Directional DBS of the Fornix in Alzheimer's Disease Achieves Long-Term Benefits: A Case Report

Juan A Barcia, María Aurora Viloria, Raquel Yubero, Leyre Sanchez-Sanchez-Rojas, Amanda López, Bryan Andrew Strange, María Cabrera, Leonides Canuet, Pedro Gil, Cristina Nombela, Juan A Barcia, María Aurora Viloria, Raquel Yubero, Leyre Sanchez-Sanchez-Rojas, Amanda López, Bryan Andrew Strange, María Cabrera, Leonides Canuet, Pedro Gil, Cristina Nombela

Abstract

Background: Current treatments for Alzheimer's disease (AD) modulate global neurotransmission but are neither specific nor anatomically directed. Tailored stimulation of target nuclei will increase treatment efficacy while reducing side effects. We report the results of the first directional deep brain stimulation (dDBS) surgery and treatment of a patient with AD in an attempt to slow the progression of the disease in a woman with multi-domain, amnestic cognitive status.

Methods: We aimed to assess the safety of dDBS in patients with AD using the fornix as stimulation target (primary objective) and the clinical impact of the stimulation (secondary objective). In a registered clinical trial, a female patient aged 81 years with a 2-year history of cognitive decline and diagnoses of AD underwent a bilateral dDBS surgery targeting the fornix. Stimulation parameters were set between 3.9 and 7.5 mA, 90 μs, 130 Hz for 24 months, controlling stimulation effects by 18F-fluoro-2-deoxy-D-glucose (18F-FDG) scans (baseline, 12 and 24 months), magnetoencephalography (MEG) and clinical/neuropsychological assessment (baseline, 6, 12, 18, and 24 months).

Results: There were no important complications related to the procedure. In general terms, the patient showed cognitive fluctuations over the period, related to attention and executive function patterns, with no meaningful changes in any other cognitive functions, as is shown in the clinical dementia rating scale (CDR = 1) scores over the 24 months. Such stability in neuropsychological scores corresponds to the stability of the brain metabolic function, seen in PET scans. The MEG studies described low functional connectivity at baseline and a subsequent increase in the number of significant connections, mainly in the theta band, at 12 months.

Conclusion: The dDBS stimulation in the fornix seems to be a safe treatment for patients in the first stage of AD. Effects on cognition seem to be mild to moderate during the first months of stimulation and return to baseline levels after 24 months, except for verbal fluency.

Clinical trial registration: [https://ichgcp.net/clinical-trials-registry/NCT03290274], identifier [NCT03290274].

Keywords: Alzheimer’s disease; clinical trial; directional deep brain stimulation; fornix (brain); neuropsychology.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Barcia, Viloria, Yubero, Sanchez-Sanchez-Rojas, López, Strange, Cabrera, Canuet, Gil and Nombela.

Figures

FIGURE 1
FIGURE 1
The timeline of the study.
FIGURE 2
FIGURE 2
In amyloid PET images (1), the uptake of the grey matter equals that of the white matter in the lateral temporal, parietal, posterior cingulum/precuneus, and especially in the frontal lobe, thus being considered a positive study for amyloid deposition. 18F-FDG-PET images at diagnosis (2) show only mild mesial hypometabolism, predominantly in the left hemisphere (blue arrow). 18F-FDG-PET studies showed no evolution of hypometabolism at 1 year (3), and 2 years after diagnosis (4) (blue arrows).
FIGURE 3
FIGURE 3
Changes in brain connectivity from the initial study to the end of follow-up (24 months). Red and yellow lines indicate an increase in connectivity, while the blue lines show a decreasing pattern. Functional connections predominate in the bilateral mid-temporal regions with cingulate areas and, to a lesser extent, with frontomedial and orbitofrontal areas. In other words, the connectivity between the temporal and limbic areas remains quite strong. Low frequencies show an earlier decrease in connectivity, but the latest studies would indicate a pattern of reorganisation of activity.

References

    1. Behrens T. E. J., Johansen Berg H., Jbabdi S., Rushworth M. F. S., Woolrich M. W. (2007). Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage 34, 144–155. 10.1016/j.neuroimage.2006.09.018
    1. Benton A. L. (1968). Differential behavioral effects in frontal lobe disease. Neuropsychologia 6 53–60. 10.1016/0028-3932(68)90038-9
    1. Brookmeyer R., Evans D. A., Hebert L., Langa K. M., Heeringa S. G., Plassman B. L., et al. (2011). National estimates of the prevalence of Alzheimer’s disease in the United States. Alzheimers Dement. 7 61–73. 10.1016/j.jalz.2010.11.007
    1. Canuet L., Pusil S., López M. E., Bajo R., Pineda-Pardo J. Á, Cuesta P., et al. (2015). Network disruption and cerebrospinal fluid amyloid-beta and phospho-tau levels in mild cognitive impairment. J. Neurosci. 35 10325–10330. 10.1523/JNEUROSCI.0704-15.2015
    1. Canuet L., Tellado I., Couceiro V., Fraile C., Fernandez-Novoa L., Ishii R., et al. (2012). Resting-State Network Disruption and APOE Genotype in Alzheimer’s Disease?: a lagged Functional Connectivity Study. PLoS One 7:e46289. 10.1371/journal.pone.0046289
    1. De Matteis L., Martín-Rapún R., de la Fuente J. M. (2018). Nanotechnology in Personalised Medicine: a Promising Tool for Alzheimer’s Disease Treatment. Curr. Med. Chem. 25 4602–4615. 10.2174/0929867324666171012112026
    1. Desikan R. S., Ségonne F., Fischl B., Quinn B. T., Dickerson B. C., Blacker D., et al. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31 968–980. 10.1016/j.neuroimage.2006.01.021
    1. Dubois B., Hampel H., Feldman H. H., Scheltens P., Aisen P., Andrieu S., et al. (2016). Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimers Dement.? 12 292–323. 10.1016/j.jalz.2016.02.002
    1. Dürschmid S., Reichert C., Kuhn J., Freund H. J., Hinrichs H., Heinze H. J. (2020). Deep brain stimulation of the nucleus basalis of Meynert attenuates early EEG components associated with defective sensory gating in patients with Alzheimer disease – a two-case study. Eur. J. Neurosci. 51 1201–1209. 10.1111/ejn.13749
    1. Elmaleh D. R., Farlow M. R., Conti P. S., Tompkins R. G., Kundakovic L., Tanzi R. E. (2019). Developing Effective Alzheimer’s Disease Therapies: clinical Experience and Future Directions. J. Alzheimers Dis. 71 715–732. 10.3233/JAD-190507
    1. Folstein M. F., Folstein S. E., McHugh P. R. (1975). Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12 189–198. 10.1016/0022-3956(75)90026-6
    1. Fontaine D., Deudon A., Lemaire J. J., Razzouk M., Viau P., Darcourt J., et al. (2013). Symptomatic Treatment of Memory Decline in Alzheimer’s Disease by Deep Brain Stimulation: a Feasibility Study. J. Alzheimers Dis. 34 315–323. 10.3233/JAD-121579
    1. Fontaine D., Santucci S. (2021). Deep brain stimulation in Alzheimer’s disease. Int. Rev. Neurobiol. 159 69–87. 10.1016/bs.irn.2021.06.005
    1. Hebert L. E., Scherr P. A., Bienias J. L., Bennett D. A., Evans D. A. (2003). Alzheimer Disease in the US Population. Arch. Neurol. 60:1119. 10.1001/archneur.60.8.1119
    1. Jakobs M., Lee D. J., Lozano A. M. (2020). ‘Modifying the progression of Alzheimer’s and Parkinson’s disease with deep brain stimulation. Neuropharmacology 171:107860. 10.1016/j.neuropharm.2019.107860
    1. Kuhn J., Hardenacke K., Shubina E., Lenartz D., Visser-Vandewalle V., Zilles K., et al. (2015). Deep brain stimulation of the nucleus basalis of meynert in early stage of Alzheimer’s dementia. Brain Stimul. 8 838–839. 10.1016/j.brs.2015.04.002
    1. Lachaux J.-P., Rodriguez E., Martinerie J., Varela F. J. (1999). Measuring phase synchrony in brain signals. Hum. Brain Mapp. 8 194–208. 10.1002/(SICI)1097-019319998:4<194::AID-HBM4<;2-C
    1. Laxton A. W., Tang-Wai D. F., McAndrews M. P., Zumsteg D., Wennberg R., Keren R., et al. (2010). A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease. Ann. Neurol. 68 521–534. 10.1002/ana.22089
    1. Leoutsakos J. S., Yan H., Anderson W. S., Asaad W. F., Baltuch G., Burke A., et al. (2019). Deep Brain Stimulation Targeting the Fornix for Mild Alzheimer Dementia (the ADvance Trial): a Two Year Follow-up Including Results of Delayed Activation. J. Alzheimers Dis. 64 597–606. 10.3233/JAD-180121
    1. Liu H., Temel Y., Boonstra J., Hescham S. (2020). The effect of fornix deep brain stimulation in brain diseases. Cell. Mol. Life Sci. 77 3279–3291. 10.1007/s00018-020-03456-4
    1. Loonstra A. S., Tarlow A. R., Sellers A. H. (2001). COWAT Metanorms Across Age, Education, and Gender. Appl. Neuropsychol. 8 161–166. 10.1207/S15324826AN0803_5
    1. Lozano A. M., Fosdick L., Chakravarty M. M., Leoutsakos J. M., Munro C., Oh E., et al. (2016). A Phase II Study of Fornix Deep Brain Stimulation in Mild Alzheimer’s Disease. J. Alzheimers Dis. 54 777–787. 10.3233/JAD-160017
    1. Morris J. C. (1997). Clinical dementia rating: a reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. Int. Psychogeriatr. 9 173–176. 10.1017/s1041610297004870
    1. Noreik M., Kuhn J., Hardenacke K., Lenartz D., Bauer A., Bührle C. P., et al. (2015). Changes in Nutritional Status after Deep Brain Stimulation of the Nucleus Basalis of Meynert in Alzheimer’s Disease–Results of a Phase I Study. J. Nutr. Health Aging 19 812–818. 10.1007/s12603-015-0595-8
    1. Reitan R. M., Wolfson D. (1993). The Halstead-Reitan Neuropsychological Test Battery: Theory and Clinical Interpretation, 2nd Editio Edn. Tucson: Neuropsychology Press.
    1. Rosen W. G., Mohs R. C., Davis K. L. (1984). A new rating scale for Alzheimer’s disease. Am. J. Psychiatry 141 1356–1364. 10.1176/ajp.141.11.1356
    1. Sankar T., Chakravarty M. M., Bescos A., Lara M., Obuchi T., Laxton A. W., et al. (2015). ‘Deep Brain Stimulation Influences Brain Structure in Alzheimer’s Disease. Brain Stimul. 8 645–654. 10.1016/j.brs.2014.11.020
    1. Senova S., Fomenko A., Gondard E., Lozano A. M. (2020). Anatomy and function of the fornix in the context of its potential as a therapeutic target. J. Neurol. Neurosurg. Psychiatry 91, 547–559. 10.1136/jnnp-2019-322375
    1. Scharre D. W., Weichart E., Nielson D., Zhang J., Agrawal P., Sederberg P. B., et al. (2018). ‘Deep Brain Stimulation of Frontal Lobe Networks to Treat Alzheimer’s Disease. J. Alzheimers Dis. 62 621–633. 10.3233/JAD-170082
    1. Snyder P. J., Kahle-Wrobleski K., Brannan S., Miller D. S., Schindler R. J., DeSanti S., et al. (2014). Assessing cognition and function in Alzheimer’s disease clinical trials: do we have the right tools? Alzheimers Dement. 10, 853–860. 10.1016/j.jalz.2014.07.158
    1. Targum S. D., Fosdick L., Drake K. E., Rosenberg P. B., Burke A. D., Wolk D. A., et al. (2021). Effect of age on clinical trial outcome in participants with probable Alzheimer’s disease. J. Alzheimers Dis. 82 1243–1257. 10.3233/JAD-210530
    1. Weschler D. (2008). Wechsler Adult Intelligence Scale - Fourth Edition. Statistics Solutions.
    1. Wouters H. (2010). Three sides of the same coin: measuring global cognitive impairment with the MMSE, ADAS-cog and CAMCOG. Int. J. Geriatr. Psychiatry 25, 770–779. 10.1002/gps.2402
    1. Zhang W., Liu W., Patel B., Chen Y., Wang K., Yang A., et al. (2021). Case Report: deep Brain Stimulation of the Nucleus Basalis of Meynert for Advanced Alzheimer’s Disease. Front. Hum. Neurosci. 15:645584. 10.3389/fnhum.2021.645584

Source: PubMed

3
Abonnere