Effect of Arthrospira (Spirulina) maxima Supplementation and a Systematic Physical Exercise Program on the Body Composition and Cardiorespiratory Fitness of Overweight or Obese Subjects: A Double-Blind, Randomized, and Crossover Controlled Trial

Marco Antonio Hernández-Lepe, José Alberto López-Díaz, Marco Antonio Juárez-Oropeza, Rosa Patricia Hernández-Torres, Abraham Wall-Medrano, Arnulfo Ramos-Jiménez, Marco Antonio Hernández-Lepe, José Alberto López-Díaz, Marco Antonio Juárez-Oropeza, Rosa Patricia Hernández-Torres, Abraham Wall-Medrano, Arnulfo Ramos-Jiménez

Abstract

Excess weight and obesity are major risk factors for many chronic diseases, and weight-loss interventions often include systematic exercise and nutritional supplements. The purpose of this study was to determine the independent/synergistic effects of Arthrospira (Spirulina) maxima supplementation (six weeks, 4.5 g·day-1) and a systematic physical exercise program (six weeks, twice weekly) on the body composition and cardiorespiratory fitness of overweight and obese subjects. To achieve this, 27 overweight and 25 obese sedentary male subjects were assigned to four interventions through a randomized double-blind, crossover controlled trial: A physical exercise program, with (SE) or without (Ex) Spirulina maxima; or no-exercise program, with (Sm) and without (C) Spirulina maxima. The body composition and cardiorespiratory fitness parameters were taken during a maximum intensity test. As compared to the C group, the body fat percentage of the SE, Sm and Ex groups was reduced (p < 0.05), while their maximal oxygen uptake improved (r = -0.40), and obese subjects benefited more significantly. Weight loss, the time to reach fatigue and the onset of blood lactate accumulation were improved in both of the Spirulina maxima supplemented groups, regardless of the subjects' body weight. Spirulina maxima supplementation synergistically improves the effects of systematic exercise on body composition and cardiorespiratory fitness parameters in overweight, but mostly in individuals with obesity.

Trial registration: Clinical Trials, NCT02837666. Registered 19 July 2016.

Keywords: Overweight; body fat; double-blind; maximal oxygen uptake; obesity; randomized controlled trial.

Conflict of interest statement

All authors have completed the ICMJE uniform disclosure form at , which are available, on request, from the corresponding author. All authors declare that they have no conflicts of interest related to this work.

Figures

Figure 1
Figure 1
Changes in body weight and body fat percentage by treatments. SE: Spirulina and exercise; Ex: exercise and placebo; Sm: Spirulina without exercise; and C: control (placebo treatment). (A) Total body weight changes of subjects; (B) Body weight changes in overweight subjects; (C) Body weight changes in subjects with obesity; (D) Total body fat changes of subjects; (E) Body fat changes in overweight subjects; and (F) Body fat changes in subjects with obesity. Data are shown as the mean, with 95% confidence intervals. Different letters indicate the statistical differences between groups (p < 0.05).
Figure 2
Figure 2
Changes in time to fatigue by treatments. SE: Spirulina and exercise; Ex: exercise and placebo; Sm: Spirulina without exercise; and C: control (placebo treatment). (A) Total time to fatigue changes of subjects; (B) Time to fatigue changes in overweight subjects; and (C) Time to fatigue changes in obesity subjects. Data are shown as the mean, with 95% confidence intervals. Different letters indicate the statistical differences between groups (p < 0.05).
Figure 3
Figure 3
Changes in resting heart rate and onset blood lactate accumulation by treatments. HR: heart rate; OBLA: onset blood lactate accumulation; %HR: percentage of maximal heart rate; SE: Spirulina and exercise; Ex: exercise and placebo; Sm: Spirulina without exercise; and C: control (placebo treatment). (A) Total resting HR changes of subjects; (B) Resting HR changes in overweight subjects; (C) Resting HR changes in obesity subjects; (D) Total OBLA changes of subjects; (E) OBLA changes in overweight subjects; and (F) OBLA changes in obesity subjects. Data are presented as the mean with 95% confidence intervals. Different letters indicate the statistical differences between groups (p < 0.05).
Figure 4
Figure 4
Changes in maximal oxygen uptake by treatments. VO2max: Maximal oxygen uptake; SE: Spirulina and exercise; Ex: exercise and placebo; Sm: Spirulina without exercise; and C: control (placebo treatment). (A) Total VO2max changes of subjects; (B) VO2max changes in overweight subjects; and (C) VO2max changes in subjects with obesity. Data are shown as the mean, with 95% confidence intervals. Different letters indicate the statistical differences between groups (p < 0.05).
Figure 5
Figure 5
Experimental design for the independent and additive effect of Spirulina maxima and exercise. MIT: Maximum intensity test.

References

    1. WHO World Health Organization. Fact Sheet No. 317. [(accessed on 18 August 2018)];2017 Available online:
    1. Ramos-Jiménez A., Hernández-Torres R.P., Torres-Durán P.V., Romero-González J., Mascher D., Posadas-Romero C., Juárez-Oropeza M.A. The respiratory exchange ratio is associated with fitness indicators both in trained and untrained men: A possible application for people with reduced exercise tolerance. Clin. Med. 2008;2:1–9. doi: 10.4137/CCRPM.S449.
    1. Ghosh A.K. Anaerobic threshold: Its concept and role in endurance sport. Malays. J. Med. Sci. 2004;11:24–36.
    1. Hurley B.F., Hagberg J.M., Allen W.K., Seals D.R., Young J.C., Cuddihee R.W., Holloszy J.O. Effect of training on blood lactate levels during submaximal exercise. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1984;56:1260–1264. doi: 10.1152/jappl.1984.56.5.1260.
    1. Gillison F., Stathi A., Reddy P., Perry R., Taylor G., Bennett P., Dunbar J., Greaves C. Processes of behavior change and weight loss in a theory-based weight loss intervention program: A test of the process model for lifestyle behavior change. Int. J. Behav. Nutr. Phys. Act. 2015;12:2. doi: 10.1186/s12966-014-0160-6.
    1. Khera R., Murad M.H., Chandar A.K., Dulai P.S., Wang Z., Prokop L.J., Loomba R., Camilleri M., Singh S. Association of pharmacological treatments for obesity with weight loss and adverse events: A systematic review and meta-analysis. JAMA. 2016;315:2424–2434. doi: 10.1001/jama.2016.7602.
    1. Méndez L., Dasilva G., Taltavull N., Romeu M., Medina I. Marine lipids on cardiovascular diseases and other chronic diseases induced by diet: An insight provided by proteomics and lipidomics. Mar. Drugs. 2017;15:258. doi: 10.3390/md15080258.
    1. Habib M.A.B., Parvin M., Huntington T.C., Hasan M.R. A Review on Culture, Production and use of Spirulina as Food for Humans and Feeds for Domestic Animals and Fish. FAO; Rome, Italy: 2008. FAO Fisheries and Aquaculture Circular No. 1034.
    1. Sommella E., Conte G.M., Salviati E., Pepe G., Bertamino A., Ostacolo C., Sansone F., Del Prete F., Aquino R.P., Campiglia P. Fast profiling of natural pigments in different spirulina (Arthrospira platensis) dietary supplements by DI-FT-ICR and evaluation of their antioxidant potential by pre-column DPPH-UHPLC assay. Molecules. 2018;23:1152. doi: 10.3390/molecules23051152.
    1. Zaid A.A.A., Hammad D.M., Sharaf E.M. Antioxidant and anticancer activity of Spirulina platensis water extracts. Int. J. Pharmacol. 2015;11:846–851. doi: 10.3923/ijp.2015.846.851.
    1. Neyrinck A.M., Taminiau B., Walgrave H., Daube G., Cani P.D., Bindels L.B., Delzenne N.M. Spirulina protects against hepatic inflammation in aging: An effect related to the modulation of the gut microbiota? Nutrients. 2017;9:633. doi: 10.3390/nu9060633.
    1. Seo Y.J., Kim K.J., Choi J., Koh E.J., Lee B.Y. Spirulina maxima extract reduces obesity through suppression of adipogenesis and activation of browning in 3T3-L1 cells and high-fat diet-induced obese mice. Nutrients. 2018;10:712. doi: 10.3390/nu10060712.
    1. Szulinska M., Gibas-Dorna M., Miller-Kasprzak E., Suliburska J., Miczke A., Walczak-Gałezewska M., Stelmach-Mardas M., Walkowiak J., Bogdanski P. Spirulina maxima improves insulin sensitivity, lipid profile, and total antioxidant status in obese patients with well-treated hypertension: A randomized double-blind placebo-controlled study. Eur. Rev. Med. Pharmacol. Sci. 2017;21:2473–2481.
    1. Hernández-Lepe M.A., Wall-Medrano A., Juárez-Oropeza M.A., Ramos-Jiménez A., Hernández-Torres R.P. Spirulina y su efecto hipolipemiante y antioxidante en humanos: Una revisión sistemática. Nutr. Hosp. 2015;32:494–500. doi: 10.3305/nh.2015.32.2.9100.
    1. Deng R., Chow T.J. Hypolipidemic, antioxidant, and antiinflammatory activities of microalgae Spirulina. Cardiovasc. Ther. 2010;28:e33–e45. doi: 10.1111/j.1755-5922.2010.00200.x.
    1. Miczke A., Szulinska M., Hansdorfer-Korzon R., Kregielska-Narozna M., Suliburska J., Walkowiak J., Bogdanski P. Effects of spirulina consumption on body weight, blood pressure, and endothelial function in overweight hypertensive Caucasians: A double blind, placebo-controlled, randomized trial. Eur. Rev. Med. Pharmacol. Sci. 2016;20:150–156.
    1. Mazokopakis E.E., Starakis I.K., Papadomanolaki M.G., Kregielsk-Narozna M., Suliburska J., Walkowiak J. The hypolipidaemic effects of Spirulina (Arthrospira platensis) supplementation in a Cretan population: A prospective study. J. Sci. Food Agric. 2014;94:432–437. doi: 10.1002/jsfa.6261.
    1. Foright R.M., Presby D.M., Sherk V.D., Kahn D., Checkley L.A., Giles E.D., Bergouignan A., Higgins J.A., Jackman M.R., Hill J.O., et al. Is regular exercise an effective strategy for weight loss maintenance? Physiol. Behav. 2018;188:86–93. doi: 10.1016/j.physbeh.2018.01.025.
    1. Fujimoto M., Tsuneyama K., Fujimoto T., Selmi C., Gershwin M.E., Shimada Y. Spirulina improves non-alcoholic steatohepatitis, visceral fat macrophage aggregation, and serum leptin in a mouse model of metabolic syndrome. Digest. Liver Dis. 2012;44:767–774. doi: 10.1016/j.dld.2012.02.002.
    1. Kalafati M., Jamurtas A.Z., Nikolaidis M.G., Paschalis V., Theodorou A.A., Sakellariou G.K., Koutedakis Y., Kouretas D. Ergogenic and antioxidant effects of spirulina supplementation in humans. Med. Sci. Sports Exerc. 2010;42:142–151. doi: 10.1249/MSS.0b013e3181ac7a45.
    1. Diaz A., Bourassa M.G., Guertin M.C., Tardif J.C. Long-term prognostic value of resting heart rate in patients with suspected or proven coronary artery disease. Eur. Heart J. 2005;26:967–974. doi: 10.1093/eurheartj/ehi190.
    1. Jouven X., Zureik M., Desnos M., Guérot C., Ducimetière P. Resting heart rate as a predictive risk factor for sudden death in middle-aged men. Cardiovasc. Res. 2001;50:373–378. doi: 10.1016/S0008-6363(01)00230-9.
    1. Torres-Durán P.V., Ferreira-Hermosillo A., Ramos-Jiménez A., Hernández-Torres R.P., Juárez-Oropeza M.A. Effect of Spirulina maxima on postprandial lipemia in young runners: A preliminary report. J. Med. Food. 2012;15:753–757. doi: 10.1089/jmf.2011.0309.
    1. Lu H.K., Hsieh C.C., Hsu J.J., Yang Y.K., Chou H.N. Preventive effects of Spirulina platensis on skeletal muscle damage under exercise-induced oxidative stress. Eur. J. Appl. Physiol. 2006;98:220–226. doi: 10.1007/s00421-006-0263-0.
    1. Gutiérrez-Salmeán G., Fabila-Castillo L., Chamorro-Cevallos G. Nutritional and toxicological aspects of Spirulina (Arthrospira) Nutr. Hosp. 2015;32:34–40. doi: 10.3305/nh.2015.32.1.9001.
    1. Billat L.V. Interval training for performance: A scientific and empirical practice. Sports Med. 2001;31:13–31. doi: 10.2165/00007256-200131010-00002.
    1. American College of Sports Medicine . ACSM’s Guidelines for Exercise Testing and Prescription. 10th ed. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2016. pp. 111–142.
    1. De Strijcker D., Lapauw B., Ouwens M., Van de Velde D., Hansen D., Petrovic M., Cuvelier C., Tonoli C., Calders P. High intensity interval training is associated with greater impact on physical fitness, insulin sensitivity and muscle mitochondrial content in males with overweight/obesity, as opposed to continuous endurance training: A randomized controlled trial. J. Musculoskelet. Neuronal Interact. 2018;18:215–226.
    1. Tjonna A.E., Leinan I.M., Bartnes A.T., Jenssen B.M., Gibala M.J., Winett R.A., Wisloff U. Low-and high-volume of intensive endurance training significantly improves maximal oxygen uptake after 10-weeks of training in healthy men. PLoS ONE. 2013;8:e65382. doi: 10.1371/journal.pone.0065382.
    1. Swain D.P., Leutholtz B.C. Heart rate reserve is equivalent to %VO2 reserve, not to %VO2max. Med. Sci. Sports Exerc. 1997;29:410–414. doi: 10.1097/00005768-199703000-00018.
    1. Swain D.P., Franklin B.A. VO2 reserve and the minimal intensity for improving cardiorespiratory fitness. Med. Sci. Sports Exerc. 2002;34:152–157. doi: 10.1097/00005768-200201000-00023.
    1. Ötleş S., Pire R. Fatty acid composition of Chlorella and Spirulina microalgae species. J. AOAC Int. 2001;84:1708–1714.
    1. Becker E.W. Micro-algae as a source of protein. Biotechnol. Adv. 2007;25:207–210. doi: 10.1016/j.biotechadv.2006.11.002.
    1. Ku C.S., Yang Y., Park Y., Lee J. Health benefits of blue-green algae: Prevention of cardiovascular disease and nonalcoholic fatty liver disease. J. Med. Food. 2013;16:103–111. doi: 10.1089/jmf.2012.2468.
    1. Fiedor J., Burda K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients. 2014;6:466–488. doi: 10.3390/nu6020466.
    1. Gershwin M.E., Belay A. Spirulina in Human Nutrition and Health. CRC Press; Boca Raton, FL, USA: 2007. pp. 11–35.
    1. Lee P.Y., Alexander K.P., Hammill B.G., Pasquali S.K., Peterson E.D. Representation of elderly persons and women in published randomized trials of acute coronary syndromes. JAMA. 2001;286:708–713. doi: 10.1001/jama.286.6.708.
    1. Hernández-Lepe M.A., López-Díaz J.A., de la Rosa L.A., Hernández-Torres R.P., Wall-Medrano A., Juarez-Oropeza M.A., Pedraza-Chaverri J., Urquidez-Romero R., Ramos-Jiménez A. Double-blind randomised controlled trial of the independent and synergistic effect of Spirulina maxima with exercise (ISESE) on general fitness, lipid profile and redox status in overweight and obese subjects: Study protocol. BMJ Open. 2017;7:e013744. doi: 10.1136/bmjopen-2016-013744.
    1. Schulz K.F., Grimes D.A. Generation of allocation sequences in randomised trials: Chance, not choice. Lancet. 2002;359:515–519. doi: 10.1016/S0140-6736(02)07683-3.
    1. Faul F., Erdfelder E., Lang A.G., Buchner A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods. 2007;39:175–191. doi: 10.3758/BF03193146.
    1. Nelson M. The validation of dietary questionnaires. In: Margetts B.M., Nelson M., editors. Design Concepts in Nutritional Epidemiology. 2nd ed. Oxford University Press; Oxford, UK: 1997. pp. 266–295.
    1. Nauman J., Nes B.M., Lavie C.J., Jackson A.S., Sui X., Coombes J.S., Blair S.N., Wisløff U. Prediction of cardiovascular mortality by estimated cardiorespiratory fitness independent of traditional risk factors: The HUNT study. Mayo Clin. Proc. 2017;92:218–227. doi: 10.1016/j.mayocp.2016.10.007.

Source: PubMed

3
Abonnere