Effect of empagliflozin on ketone bodies in patients with stable chronic heart failure

R Pietschner, J Kolwelter, A Bosch, K Striepe, S Jung, D Kannenkeril, C Ott, M Schiffer, S Achenbach, R E Schmieder, R Pietschner, J Kolwelter, A Bosch, K Striepe, S Jung, D Kannenkeril, C Ott, M Schiffer, S Achenbach, R E Schmieder

Abstract

Background: Recent studies indicated that sodium glucose cotransporter (SGLT)2 inhibition increases levels of ketone bodies in the blood in patients with type 1 and 2 diabetes. Other studies suggested that in patients with chronic heart failure (CHF), increased myocardial oxygen demand can be provided by ketone bodies as a fuel substrate. Experimental studies reported that ketone bodies, specifically beta-hydroxybutyrate (β-OHB) may increase blood pressure (BP) by impairing endothelium-dependant relaxation, thereby leading to increased vascular stiffness. In our study we assessed whether the SGLT 2 inhibition with empagliflozin increases ketone bodies in patients with stable CHF and whether such an increase impairs BP and vascular function.

Methods: In a prospective, double blind, placebo controlled, parallel-group single centre study 75 patients with CHF (left ventricular ejection fraction 39.0 ± 8.2%) were randomised (2:1) to the SGLT-2 inhibitor empagliflozin 10 mg orally once daily or to placebo, 72 patients completed the study. After a run-in phase we evaluated at baseline BP by 24 h ambulatory blood pressure (ABP) monitoring, vascular stiffness parameters by the SphygmoCor system (AtCor Medical, Sydney, NSW, Australia) and fasting metabolic parameters, including β-OHB by an enzymatic assay (Beckman Coulter DxC 700 AU). The same measurements were repeated 12 weeks after treatment. In 19 of the 72 patients serum levels of β-OHB were beneath the lower border of our assay (< 0.05 mmol/l) therefore being excluded from the subsequent analysis.

Results: In patients with stable CHF, treatment with empagliflozin (n = 36) was followed by an increase of β-OHB by 33.39% (p = 0.017), reduction in 24 h systolic (p = 0.038) and diastolic (p = 0.085) ABP, weight loss (p = 0.003) and decrease of central systolic BP (p = 0.008) and central pulse pressure (p = 0.008). The increase in β-OHB was related to an attenuated decrease of empagliflozin-induced 24 h systolic (r = 0.321, p = 0.069) and diastolic (r = 0.516, p = 0.002) ABP and less reduction of central systolic BP (r = 0.470, p = 0.009) and central pulse pressure (r = 0.391, p = 0.033). No significant changes were seen in any of these parameters after 12 weeks of treatment in the placebo group (n = 17).

Conclusion: In patients with stable CHF ketone bodies as assessed by β-OHB increased after treatment with empagliflozin. This increase led to an attenuation of the beneficial effects of empagliflozin on BP and vascular parameters. Trial registration The study was registered at http://www.clinicaltrials.gov (NCT03128528).

Conflict of interest statement

All authors declare that they have no competing interests.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Patient disposition
Fig. 2
Fig. 2
Change in β-hydroxybutyrate (β-OHB) between baseline and after 12 weeks of treatment with empagliflozin (left side) and between baseline and after 12 weeks of treatment with placebo (right side)
Fig. 3
Fig. 3
Relationship between changes in β-hydroxybutyrate, blood pressure and vascular parameters. Correlation between changes (Δ) in β-hydroxybutyrate (β-OHB) between baseline and after 12 weeks of treatment with empagliflozin and changes in 24 h diastolic blood pressure (24 h DBP) (top left side), in forward pulse pressure height (FPH) (top right side) in central systolic blood pressure (cSBP) (bottom left side) and in central pulse pressure (cPP) (bottom right side) between baseline and after 12 weeks of treatment with empagliflozin

References

    1. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–2128. doi: 10.1056/NEJMoa1504720.
    1. McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Anand IS, Bělohlávek J, Böhm M, Chiang C-E, Chopra VK, de Boer RA, Desai AS, Diez M, Drozdz J, Dukát A, Ge J, Howlett JG, Katova T, Kitakaze M, Ljungman CEA, Merkely B, Nicolau JC, O’Meara E, Petrie MC, Vinh PN, Schou M, Tereshchenko S, Verma S, Held C, DeMets DL, Docherty KF, Jhund PS, Bengtsson O, Sjöstrand M, Langkilde A-M. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381:1995–2008. doi: 10.1056/NEJMoa1911303.
    1. Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, Januzzi J, Verma S, Tsutsui H, Brueckmann M, Jamal W, Kimura K, Schnee J, Zeller C, Cotton D, Bocchi E, Böhm M, Choi D-J, Chopra V, Chuquiure E, Giannetti N, Janssens S, Zhang J, Gonzalez Juanatey JR, Kaul S, Brunner-La Rocca H-P, Merkely B, Nicholls SJ, Perrone S, Pina I, Ponikowski P, Sattar N, Senni M, Seronde M-F, Spinar J, Squire I, Taddei S, Wanner C, Zannad F. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383:1413–1424. doi: 10.1056/NEJMoa2022190.
    1. Seferović PM, Fragasso G, Petrie M, Mullens W, Ferrari R, Thum T, Bauersachs J, Anker SD, Ray R, Çavuşoğlu Y, Polovina M, Metra M, Ambrosio G, Prasad K, Seferović J, Jhund PS, Dattilo G, Čelutkiene J, Piepoli M, Moura B, Chioncel O, Ben Gal T, Heymans S, Jaarsma T, Hill L, Lopatin Y, Lyon AR, Ponikowski P, Lainščak M, Jankowska E, Mueller C, Cosentino F, Lund LH, Filippatos GS, Ruschitzka F, Coats AJS, Rosano GMC. Heart failure association of the European society of cardiology update on sodium–glucose co-transporter 2 inhibitors in heart failure. Eur J Heart Fail. 2020;22:1984–1986. doi: 10.1002/ejhf.2026.
    1. Ferrannini E, Baldi S, Frascerra S, Astiarraga B, Heise T, Bizzotto R, Mari A, Pieber TR, Muscelli E. Shift to fatty substrate utilization in response to sodium–glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes. 2016;65:1190–1195. doi: 10.2337/db15-1356.
    1. Shimada A, Hanafusa T, Yasui A, Lee G, Taneda Y, Sarashina A, Shiki K, George J, Soleymanlou N, Marquard J. Empagliflozin as adjunct to insulin in Japanese participants with type 1 diabetes: results of a 4-week, double-blind, randomized, placebo-controlled phase 2 trial. Diabetes Obes Metab. 2018;20:2190–2199. doi: 10.1111/dom.13351.
    1. Ferrannini E, Mark M, Mayoux E. CV protection in the EMPA-REG OUTCOME trial: a “thrifty substrate” hypothesis. Diabetes Care. 2016;39:1108–1114. doi: 10.2337/dc16-0330.
    1. Aubert G, Martin OJ, Horton JL, Lai L, Vega RB, Leone TC, Koves T, Gardell SJ, Krüger M, Hoppel CL, Lewandowski ED, Crawford PA, Muoio DM, Kelly DP. The failing heart relies on ketone bodies as a fuel. Circulation. 2016;133:698–705. doi: 10.1161/CIRCULATIONAHA.115.017355.
    1. Nielsen R, Møller N, Gormsen LC, Tolbod LP, Hansson NH, Sorensen J, Harms HJ, Frøkiær J, Eiskjaer H, Jespersen NR, Mellemkjaer S, Lassen TR, Pryds K, Bøtker HE, Wiggers H. Cardiovascular effects of treatment with the ketone body 3-hydroxybutyrate in chronic heart failure patients. Circulation. 2019;139:2129–2141. doi: 10.1161/CIRCULATIONAHA.118.036459.
    1. Mizuno Y, Harada E, Nakagawa H, Morikawa Y, Shono M, Kugimiya F, Yoshimura M, Yasue H. The diabetic heart utilizes ketone bodies as an energy source. Metabolism. 2017;77:65–72. doi: 10.1016/j.metabol.2017.08.005.
    1. Kim SR, Lee SG, Kim SH, Kim JH, Choi E, Cho W, Rim JH, Hwang I, Lee CJ, Lee M, Oh CM, Jeon JY, Gee HY, Kim JH, Lee BW, Kang ES, Cha BS, Lee MS, Yu JW, Cho JW, Kim JS, Lee YH. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat Commun. 2020;11:2127. doi: 10.1038/s41467-020-15983-6.
    1. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37:2129–2200. doi: 10.1093/eurheartj/ehw128.
    1. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine SA, Group ESD 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2021;42:3599–3726. doi: 10.1093/eurheartj/ehab368.
    1. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, Clement DL, Coca A, de Simone G, Dominiczak A, Kahan T, Mahfoud F, Redon J, Ruilope L, Zanchetti A, Kerins M, Kjeldsen SE, Kreutz R, Laurent S, Lip GYH, McManus R, Narkiewicz K, Ruschitzka F, Schmieder RE, Shlyakhto E, Tsioufis C, Aboyans V, Desormais I. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J. 2018;39:3021–3104. doi: 10.1093/eurheartj/ehy339.
    1. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, Pannier B, Vlachopoulos C, Wilkinson I, Struijker-Boudier H, Arteries obotENfN-iIoL Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–2605. doi: 10.1093/eurheartj/ehl254.
    1. Pauca AL, O’Rourke MF, Kon ND. Prospective evaluation of a method for estimating ascending aortic pressure from the radial artery pressure waveform. Hypertension. 2001;38:932–937. doi: 10.1161/hy1001.096106.
    1. Franssen PM, Imholz BP. Evaluation of the Mobil-O-graph new generation ABPM device using the ESH criteria. Blood Press Monit. 2010;15:229–231. doi: 10.1097/MBP.0b013e328339be38.
    1. Park S-H, Farooq MA, Gaertner S, Bruckert C, Qureshi AW, Lee H-H, Benrahla D, Pollet B, Stephan D, Ohlmann P, Lessinger J-M, Mayoux E, Auger C, Morel O, Schini-Kerth VB. Empagliflozin improved systolic blood pressure, endothelial dysfunction and heart remodeling in the metabolic syndrome ZSF1 rat. Cardiovasc Diabetol. 2020;19:19. doi: 10.1186/s12933-020-00997-7.
    1. Tomita I, Kume S, Sugahara S, Osawa N, Yamahara K, Yasuda-Yamahara M, Takeda N, Chin-Kanasaki M, Kaneko T, Mayoux E, Mark M, Yanagita M, Ogita H, Araki S-I, Maegawa H. SGLT2 inhibition mediates protection from diabetic kidney disease by promoting ketone body-induced mTORC1 inhibition. Cell Metab. 2020;32:404–419.e6. doi: 10.1016/j.cmet.2020.06.020.
    1. Shimizu W, Kubota Y, Hoshika Y, Mozawa K, Tara S, Tokita Y, Yodogawa K, Iwasaki Y-K, Yamamoto T, Takano H, Tsukada Y, Asai K, Miyamoto M, Miyauchi Y, Kodani E, Ishikawa M, Maruyama M, Ogano M, Tanabe J, Shiomura R, Fukuizumi I, Matsuda J, Noma S, Sangen H, Komiyama H, Imori Y, Nakamura S, Nakata J, Miyachi H, Takagi G, Todoroki T, Ikeda T, Miyakuni T, Shima A, Matsushita M, Okazaki H, Shirakabe A, Kobayashi N, Takano M, Seino Y, Nishi Y, Suzuki K, Shibuya J, Saito T, Nakano H, Taichirou M, Furuse E, Nakama K, Hosokawa Y, Tsuboi I, Kawanaka H, EMBODY Trial Investigators Effects of empagliflozin versus placebo on cardiac sympathetic activity in acute myocardial infarction patients with type 2 diabetes mellitus: the EMBODY trial. Cardiovasc Diabetol. 2020;19:148. doi: 10.1186/s12933-020-01127-z.
    1. Rosenstock J, Marquard J, Laffel LM, Neubacher D, Kaspers S, Cherney DZ, Zinman B, Skyler JS, George J, Soleymanlou N, Perkins BA. Empagliflozin as adjunctive to insulin therapy in type 1 diabetes: the EASE trials. Diabetes Care. 2018;41:2560–2569. doi: 10.2337/dc18-1749.
    1. Nishimura R, Tanaka Y, Koiwai K, Ishida K, Salsali A, Kaspers S, Kohler S, Lund SS. Effect of empagliflozin on free fatty acids and ketone bodies in Japanese patients with type 2 diabetes mellitus: a randomized controlled trial. Adv Ther. 2019;36:2769–2782. doi: 10.1007/s12325-019-01045-x.
    1. Liu J, Li L, Li S, Wang Y, Qin X, Deng K, Liu Y, Zou K, Sun X. Sodium–glucose co-transporter-2 inhibitors and the risk of diabetic ketoacidosis in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2020;22:1619–1627. doi: 10.1111/dom.14075.
    1. Ferdinand KC, Izzo JL, Lee J, Meng L, George J, Salsali A, Seman L. Antihyperglycemic and blood pressure effects of empagliflozin in black patients with type 2 diabetes mellitus and hypertension. Circulation. 2019;139:2098–2109. doi: 10.1161/CIRCULATIONAHA.118.036568.
    1. Vlachopoulos C, Aznaouridis K, O'Rourke MF, Safar ME, Baou K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with central haemodynamics: a systematic review and meta-analysis. Eur Heart J. 2010;31:1865–1871. doi: 10.1093/eurheartj/ehq024.
    1. Dadlani A, Madan K, Sawhney JPS. Ambulatory blood pressure monitoring in clinical practice. Indian Heart J. 2019;71:91–97. doi: 10.1016/j.ihj.2018.11.015.
    1. Coppola G, Natale F, Torino A, Capasso R, D'Aniello A, Pironti E, Santoro E, Calabrò R, Verrotti A. The impact of the ketogenic diet on arterial morphology and endothelial function in children and young adults with epilepsy: a case–control study. Seizure. 2014;23:260–265. doi: 10.1016/j.seizure.2013.12.002.
    1. Guo Y, Wang X, Jia P, You Y, Cheng Y, Deng H, Luo S, Huang B. Ketogenic diet aggravates hypertension via NF-κB-mediated endothelial dysfunction in spontaneously hypertensive rats. Life Sci. 2020;258:118124. doi: 10.1016/j.lfs.2020.118124.
    1. Jain SK, McVie R, Bocchini JA., Jr Hyperketonemia (ketosis), oxidative stress and type 1 diabetes. Pathophysiology. 2006;13:163–170. doi: 10.1016/j.pathophys.2006.05.005.
    1. Bush VJ, Smola C, Schmitt P. Evaluation of the Beckman Coulter DxC 700 AU chemistry analyzer. Pract Lab Med. 2020;18:e00148. doi: 10.1016/j.plabm.2019.e00148.
    1. Johnston C, Tjonn S, Swan P, White A, Hutchins-Wiese H, Sears B. Ketogenic low-carbohydrate diets have no metabolic advantage over nonketogenic low-carbohydrate diets. Am J Clin Nutr. 2006;83:1055–1061. doi: 10.1093/ajcn/83.5.1055.

Source: PubMed

3
Abonnere