff AJ, Zheng L, Lewin JS, Duerk JL. Active MR guidance of interventional devices with target-navigation. Magn Reson Med. 2000;44(1):56–65. doi: 10.1002/1522-2594(200007)44:1<56::AID-MRM10>;2-5.
    1. Zhang Q, Wendt M, Aschoff AJ, Lewin JS, Duerk JL. A multielement RF coil for MRI guidance of interventional devices. J Magn Reson Imaging. 2001;14(1):56–62. doi: 10.1002/jmri.1151.
    1. Quick HH, Serfaty JM, Pannu HK, Genadry R, Yeung CJ, Atalar E. Endourethral MRI. Magn Reson Med. 2001;45(1):138–146. doi: 10.1002/1522-2594(200101)45:1<138::AID-MRM1018>;2-G.
    1. Ocali O, Atalar E. Intravascular magnetic resonance imaging using a loopless catheter antenna. Magn Reson Med. 1997;37(1):112–118. doi: 10.1002/mrm.1910370116.
    1. Serfaty JM, Yang X, Aksit P, Quick HH, Solaiyappan M, Atalar E. Toward MRI-guided coronary catheterization: visualization of guiding catheters, guidewires, and anatomy in real time. J Magn Reson Imaging. 2000;12(4):590–594. doi: 10.1002/1522-2586(200010)12:4<590::AID-JMRI11>;2-3.
    1. Karmarkar PV, Kraitchman DL, Izbudak I, Hoffman LV, Amado LC, Fritzges D, Young R, Pittenger M, Bulte JW, Atalar E. MR-trackable intramyocardial injection catheter. Magn Reson Med. 2004;51(6):1163–1172. doi: 10.1002/mrm.20086.
    1. Sathyanarayana S, Aksit P, Arepally A, Karmarkar PV, Solaiyappan M, Atalar E. Tracking planar orientations of active MRI needles. J Magn Reson Imaging. 2007;26(2):386–391. doi: 10.1002/jmri.20960.
    1. Carey J, Fahim A, Munro M. Design of braided composite cardiovascular catheters based on required axial, flexural, and torsional rigidities. J Biomed Mater Res B Appl Biomater. 2004;70(1):73–81. doi: 10.1002/jbm.b.30017.
    1. National Electrical Manufacturers Association. Determination of signal to noise ratio and image uniformity for single-channel non-volume coils in diagnostic MRI. NEMA, MS 6-2008.
    1. Kellman P, McVeigh ER. Image reconstruction in SNR units: A general method for SNR measurement. Magn Reson Med. 2005;54(6):1439–1447. doi: 10.1002/mrm.20713.
    1. American Society for Testing and Materials (ASTM) Standard F2182-02. Standard test method for measurement of radio frequency induced heating near passive implants during magnetic resonance imaging ASTM International. 2002.
    1. Gabriel C. Compilation of the dielectric properties of body tissues at RF and microwave frequencies. Air Force material command, Brooks Air Force Base, Texas. 1996. AL/OE-TR-1996-0037.
    1. Yeung CJ, Susil RC, Atalar E. RF heating due to conductive wires during MRI depends on the phase distribution of the transmit field. Magn Reson Med. 2002;48(6):1096–1098. doi: 10.1002/mrm.10310.
    1. Food and Drug Administration. Guidance for the submission of premarket notifications for magnetic resonance diagnostic devices. 1998.

Source: PubMed

3
Abonnere