The SGLT2 inhibitor empagliflozin reduces tissue sodium content in patients with chronic heart failure: results from a placebo-controlled randomised trial

Julie Kolwelter, Dennis Kannenkeril, Peter Linz, Susanne Jung, Armin M Nagel, Agnes Bosch, Christian Ott, Peter Bramlage, Lisa Nöh, Mario Schiffer, Michael Uder, Stephan Achenbach, Roland E Schmieder, Julie Kolwelter, Dennis Kannenkeril, Peter Linz, Susanne Jung, Armin M Nagel, Agnes Bosch, Christian Ott, Peter Bramlage, Lisa Nöh, Mario Schiffer, Michael Uder, Stephan Achenbach, Roland E Schmieder

Abstract

Introduction: Sodium-glucose co-transporter 2 (SGLT2) inhibitors have cardiovascular protective properties in addition to the metabolic effects and represent a cornerstone of treating patients with chronic heart failure (CHF). We hypothesised that empagliflozin reduces tissue sodium content in patients with CHF.

Methods: In a double-blind, randomised (2:1), placebo-controlled, parallel-group, clinical trial, 74 patients with NYHA class II-III CHF and an ejection fraction of 49% or less received empagliflozin 10 mg once daily or placebo for 3 months. In each patient, tissue sodium content of the lower leg was assessed non-invasively by sodium-MRI (23Na-MRI) at baseline, after 1 and 3 months of treatment.

Results: After 1 and 3 months treatment with empagliflozin (n = 48), a significant decrease in skin sodium content was observed (1 month: 22.8 ± 6.1 vs. 21.6 ± 6.0 AU, p = 0.039; 3 months: 22.9 ± 6.1 vs. 21.6 ± 6.1 AU, p = 0.013), while there was no change in muscle sodium and muscle water content. In direct comparison, the change in skin sodium content between baseline and 3 months was - 1.3 ± 3.5 AU in the empagliflozin group versus 0.6 ± 3.5 AU in the placebo group (p for between-group difference = 0.022). No significant difference regarding change in muscle sodium and in muscle water content was observed after 3 months treatment between the two groups.

Conclusion: This trial showed a significant decrease in skin sodium content after 1 and 3 months of treatment with empagliflozin. The decrease in skin sodium content may reflect a decrease in subclinical micro-oedema or/and in non-osmotic bound tissue sodium, both reported to impair left ventricular function.

Trial registration number: NCT03128528 ( http://www.

Clinicaltrials: gov ).

Trial registration date: 25th April 2017.

Keywords: Chronic heart failure; Empagliflozin; Magnetic resonance imaging; SGLT2 inhibitor; Sodium; Tissue sodium content.

Conflict of interest statement

RES received speaker fees and advisory board fees and PB has received research funding (related and unrelated to the present work) from Boehringer Ingelheim Pharma GmbH & Co. KG during the conduct of the trial. All other authors declare that there is no conflict of interest.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Trial design: summary of study visits and tests performed in each visit
Fig. 2
Fig. 2
Sample of 1H-MRI and 23Na-MRI image acquisition of the lower leg at baseline (left) and after 3 months treatment with empagliflozin (right). The calibration tubes 1–4 are placed in the phantom holder underneath the calf. Calibration tubes – 1: 20 mmol Nacl + 5% agarose gel, 2: 20 mmol NaCl, 3: 40 mmol NaCl + 5% agarose gel, 4: 40 mmol NaCl
Fig. 3
Fig. 3
Primary endpoint: Change in skin sodium content after 3 months treatment with empagliflozin in the two groups—individual trajectories and boxplot showing the change from baseline to 3 months in each group
Fig. 4
Fig. 4
Forest Plot of subgroup analysis for the primary endpoint: change in skin sodium content after 3 months treatment with empagliflozin versus placebo. eGFR estimated glomerular filtration rate; mean difference = skin sodium content at 3 months minus skin sodium content at baseline, NTproBNP N-terminal prohormone of brain natriuretic peptide, 95% CI 95% confidence interval, median age = 67 years; median NTproBNP = 444 pg/ml
Fig. 5
Fig. 5
Relationship between change in skin sodium content and change in muscle sodium content a as well as change in muscle water content, b after 3 months treatment with empagliflozin. *After ignoring the potential outlier (left lower corner of the graph), the correlation between change in muscle sodium content and change in skin sodium content was still significant (r = 0.445, p = 0.002) and the correlation between change in muscle water and change in skin sodium content was still not significant (r = − 0.066, p = 0.673)

References

    1. Gallo LA, Wright EM, Vallon V. Probing SGLT2 as a therapeutic target for diabetes: basic physiology and consequences. Diab Vasc Dis Res. 2015;12(2):78–89. doi: 10.1177/1479164114561992.
    1. McMurray JJV, Solomon SD, Inzucchi SE, Kober L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Anand IS, Belohlavek J, Bohm M, Chiang CE, Chopra VK, de Boer RA, Desai AS, Diez M, Drozdz J, Dukat A, Ge J, Howlett JG, Katova T, Kitakaze M, Ljungman CEA, Merkely B, Nicolau JC, O’Meara E, Petrie MC, Vinh PN, Schou M, Tereshchenko S, Verma S, Held C, DeMets DL, Docherty KF, Jhund PS, Bengtsson O, Sjostrand M, Langkilde AM, Committees D-HT, Investigators Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008. doi: 10.1056/NEJMoa1911303.
    1. Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, Januzzi J, Verma S, Tsutsui H, Brueckmann M, Jamal W, Kimura K, Schnee J, Zeller C, Cotton D, Bocchi E, Bohm M, Choi DJ, Chopra V, Chuquiure E, Giannetti N, Janssens S, Zhang J, Gonzalez Juanatey JR, Kaul S, Brunner-La Rocca HP, Merkely B, Nicholls SJ, Perrone S, Pina I, Ponikowski P, Sattar N, Senni M, Seronde MF, Spinar J, Squire I, Taddei S, Wanner C, Zannad F, Investigators EM-RT Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383(15):1413–1424. doi: 10.1056/NEJMoa2022190.
    1. Packer M, Butler J, Zannad F, Filippatos G, Ferreira JP, Pocock SJ, Carson P, Anand I, Doehner W, Haass M, Komajda M, Miller A, Pehrson S, Teerlink JR, Schnaidt S, Zeller C, Schnee JM, Anker SD. Effect of empagliflozin on worsening heart failure events in patients with heart failure and preserved ejection fraction: EMPEROR-preserved trial. Circulation. 2021;144(16):1284–1294. doi: 10.1161/CIRCULATIONAHA.121.056824.
    1. Herrington WG, Savarese G, Haynes R, Marx N, Mellbin L, Lund LH, Dendale P, Seferovic P, Rosano G, Staplin N, Baigent C, Cosentino F. Cardiac, renal, and metabolic effects of sodium-glucose co-transporter-2 inhibitors: a position paper from the European Society of Cardiology ad-hoc task force on sodium-glucose co-transporter-2 inhibitors. Eur J Heart Fail. 2021;23(8):1260–1275. doi: 10.1002/ejhf.2286.
    1. Marx N, McGuire DK. Sodium-glucose cotransporter-2 inhibition for the reduction of cardiovascular events in high-risk patients with diabetes mellitus. Eur Heart J. 2016;37(42):3192–3200. doi: 10.1093/eurheartj/ehw110.
    1. Tager T, Frankenstein L, Atar D, Agewall S, Frey N, Grundtvig M, Clark AL, Cleland JGF, Frohlich H. Influence of receptor selectivity on benefits from SGLT2 inhibitors in patients with heart failure: a systematic review and head-to-head comparative efficacy network meta-analysis. Clin Res Cardiol. 2022;111(4):428–439. doi: 10.1007/s00392-021-01913-z.
    1. Kopp C, Linz P, Wachsmuth L, Dahlmann A, Horbach T, Schofl C, Renz W, Santoro D, Niendorf T, Muller DN, Neininger M, Cavallaro A, Eckardt KU, Schmieder RE, Luft FC, Uder M, Titze J. (23)Na magnetic resonance imaging of tissue sodium. Hypertension. 2012;59(1):167–172. doi: 10.1161/HYPERTENSIONAHA.111.183517.
    1. Titze J, Shakibaei M, Schafflhuber M, Schulze-Tanzil G, Porst M, Schwind KH, Dietsch P, Hilgers KF. Glycosaminoglycan polymerization may enable osmotically inactive Na+ storage in the skin. Am J Physiol Heart Circ Physiol. 2004;287(1):H203–H208. doi: 10.1152/ajpheart.01237.2003.
    1. Hofmeister LH, Perisic S, Titze J. Tissue sodium storage: evidence for kidney-like extrarenal countercurrent systems? Pflugers Arch. 2015;467(3):551–558. doi: 10.1007/s00424-014-1685-x.
    1. Wiig H, Luft FC, Titze JM. The interstitium conducts extrarenal storage of sodium and represents a third compartment essential for extracellular volume and blood pressure homeostasis. Acta Physiol (Oxf) 2018;222(3):e13006. doi: 10.1111/apha.13006.
    1. Olde Engberink RH, Rorije NM, van den Born BH, Vogt L. Quantification of nonosmotic sodium storage capacity following acute hypertonic saline infusion in healthy individuals. Kidney Int. 2017;91(3):738–745. doi: 10.1016/j.kint.2016.12.004.
    1. Zaric O, Juras V, Szomolanyi P, Schreiner M, Raudner M, Giraudo C, Trattnig S. Frontiers of sodium MRI revisited: from cartilage to brain imaging. J Magn Reson Imaging. 2021;54(1):58–75. doi: 10.1002/jmri.27326.
    1. Hu R, Kleimaier D, Malzacher M, Hoesl MAU, Paschke NK, Schad LR. X-nuclei imaging: current state, technical challenges, and future directions. J Magn Reson Imaging. 2020;51(2):355–376. doi: 10.1002/jmri.26780.
    1. Kolwelter J, Uder M, Schmieder RE. Tissue sodium content in hypertension and related organ damage. J Hypertens. 2020;38(12):2363–2368. doi: 10.1097/HJH.0000000000002580.
    1. Christa M, Weng AM, Geier B, Wormann C, Scheffler A, Lehmann L, Oberberger J, Kraus BJ, Hahner S, Stork S, Klink T, Bauer WR, Hammer F, Kostler H. Increased myocardial sodium signal intensity in Conn’s syndrome detected by 23Na magnetic resonance imaging. Eur Heart J Cardiovasc Imaging. 2019;20(3):263–270. doi: 10.1093/ehjci/jey134.
    1. Kolwelter J, Bosch A, Jung S, Stabel L, Kannenkeril D, Ott C, Bramlage P, Schiffer M, Achenbach S, Schmieder RE. Effects of the sodium-glucose cotransporter 2 inhibitor empagliflozin on vascular function in patients with chronic heart failure. ESC Heart Fail. 2021;77(18):1806.
    1. Williams B, Mancia G, Spiering W, Rosei EA, Azizi M, Burnier M, Clement DL, Coca A, de Simone G, Dominiczak A, Kahan T, Mahfoud F, Redon J, Ruilope L, Zanchetti A, Kerins M, Kjeldsen SE, Kreutz R, Laurent S, Lip GYH, McManus R, Narkiewicz K, Ruschitzka F, Schmieder RE, Shlyakhto E, Tsioufis C, Aboyans V, Desormais I, Grp ESD 2018 ESC/ESH Guidelines for the management of arterial hypertension (vol 39, pg 3021, 2018) Eur Heart J. 2019;40(5):475.
    1. Moissl UM, Wabel P, Chamney PW, Bosaeus I, Levin NW, Bosy-Westphal A, Korth O, Muller MJ, Ellegard L, Malmros V, Kaitwatcharachai C, Kuhlmann MK, Zhu F, Fuller NJ. Body fluid volume determination via body composition spectroscopy in health and disease. Physiol Meas. 2006;27(9):921–933. doi: 10.1088/0967-3334/27/9/012.
    1. Chamney PW, Wabel P, Moissl UM, Muller MJ, Bosy-Westphal A, Korth O, Fuller NJ. A whole-body model to distinguish excess fluid from the hydration of major body tissues. Am J Clin Nutr. 2007;85(1):80–89. doi: 10.1093/ajcn/85.1.80.
    1. Bland JAD. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–310. doi: 10.1016/S0140-6736(86)90837-8.
    1. Karg MV, Bosch A, Kannenkeril D, Striepe K, Ott C, Schneider MP, Boemke-Zelch F, Linz P, Nagel AM, Titze J, Uder M, Schmieder RE. SGLT-2-inhibition with dapagliflozin reduces tissue sodium content: a randomised controlled trial. Cardiovasc Diabetol. 2018;17(1):5. doi: 10.1186/s12933-017-0654-z.
    1. Hammon M, Grossmann S, Linz P, Kopp C, Dahlmann A, Garlichs C, Janka R, Cavallaro A, Luft FC, Uder M, Titze J. 23Na magnetic resonance imaging of the lower leg of acute heart failure patients during diuretic treatment. PLoS One. 2015;10(10):e0141336. doi: 10.1371/journal.pone.0141336.
    1. Dahlmann A, Dorfelt K, Eicher F, Linz P, Kopp C, Mossinger I, Horn S, Buschges-Seraphin B, Wabel P, Hammon M, Cavallaro A, Eckardt KU, Kotanko P, Levin NW, Johannes B, Uder M, Luft FC, Muller DN, Titze JM. Magnetic resonance-determined sodium removal from tissue stores in hemodialysis patients. Kidney Int. 2015;87(2):434–441. doi: 10.1038/ki.2014.269.
    1. Gu J, Anand V, et al. Sodium induces hypertrophy of cultured myocardial myoblasts and vascular smooth muscle cells. Hypertension. 1998;31:1083–1087. doi: 10.1161/01.HYP.31.5.1083.
    1. Schneider MP, Raff U, Kopp C, Scheppach JB, Toncar S, Wanner C, Schlieper G, Saritas T, Floege J, Schmid M, Birukov A, Dahlmann A, Linz P, Janka R, Uder M, Schmieder RE, Titze JM, Eckardt KU. Skin sodium concentration correlates with left ventricular hypertrophy in CKD. J Am Soc Nephrol. 2017;28(6):1867–1876. doi: 10.1681/ASN.2016060662.
    1. Pandey A, Khan H, Newman AB, Lakatta EG, Forman DE, Butler J, Berry JD. Arterial stiffness and risk of overall heart failure, heart failure with preserved ejection fraction, and heart failure with reduced ejection fraction: the health ABC Study (health, aging, and body composition) Hypertension. 2017;69(2):267–274. doi: 10.1161/HYPERTENSIONAHA.116.08327.
    1. Schmieder R, Jung S, Kannenkeril D, Harazny JM, Striepe K, Ott C, Linz P, Nagel AM, Uder M. P4993Tissue sodium concentration emerged as a determinant of hypertrophic vascular remodeling in type 2 diabetes. Eur Heart J. 2019 doi: 10.1093/eurheartj/ehz746.0171.
    1. Helle F, Karlsen TV, Tenstad O, Titze J, Wiig H. High-salt diet increases hormonal sensitivity in skin pre-capillary resistance vessels. Acta Physiol (Oxf) 2013;207(3):577–581. doi: 10.1111/apha.12049.
    1. Davis KL, Mehlhorn U, Laine GA, Allen SJ. Myocardial edema, left ventricular function, and pulmonary hypertension. J Appl Physiol (1985) 1995;78(1):132–137. doi: 10.1152/jappl.1995.78.1.132.
    1. Verma S, McMurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia. 2018;61(10):2108–2117. doi: 10.1007/s00125-018-4670-7.
    1. Fujiki S, Tanaka A, Imai T, Shimabukuro M, Uehara H, Nakamura I, Matsunaga K, Suzuki M, Kashimura T, Minamino T, Inomata T, Node K, Investigators CT Body fluid regulation via chronic inhibition of sodium-glucose cotransporter-2 in patients with heart failure: a post hoc analysis of the CANDLE trial. Clin Res Cardiol. 2022 doi: 10.1007/s00392-022-02049-4.
    1. Mason T, Coelho-Filho OR, Verma S, Chowdhury B, Zuo F, Quan A, Thorpe KE, Bonneau C, Teoh H, Gilbert RE, Leiter LA, Juni P, Zinman B, Jerosch-Herold M, Mazer CD, Yan AT, Connelly KA. Empagliflozin reduces myocardial extracellular volume in patients with type 2 diabetes and coronary artery disease. JACC Cardiovasc Imaging. 2021;14(6):1164–1173. doi: 10.1016/j.jcmg.2020.10.017.
    1. Verbrugge FH, Bertrand PB, Willems E, Gielen E, Mullens W, Giri S, Tang WHW, Raman SV, Verhaert D. Global myocardial oedema in advanced decompensated heart failure. Eur Heart J Cardiovasc Imaging. 2017;18(7):787–794. doi: 10.1093/ehjci/jew131.
    1. Striepe K, Jumar A, Ott C, Karg MV, Schneider MP, Kannenkeril D, Schmieder RE. Effects of the selective sodium-glucose cotransporter 2 inhibitor empagliflozin on vascular function and central hemodynamics in patients with type 2 diabetes mellitus. Circulation. 2017;136(12):1167–1169. doi: 10.1161/CIRCULATIONAHA.117.029529.
    1. Zinman B, Lachin JM, Inzucchi SE. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2016;374(11):1094.
    1. Mitsides N, McHugh D, Swiecicka A, Mitra R, Brenchley P, Parker GJM, Mitra S. Extracellular resistance is sensitive to tissue sodium status; implications for bioimpedance-derived fluid volume parameters in chronic kidney disease. J Nephrol. 2020;33(1):119–127. doi: 10.1007/s40620-019-00620-3.

Source: PubMed

3
Abonnere