Genetic diversity of coronaviruses in bats in Lao PDR and Cambodia

Audrey Lacroix, Veasna Duong, Vibol Hul, Sorn San, Hull Davun, Keo Omaliss, Sokha Chea, Alexandre Hassanin, Watthana Theppangna, Soubanh Silithammavong, Kongsy Khammavong, Sinpakone Singhalath, Zoe Greatorex, Amanda E Fine, Tracey Goldstein, Sarah Olson, Damien O Joly, Lucy Keatts, Philippe Dussart, Aneta Afelt, Roger Frutos, Philippe Buchy, Audrey Lacroix, Veasna Duong, Vibol Hul, Sorn San, Hull Davun, Keo Omaliss, Sokha Chea, Alexandre Hassanin, Watthana Theppangna, Soubanh Silithammavong, Kongsy Khammavong, Sinpakone Singhalath, Zoe Greatorex, Amanda E Fine, Tracey Goldstein, Sarah Olson, Damien O Joly, Lucy Keatts, Philippe Dussart, Aneta Afelt, Roger Frutos, Philippe Buchy

Abstract

South-East Asia is a hot spot for emerging zoonotic diseases, and bats have been recognized as hosts for a large number of zoonotic viruses such as Severe Acute Respiratory Syndrome (SARS), responsible for acute respiratory syndrome outbreaks. Thus, it is important to expand our knowledge of the presence of viruses in bats which could represent a risk to humans. Coronaviruses (CoVs) have been reported in bat species from Thailand, China, Indonesia, Taiwan and the Philippines. However no such work was conducted in Cambodia or Lao PDR. Between 2010 and 2013, 1965 bats were therefore sampled at interfaces with human populations in these two countries. They were tested for the presence of coronavirus by consensus reverse transcription-PCR assay. A total of 93 samples (4.7%) from 17 genera of bats tested positive. Sequence analysis revealed the presence of potentially 37 and 56 coronavirus belonging to alpha-coronavirus (αCoV) and beta-CoV (βCoV), respectively. The βCoVs group is known to include some coronaviruses highly pathogenic to human, such as SARS-CoV and MERS-CoV. All coronavirus sequences generated from frugivorous bats (family Pteropodidae) (n=55) clustered with other bat βCoVs of lineage D, whereas one coronavirus from Pipistrellus coromandra fell in the lineage C of βCoVs which also includes the MERS-CoV. αCoVs were all detected in various genera of insectivorous bats and clustered with diverse bat αCoV sequences previously published. A closely related strain of PEDV, responsible for severe diarrhea in pigs (PEDV-CoV), was detected in 2 Myotis bats. We highlighted the presence and the high diversity of coronaviruses circulating in bats from Cambodia and Lao PDR. Three new bat genera and species were newly identified as host of coronaviruses, namely Macroglossus sp., Megaerops niphanae and Myotis horsfieldii.

Keywords: Bats; Cambodia; Coronaviruses; Genetic diversity; Lao PDR.

Copyright © 2016 Elsevier B.V. All rights reserved.

Figures

Graphical abstract
Graphical abstract
Fig. 1
Fig. 1
Phylogenetic analysis of coronavirus sequences based on a 320 nucleotides fragment on the RdRp gene. The tree was constructed using a Maximum Likelihood method with the GTR + G + I model. Bootstrap values (BP) were calculated after 1000 replicates. Tree is rooted to an avian coronavirus (FJ376622). The sequences detected in this study are shown with a bullet. Accession numbers related to the sequences are presented in Supplementary Table 1. The tree was constructed using a Maximum Likelihood method with the GTR + G + I model. Bootstrap values (BP) were calculated after 1000 replicates. Tree is rooted to an avian coronavirus (FJ376622). The sequences detected in this study are shown with a bullet. Accession numbers related to the sequences are presented in Supplementary Table 1.
Fig. 2
Fig. 2
Sequence analysis of 1370 nucleic acid fragments of the RdRp gene of coronavirus sequences. The tree was constructed using a Maximum Likelihood method with the GTR + G + I model. Boostrap values (BP) were calculated after 1000 replicates. Tree is rooted to an avian coronavirus (FJ376622). The sequences detected in this study are shown with a bullet. Accession numbers related to the sequences are presented in Supplementary Table 1. The tree was constructed using a Maximum Likelihood method with the GTR + G + I model. Boostrap values (BP) were calculated after 1000 replicates. Tree is rooted to an avian coronavirus (FJ376622). The sequences detected in this study are shown with a bullet. Accession numbers related to the sequences are presented in Supplementary Table 1.
Supplementary Fig. 2
Supplementary Fig. 2
Distribution of coronavirus sequences based on a 115 amino acid fragment encoded by the RdRp gene. The tree was constructed by neighbor joining and bootstrap values were determined by 1000 replicates. The tree is rooted to an avian coronavirus (FJ376622). The sequences detected in this study are shown with a bullet. Accession numbers related to the sequences are presented in Supplementary Table 1.
Supplementary Fig. 3
Supplementary Fig. 3
Distribution of coronavirus sequences based on a 115 amino acid fragment encoded by the RdRp gene. The tree was constructed by neighbor joining and bootstrap values were determined by 1000 replicates. The tree is rooted to an avian coronavirus (FJ376622). Bootstrap values (BP) were calculated after 1000 replicates. The sequences detected in this study are shown with a bullet. Accession numbers related to the sequences are presented in Supplementary Table 1.

References

    1. Alsahafi A.J., Cheng A.C. The epidemiology of Middle East respiratory syndrome coronavirus in the Kingdom of Saudi Arabia, 2012–2015. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2016;45:1–4.
    1. Amengual B., Bourhy H., López-Roig M., Serra-Cobo J. Temporal dynamics of European bat Lyssavirus type 1 and survival of Myotis myotis bats in natural colonies. PLoS One. 2007;2
    1. Amman B.R., Carroll S.A., Reed Z.D., Sealy T.K., Balinandi S., Swanepoel R., Kemp A., Erickson B.R., Comer J.A., Campbell S., Cannon D.L., Khristova M.L., Atimnedi P., Paddock C.D., Crockett R.J.K., Flietstra T.D., Warfield K.L., Unfer R., Katongole-Mbidde E., Downing R., Tappero J.W., Zaki S.R., Rollin P.E., Ksiazek T.G., Nichol S.T., Towner J.S. Seasonal pulses of Marburg virus circulation in juvenile Rousettus aegyptiacus bats coincide with periods of increased risk of human infection. PLoS Pathog. 2012;8
    1. Anindita P.D., Sasaki M., Setiyono A., Handharyani E., Orba Y., Kobayashi S., Rahmadani I., Taha S., Adiani S., Subangkit M., Nakamura I., Sawa H., Kimura T. Detection of coronavirus genomes in Moluccan naked-backed fruit bats in Indonesia. Arch. Virol. 2015;60:1113–1118.
    1. Annan A., Baldwin H.J., Corman V.M., Klose S.M., Owusu M., Nkrumah E.E., Badu E.K., Anti P., Agbenyega O., Meyer B., Oppong S., Sarkodie Y.A., Kalko E.K.V., Lina P.H.C., Godlevska E.V., Reusken C., Seebens A., Gloza-Rausch F., Vallo P., Tschapka M., Drosten C., Drexler J.F. Human betacoronavirus 2c EMC/2012–related viruses in bats, Ghana and Europe. Emerg. Infect. Dis. 2013;19:456–459.
    1. August T.A., Mathews F., Nunn M.A. Alphacoronavirus detected in bats in the United Kingdom. Vector Borne Zoonotic Dis. 2012;12:530–533.
    1. Banyard A.C., Evans J.S., Luo T.R., Fooks A.R. Lyssaviruses and bats: emergence and zoonotic threat. Viruses. 2014;6:2974–2990.
    1. Belouzard S., Millet J.K., Licitra B.N., Whittaker G.R. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses. 2012;4:1011–1033.
    1. Bengis R.G., Leighton F.A., Fischer J.R., Artois M., Mörner T., Tate C.M. The role of wildlife in emerging and re-emerging zoonoses. Rev. Sci. Tech. - Off. Int. Épizooties. 2004;23:497–511.
    1. Brierley L., Vonhof M.J., Olival K.J., Daszak P., Jones K.E. Quantifying global drivers of zoonotic bat viruses: a process-based perspective. Am. Nat. 2016;187:E53–E64.
    1. Broadhead J., Izquierdo R. FAO-Regional Office for Asia and the Pacific; Thailand: 2010. Assessment of Land Use, Forest Policy and Governance in Cambodia.
    1. Brook C.E., Dobson A.P. Bats as “special” reservoirs for emerging zoonotic pathogens. Trends Microbiol. 2015;23:172–180.
    1. Centers for Disease Control and Prevention (CDC) Update: outbreak of severe acute respiratory syndrome—worldwide, 2003. MMWR Morb. Mortal. Wkly. Rep. 2003;52:269–272.
    1. Chen Y.-N., Phuong V.N., Chen H.C., Chou C.-H., Cheng H.-C., Wu C.-H. Zoonoses Public Health; 2016. Detection of the Severe Acute Respiratory Syndrome-Related Coronavirus and Alphacoronavirus in the Bat Population of Taiwan.
    1. Choi J.Y. An outbreak of Middle East respiratory syndrome coronavirus infection in South Korea, 2015. Yonsei Med. J. 2015;56:1174–1176.
    1. Chu D.K.W., Poon L.L.M., Chan K.H., Chen H., Guan Y., Yuen K.Y., Peiris J.S.M. Coronaviruses in bent-winged bats (Miniopterus spp.) J. Gen. Virol. 2006;87:2461–2466.
    1. Chu D.K.W., Peiris J.S.M., Chen H., Guan Y., Poon L.L.M. Genomic characterizations of bat coronaviruses (1A, 1B and HKU8) and evidence for co-infections in Miniopterus bats. J. Gen. Virol. 2008;89:1282–1287.
    1. Chua K.B., Bellini W.J., Rota P.A., Harcourt B.H., Tamin A., Lam S.K., Ksiazek T.G., Rollin P.E., Zaki S.R., Shieh W., Goldsmith C.S., Gubler D.J., Roehrig J.T., Eaton B., Gould A.R., Olson J., Field H., Daniels P., Ling A.E., Peters C.J., Anderson L.J., Mahy B.W. Nipah virus: a recently emergent deadly paramyxovirus. Science. 2000;288:1432–1435.
    1. Corman V.M., Ithete N.L., Richards L.R., Schoeman M.C., Preiser W., Drosten C., Drexler J.F. Rooting the phylogenetic tree of Middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat. J. Virol. 2014;88:11297–11303.
    1. Corman V.M., Baldwin H.J., Tateno A.F., Zerbinati R.M., Annan A., Owusu M., Nkrumah E.E., Maganga G.D., Oppong S., Adu-Sarkodie Y., Vallo P., da Silva Filho L.V.R.F., Leroy E.M., Thiel V., van der Hoek L., Poon L.L.M., Tschapka M., Drosten C., Drexler J.F. Evidence for an ancestral association of human coronavirus 229E with bats. J. Virol. 2015;89:11858–11870.
    1. Dominguez S.R., O'Shea T.J., Oko L.M., Holmes K.V. Detection of group 1 coronaviruses in bats in North America. Emerg. Infect. Dis. 2007;13:1295–1300.
    1. Drexler J.F., Gloza-Rausch F., Glende J., Corman V.M., Muth D., Goettsche M., Seebens A., Niedrig M., Pfefferle S., Yordanov S., Zhelyazkov L., Hermanns U., Vallo P., Lukashev A., Müller M.A., Deng H., Herrler G., Drosten C. Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. J. Virol. 2010;84:11336–11349.
    1. Fischer K., Zeus V., Kwasnitschka L., Kerth G., Haase M., Groschup M.H., Balkema-Buschmann A. Insectivorous bats carry host specific astroviruses and coronaviruses across different regions in Germany. Infect. Genet. Evol. 2016;37:108–116.
    1. George D.B., Webb C.T., Farnsworth M.L., O'Shea T.J., Bowen R.A., Smith D.L., Stanley T.R., Ellison L.E., Rupprecht C.E. Host and viral ecology determine bat rabies seasonality and maintenance. Proc. Natl. Acad. Sci. U. S. A. 2011;108:10208–10213.
    1. Gloza-Rausch F., Ipsen A., Seebens A., Göttsche M., Panning M., Drexler J.F., Petersen N., Annan A., Grywna K., Müller M., Pfefferle S., Drosten C. Detection and prevalence patterns of group I coronaviruses in bats, northern Germany. Emerg. Infect. Dis. 2008;14:626–631.
    1. Gouilh M.A., Puechmaille S.J., Gonzalez J.-P., Teeling E., Kittayapong P., Manuguerra J.-C. SARS-coronavirus ancestor's foot-prints in South-East Asian bat colonies and the refuge theory. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2011;11:1690–1702.
    1. Gouy M., Guindon S., Gascuel O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 2010;27:221–224.
    1. Halpin K., Young P.L., Field H.E., Mackenzie J.S. Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus. J. Gen. Virol. 2000;81:1927–1932.
    1. Han H.-J., Wen H., Zhou C.-M., Chen F.-F., Luo L.-M., Liu J., Yu X.-J. Bats as reservoirs of severe emerging infectious diseases. Virus Res. 2015;205:1–6.
    1. Hayman D.T.S. Biannual birth pulses allow filoviruses to persist in bat populations. Proc. Biol. Sci. 2015;282:20142591.
    1. He B., Zhang Y., Xu L., Yang W., Yang F., Feng Y., Guo H., Zhang H., Tu C. Identification of diverse alphacoronaviruses and genomic characterization of a novel severe acute respiratory syndrome-like coronavirus from bats in China. J. Virol. 2014;88:7070–7082.
    1. Huang Y.-W., Dickerman A.W., Pineyro P., Li L., Fang L., Kiehne R., Opriessnig T., Meng X.-J. Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States. mBio. 2013;4:5.
    1. Jung K., Threlfall C.G. Urbanisation and its effects on bats—a global meta-analysis. In: Voigt C.C., Kingston T., editors. Bats in the Anthropocene: Conservation of Bats in a Changing World. Springer International Publishing; 2016. pp. 13–33.
    1. Kemenesi G., Dallos B., Görföl T., Boldogh S., Estók P., Kurucz K., Kutas A., Földes F., Oldal M., Németh V., Martella V., Bányai K., Jakab F. Molecular survey of RNA viruses in hungarian bats: discovering novel astroviruses, coronaviruses, and caliciviruses. Vector Borne Zoonotic Dis. Larchmt. N. 2014;14:846–855.
    1. Kim H.K., Yoon S.-W., Kim D.-J., Koo B.-S., Noh J.Y., Kim J.H., Choi Y.G., Na W., Chang K.-T., Song D., Jeong D.G. Detection of severe acute respiratory syndrome-like, Middle East respiratory syndrome-like bat coronaviruses and group H rotavirus in faeces of Korean bats. Transbound. Emerg. Dis. 2016;63:365–372.
    1. King A.M.Q., Adams M.J., Lefkowitz E.J., Carstens E.B. Elsevier; 2012. Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses.
    1. Kingston T. Response of bat diversity to forest disturbance in Southeast Asia: insights from long-term research in Malaysia. In: Adams R.A., Pedersen S.C., editors. Bat Evolution, Ecology, and Conservation. Springer New York; 2013. pp. 169–185.
    1. Lau S.K.P., Woo P.C.Y., Li K.S.M., Huang Y., Wang M., Lam C.S.F., Xu H., Guo R., Chan K.-H., Zheng B.-J., Yuen K.-Y. Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome. Virology. 2007;367:428–439.
    1. Lau S.K.P., Poon R.W.S., Wong B.H.L., Wang M., Huang Y., Xu H., Guo R., Li K.S.M., Gao K., Chan K.-H., Zheng B.-J., Woo P.C.Y., Yuen K.-Y. Coexistence of different genotypes in the same bat and serological characterization of Rousettus bat coronavirus HKU9 belonging to a novel betacoronavirus subgroup. J. Virol. 2010;84:11385–11394.
    1. Lau S.K.P., Li K.S.M., Tsang A.K.L., Shek C.-T., Wang M., Choi G.K.Y., Guo R., Wong B.H.L., Poon R.W.S., Lam C.S.F., Wang S.Y.H., Fan R.Y.Y., Chan K.-H., Zheng B.-J., Woo P.C.Y., Yuen K.-Y. Recent transmission of a novel alphacoronavirus, bat coronavirus HKU10, from Leschenault's rousettes to Pomona leaf-nosed bats: first evidence of interspecies transmission of coronavirus between bats of different suborders. J. Virol. 2012;86:11906–11918.
    1. Lee T.M., Sigouin A., Pinedo-Vasquez M., Nasi R. Center for International Forestry Research (CIFOR) 2014. The harvest of wildlife for bushmeat and traditional medicine in East, South and Southeast Asia: current knowledge base, challenges, opportunities and areas for future research. (Bogor, Indonesia)
    1. Leroy E.M., Epelboin A., Mondonge V., Pourrut X., Gonzalez J.-P., Muyembe-Tamfum J.-J., Formenty P. Human Ebola outbreak resulting from direct exposure to fruit bats in Luebo, Democratic Republic of Congo, 2007. Vector-Borne Zoonotic Dis. 2009;9:723–728.
    1. Leroy E., Kumulungui B., Pourrut X., Rouquet P., Hassanin A., Yaba P., Délicat A., Paweska J., Gonzalez J.-P., Swanepoel R. Fruit bats as reservoirs of Ebola virus. Nature. 2005;438:575–576.
    1. Li W., Zhang C., Sui J., Kuhn J.H., Moore M.J., Luo S., Wong S.-K., Huang I.-C., Xu K., Vasilieva N., Murakami A., He Y., Marasco W.A., Guan Y., Choe H., Farzan M. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J. 2005;24:1634–1643.
    1. Looi L.-M., Chua K.-B. Lessons from the Nipah virus outbreak in Malaysia. Malays. J. Pathol. 2007;29:63–67.
    1. Masters P.S. The molecular biology of coronaviruses. Adv. Virus Res. 2006;66:193–292.
    1. Matveev V.A. Checklist of Cambodian bats (Chiroptera), with new records and remarks on taxonomy. Russ. J. Theriology. 2005;1:43–62.
    1. Mickleburgh S., Waylen K., Racey P. Bats as bushmeat: a global review. Oryx. 2009;43:217–234.
    1. Middleton D.J., Morrissy C.J., van der Heide B.M., Russell G.M., Braun M.A., Westbury H.A., Halpin K., Daniels P.W. Experimental Nipah virus infection in pteropid bats (Pteropus poliocephalus) J. Comp. Pathol. 2007;136:266–272.
    1. Mildenstein T., Tanshi I., Racey P.A. Exploitation of bats for bushmeat and medicine. In: Voigt C.C., Kingston T., editors. Bats in the Anthropocene: Conservation of Bats in a Changing World. Springer International Publishing; 2016. pp. 325–375.
    1. Munster V.J., Adney D.R., van Doremalen N., Brown V.R., Miazgowicz K.L., Milne-Price S., Bushmaker T., Rosenke R., Scott D., Hawkinson A., de Wit E., Schountz T., Bowen R.A. Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis) Sci. Rep. 2016;6:21878.
    1. National Geomatics Center of China (NGCC) 2014. 30 meter Global Land Cover Dataset, Product description. .
    1. Omatsu T., Watanabe S., Akashi H., Yoshikawa Y. Biological characters of bats in relation to natural reservoir of emerging viruses. Comp. Immunol. Microbiol. Infect. Dis. 2007;30:357–374. Special Issue: Recent research progress on emerging infectious diseases in Asia and Oceania.
    1. Osborne C., Cryan P.M., O'Shea T.J., Oko L.M., Ndaluka C., Calisher C.H., Berglund A.D., Klavetter M.L., Bowen R.A., Holmes K.V., Dominguez S.R. Alphacoronaviruses in new world bats: prevalence, persistence, phylogeny, and potential for interaction with humans. PLoS One. 2011;6
    1. Peiris J.S.M., Lai S.T., Poon L.L.M., Guan Y., Yam L.Y.C., Lim W., Nicholls J., Yee W.K.S., Yan W.W., Cheung M.T., Cheng V.C.C., Chan K.H., Tsang D.N.C., Yung R.W.H., Ng T.K., Yuen K.Y., SARS study group Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003;361:1319–1325.
    1. Plowright R.K., Field H.E., Smith C., Divljan A., Palmer C., Tabor G., Daszak P., Foley J.E. Reproduction and nutritional stress are risk factors for Hendra virus infection in little red flying foxes (Pteropus scapulatus) Proc. Biol. Sci. 2008;275:861–869.
    1. Razanajatovo N.H., Nomenjanahary L.A., Wilkinson D.A., Razafimanahaka J.H., Goodman S.M., Jenkins R.K., Jones J.P., Heraud J.-M. Detection of new genetic variants of betacoronaviruses in endemic frugivorous bats of Madagascar. Virol. J. 2015;12:42.
    1. Reusken C.B.E.M., Lina P.H.C., Pielaat A., de Vries A., Dam-Deisz C., Adema J., Drexler J.F., Drosten C., Kooi E.A. Circulation of group 2 coronaviruses in a bat species common to urban areas in western Europe. Vector Borne Zoonotic Dis. Larchmt. N. 2010;10:785–791.
    1. Reusken C.B., Raj V.S., Koopmans M.P., Haagmans B.L. Cross host transmission in the emergence of MERS coronavirus. Curr. Opin. Virol. 2016;16:55–62.
    1. Sarak C., Bates P.J., Boughey K., Csorba G., Hayes B., Saveng I.T.H., Mould A., Sophany P., Furey N.M. Further new country records of four bat species (Chiroptera) from Cambodia and a call for information. Cambodian J. Nat. Hist. 2013;2:73–82.
    1. Serra-Cobo J., López-Roig M., Seguí M., Sánchez L.P., Nadal J., Borrás M., Lavenir R., Bourhy H. Ecological factors associated with European bat lyssavirus seroprevalence in Spanish bats. PLoS One. 2013;8
    1. Simas P.V.M., Barnabé A.C.d.S., Durães-Carvalho R., Neto D.F.d.L., Caserta L.C., Artacho L., Jacomassa F.A.F., Martini M.C., Bianchi dos Santos M.M.A., Felippe P.A.N., Ferreira H.L., Arns C.W. Bat coronavirus in Brazil related to Appalachian ridge and porcine epidemic diarrhea viruses. Emerg. Infect. Dis. 2015;21:729–731.
    1. Song D., Park B. Porcine epidemic diarrhoea virus: a comprehensive review of molecular epidemiology, diagnosis, and vaccines. Virus Genes. 2012;44:167–175.
    1. Stibig H.J., Stolle F., Dennis R., Feldkötter C. Forest cover change in Southeast Asia—the regional pattern. JRC Sci. Tech. Rep. EUR. 2007;22896
    1. Tang X.C., Zhang J.X., Zhang S.Y., Wang P., Fan X.H., Li L.F., Li G., Dong B.Q., Liu W., Cheung C.L., Xu K.M., Song W.J., Vijaykrishna D., Poon L.L.M., Peiris J.S.M., Smith G.J.D., Chen H., Guan Y. Prevalence and genetic diversity of coronaviruses in bats from China. J. Virol. 2006;80:7481–7490.
    1. Teeling E.C., Springer M.S., Madsen O., Bates P., O'brien S.J., Murphy W.J. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science. 2005;307:580–584.
    1. Thi S., Furey N.M., Jurgens J.A. Effect of bat guano on the growth of five economically important plant species. J. Trop. Agric. 2014;52:169–173.
    1. Tsuda S., Watanabe S., Masangkay J.S., Mizutani T., Alviola P., Ueda N., Iha K., Taniguchi S., Fujii H., Kato K., Horimoto T., Kyuwa S., Yoshikawa Y., Akashi H. Genomic and serological detection of bat coronavirus from bats in the Philippines. Arch. Virol. 2012;157:2349–2355.
    1. Turmelle A.S., Olival K.J. Correlates of viral richness in bats (order Chiroptera) EcoHealth. 2009;6:522–539.
    1. Wacharapluesadee S., Boongird K., Wanghongsa S., Ratanasetyuth N., Supavonwong P., Saengsen D., Gongal G.N., Hemachudha T. A longitudinal study of the prevalence of Nipah virus in Pteropus lylei bats in Thailand: evidence for seasonal preference in disease transmission. Vector Borne Zoonotic Dis. Larchmt. N. 2010;10:183–190.
    1. Wacharapluesadee S., Sintunawa C., Kaewpom T., Khongnomnan K., Olival K.J., Epstein J.H., Rodpan A., Sangsri P., Intarut N., Chindamporn A., Suksawa K., Hemachudha T. Group C betacoronavirus in bat guano fertilizer, Thailand. Emerg. Infect. Dis. 2013;19:1349–1351.
    1. Wacharapluesadee S., Duengkae P., Rodpan A., Kaewpom T., Maneeorn P., Kanchanasaka B., Yingsakmongkon S., Sittidetboripat N., Chareesaen C., Khlangsap N., Pidthong A., Leadprathom K., Ghai S., Epstein J.H., Daszak P., Olival K.J., Blair P.J., Callahan M.V., Hemachudha T. Diversity of coronavirus in bats from eastern Thailand. Virol. J. 2015;12:57.
    1. Wang L.-F., Shi Z., Zhang S., Field H., Daszak P., Eaton B.T. Review of bats and SARS. Emerg. Infect. Dis. 2006;12:1834–1840.
    1. Wang Q., Qi J., Yuan Y., Xuan Y., Han P., Wan Y., Ji W., Li Y., Wu Y., Wang J., Iwamoto A., Woo P.C.Y., Yuen K.-Y., Yan J., Lu G., Gao G.F. Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26. Cell Host Microbe. 2014;16:328–337.
    1. Watanabe S., Masangkay J.S., Nagata N., Morikawa S., Mizutani T., Fukushi S., Alviola P., Omatsu T., Ueda N., Iha K., Taniguchi S., Fujii H., Tsuda S., Endoh M., Kato K., Tohya Y., Kyuwa S., Yoshikawa Y., Akashi H. Bat coronaviruses and experimental infection of bats, the Philippines. Emerg. Infect. Dis. 2010;16:1217–1223.
    1. Weiss S.R., Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol. Mol. Biol. Rev. MMBR. 2005;69:635–664.
    1. Woo P.C.Y., Lau S.K.P., Li K.S.M., Poon R.W.S., Wong B.H.L., Tsoi H., Yip B.C.K., Huang Y., Chan K., Yuen K. Molecular diversity of coronaviruses in bats. Virology. 2006;351:180–187.
    1. Woo P.C.Y., Wang M., Lau S.K.P., Xu H., Poon R.W.S., Guo R., Wong B.H.L., Gao K., Tsoi H.-W., Huang Y., Li K.S.M., Lam C.S.F., Chan K.-H., Zheng B.-J., Yuen K.-Y. Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features. J. Virol. 2007;81:1574–1585.
    1. Woo P.C.Y., Lau S.K.P., Lam C.S.F., Lai K.K.Y., Huang Y., Lee P., Luk G.S.M., Dyrting K.C., Chan K.-H., Yuen K.-Y. Comparative analysis of complete genome sequences of three avian coronaviruses reveals a novel group 3c coronavirus. J. Virol. 2009;83:908–917.
    1. Woo P.C.Y., Lau S.K.P., Lam C.S.F., Lau C.C.Y., Tsang A.K.L., Lau J.H.N., Bai R., Teng J.L.L., Tsang C.C.C., Wang M., Zheng B.-J., Chan K.-H., Yuen K.-Y. Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J. Virol. 2012;86:3995–4008.
    1. WWF . Bangkok, Thailand; World Wide Fund For Nature, Greater Mekong: 2013. Ecosystems in the Greater Mekong: Past Trends, Current Status, Possible Futures.
    1. Xu R.-H., He J.-F., Evans M.R., Peng G.-W., Field H.E., Yu D.-W., Lee C.-K., Luo H.-M., Lin W.-S., Lin P., Li L.-H., Liang W.-J., Lin J.-Y., Schnur A. Epidemiologic clues to SARS origin in China. Emerg. Infect. Dis. 2004;10:1030–1038.
    1. Xu L., Zhang F., Yang W., Jiang T., Lu G., He B., Li X., Hu T., Chen G., Feng Y., Zhang Y., Fan Q., Feng J., Zhang H., Tu C. Detection and characterization of diverse alpha- and betacoronaviruses from bats in China. Virol. Sin. 2016;31:69–77.
    1. Young P.L., Halpin K., Selleck P.W., Field H., Gravel J.L., Kelly M.A., Mackenzie J.S. Serologic evidence for the presence in Pteropus bats of a paramyxovirus related to equine morbillivirus. Emerg. Infect. Dis. 1996;2:239–240.

Source: PubMed

3
Abonnere