Tuning pathological brain oscillations with neurofeedback: a systems neuroscience framework

Tomas Ros, Bernard J Baars, Ruth A Lanius, Patrik Vuilleumier, Tomas Ros, Bernard J Baars, Ruth A Lanius, Patrik Vuilleumier

Abstract

Neurofeedback (NFB) is emerging as a promising technique that enables self-regulation of ongoing brain oscillations. However, despite a rise in empirical evidence attesting to its clinical benefits, a solid theoretical basis is still lacking on the manner in which NFB is able to achieve these outcomes. The present work attempts to bring together various concepts from neurobiology, engineering, and dynamical systems so as to propose a contemporary theoretical framework for the mechanistic effects of NFB. The objective is to provide a firmly neurophysiological account of NFB, which goes beyond traditional behaviorist interpretations that attempt to explain psychological processes solely from a descriptive standpoint whilst treating the brain as a "black box". To this end, we interlink evidence from experimental findings that encompass a broad range of intrinsic brain phenomena: starting from "bottom-up" mechanisms of neural synchronization, followed by "top-down" regulation of internal brain states, moving to dynamical systems plus control-theoretic principles, and concluding with activity-dependent as well as homeostatic forms of brain plasticity. In support of our framework, we examine the effects of NFB in several brain disorders, including attention-deficit hyperactivity (ADHD) and post-traumatic stress disorder (PTSD). In sum, it is argued that pathological oscillations emerge from an abnormal formation of brain-state attractor landscape(s). The central thesis put forward is that NFB tunes brain oscillations toward a homeostatic set-point which affords an optimal balance between network flexibility and stability (i.e., self-organised criticality (SOC)).

Keywords: brain computer interface (BCI); brain disorders; brain plasticity; criticality; electroencephalography (EEG); magnetoencephalography (MEG); neurofeedback; neuromodulation.

Figures

Figure 1
Figure 1
The generation of electroencephalogram (EEG) network oscillations. EEG signals are generated by the integration of neural activity at multiple spatial (A) and temporal (B) scales. After Le Van Quyen (2011).
Figure 2
Figure 2
Control of EEG (de)synchronization via shifts in intrinsic brain state. Here, a recurrent functional circuit subserving top-down attention is triggered by neocortical structures (black lines; frontal-eye fields (FEF); visual cortices (V1/V4), and reinforced by ascending neuromodulatory pathways (blue/green/red). Adapted with permission from Harris and Thiele (2011).
Figure 3
Figure 3
EEG spectral signatures of healthy and psychiatric populations. (Panel A) Mean (± SEM) EEG power spectra of healthy control subjects (red) and psychiatric patients (blue). (Panel B) Mean subgroup spectra for controls (CON) (red, n = 18), schizophrenia spectrum disorder (SSD) (purple, n = 14), obsessive-compulsive disorder (OCD) (green, n = 10), depression disorder (DD) (light blue, n = 5). From Schulman et al. (2011).
Figure 4
Figure 4
A visual portrayal of state-space landscapes.(A) A hill and valley representation of a repellor (left) and an attractor (right); (B) the shallow attractor (left) has a shorter dwell-time than the deeper attractor (right); (C) a multi-attractor landscape exhibiting multistability; (D) EEG state transitions during sleep-wake activity in the rat, comprising of whisker twitching (WT), active exploration (AE), quiet wake (QW), rapid-eye movement (REM), slow-wave sleep (SWS), intermediate stage (IS). From Gervasoni et al. (2004).
Figure 5
Figure 5
Phase-space dynamical plots of EEG rhythms during sleep. Attractor-like (limit cycle) shapes are more pronounced for alpha (A) and delta rhythms (C), compared to the beta rhythm (B). From Pradhan et al. (1995).
Figure 6
Figure 6
A prototypical closed-loop control circuit. The circuit consists of a Controller (green) which regulates the control parameter until the output of the System (blue), measured by the Sensor (red), matches the internal reference value, or set-point (±).
Figure 7
Figure 7
Attractor landscape pre-post therapeutic stimulation. (A) Before stimulation, both the pathological state (strong weights, high neuronal synchronization) and the healthy state (weak weights, low neuronal synchronization) are stable, i.e., they are local minima of an abstract energy function. (B) During stimulation, the pathological state becomes unstable and the network is driven towards the healthy state. After stimulation has stopped, the network stays in the healthy state. From Pfister and Tass (2010).
Figure 8
Figure 8
Short-term Hebbian plasticity following neurofeedback (NFB). Scatter-plot of mean alpha amplitude change across electrodes during feedback vs. resting state (post-feedback), for NFB (A) and SHAM (B) groups. The anatomical location of each subgroup of electrodes is represented by a different color (see legend). *p < 0.05, **p < 0.01. From Ros et al. (2013).
Figure 9
Figure 9
Long-term Hebbian plasticity following neurofeedback (NFB). Theta oscillation amplitude vs. ADHD clinical score change. (A) Change of total ADHD score vs. post-NFB change of theta activity. (B) Change of total ADHD score vs. pre-NFB theta activity (baseline). From Gevensleben et al. (2009).
Figure 10
Figure 10
Homeostatic “rebound” following desynchronizing neurofeedback (NFB). Left: mean (±SEM) global alpha amplitude in PTSD patients: before (Baseline 1), during (Neurofeedback), and right after neurofeedback (Baseline 2). Right: Topographic plot of mean alpha amplitude change during neurofeedback (NFB), relative to resting-state (Baseline 1). *p < 0.05, ** P < 0.005. From Kluetsch et al. (2014).

References

    1. Abraham W. C. (2008). Metaplasticity: tuning synapses and networks for plasticity. Nat. Rev. Neurosci. 9:387. 10.1038/nrn2356
    1. Adamchic I., Toth T., Hauptmann C., Tass P. A. (2014). Reversing pathologically increased EEG power by acoustic coordinated reset neuromodulation. Hum. Brain Mapp. 35, 2099–2118. 10.1002/hbm.22314
    1. Akam T. E., Kullmann D. M. (2012). Efficient “communication through coherence” requires oscillations structured to minimize interference between signals. PLoS Comput. Biol. 8:e1002760. 10.1371/journal.pcbi.1002760
    1. Angelakis E., Stathopoulou S., Frymiare J. L., Green D. L., Lubar J. F., Kounios J. (2007). EEG neurofeedback: a brief overview and an example of peak alpha frequency training for cognitive enhancement in the elderly. Clin. Neuropsychol. 21, 110–129. 10.1080/13854040600744839
    1. Arns M., de Ridder S., Strehl U., Breteler M., Coenen A. (2009). Efficacy of neurofeedback treatment in ADHD: the effects on inattention, impulsivity and hyperactivity: a meta-analysis. Clin. EEG Neurosci. 40, 180–189. 10.1177/155005940904000311
    1. Arns M., Gunkelman J., Breteler M., Spronk D. (2008). EEG phenotypes predict treatment outcome to stimulants in children with ADHD. J. Integr. Neurosci. 7, 421–438. 10.1142/s0219635208001897
    1. Avella Gonzalez O. J., van Aerde K. I., van Elburg R. A. J., Poil S.-S., Mansvelder H. D., Linkenkaer-Hansen K., et al. . (2012). External drive to inhibitory cells induces alternating episodes of high- and low-amplitude oscillations. PLoS Comput. Biol. 8:e1002666. 10.1371/journal.pcbi.1002666
    1. Baars B. J. (1988). A Cognitive Theory of Consciousness. Cambridge: Cambridge University Press.
    1. Baars B. J., Franklin S., Ramsoy T. Z. (2013). Global workspace dynamics: cortical “binding and propagation” enables conscious contents. Front. Psychol. 4:200. 10.3389/fpsyg.2013.00200
    1. Babiloni C., Frisoni G. B., Pievani M., Vecchio F., Lizio R., Buttiglione M., et al. . (2009). Hippocampal volume and cortical sources of EEG alpha rhythms in mild cognitive impairment and Alzheimer disease. Neuroimage 44, 123–135. 10.1016/j.neuroimage.2008.08.005
    1. Bai O., Huang D., Fei D.-Y., Kunz R. (2014). Effect of real-time cortical feedback in motor imagery-based mental practice training. NeuroRehabilitation 34, 355–363. 10.3233/NRE-131039
    1. Bak P., Tang C., Wiesenfeld K. (1987). Self-organized criticality: an explanation of the 1/f noise. Phys. Rev. Lett. 59, 381–384. 10.1103/physrevlett.59.381
    1. Baker A. P., Brookes M. J., Rezek I. A., Smith S. M., Behrens T., Probert Smith P. J., et al. . (2014). Fast transient networks in spontaneous human brain activity. Elife 3:e01867. 10.7554/elife.01867
    1. Basso D., Olivetti Belardinelli M. (2006). The role of the feedforward paradigm in cognitive psychology. Cogn. Process. 7, 73–88. 10.1007/s10339-006-0034-1
    1. Bauer M., Kluge C., Bach D., Bradbury D., Heinze H. J., Dolan R. J., et al. . (2012). Cholinergic enhancement of visual attention and neural oscillations in the human brain. Curr. Biol. 22, 397–402. 10.1016/j.cub.2012.01.022
    1. Bazanova O. M., Aftanas L. I. (2010). Individual EEG alpha activity analysis for enhancement neurofeedback efficiency: two case studies. J. Neurother. 14, 244–253 10.1080/10874208.2010.501517
    1. Beatty J., Greenberg A., Deibler W. P., O’Hanlon J. F. (1974). Operant control of occipital theta rhythm affects performance in a radar monitoring task. Science 183, 871–873. 10.1126/science.183.4127.871
    1. Becerra J., Fernández T., Harmony T., Caballero M. I., García F., Fernández-Bouzas A., et al. . (2006). Follow-up study of learning-disabled children treated with neurofeedback or placebo. Clin. EEG Neurosci. 37, 198–203. 10.1177/155005940603700307
    1. Bermudez Contreras E. J., Schjetnan A. G. P., Muhammad A., Bartho P., McNaughton B. L. L., Kolb B., et al. . (2013). Formation and reverberation of sequential neural activity patterns evoked by sensory stimulation are enhanced during cortical desynchronization. Neuron 79, 555–566. 10.1016/j.neuron.2013.06.013
    1. Birbaumer N., Ramos Murguialday A., Weber C., Montoya P. (2009). Neurofeedback and brain-computer interface clinical applications. Int. Rev. Neurobiol. 86, 107–117. 10.1016/S0074-7742(09)86008-X
    1. Birbaumer N., Weber C., Neuper C., Buch E., Haapen K., Cohen L. (2006). Physiological regulation of thinking: brain-computer interface (BCI) research. Prog. Brain Res. 159, 369–391. 10.1016/s0079-6123(06)59024-7
    1. Boersma M., Smit D. J. A., de Bie H. M. A., Van Baal G. C. M., Boomsma D. I., de Geus E. J. C., et al. . (2011). Network analysis of resting state EEG in the developing young brain: structure comes with maturation. Hum. Brain Mapp. 32, 413–425. 10.1002/hbm.21030
    1. Braun J., Mattia M. (2010). Attractors and noise: twin drivers of decisions and multistability. Neuroimage 52, 740–751. 10.1016/j.neuroimage.2009.12.126
    1. Brunner C., Scherer R., Graimann B., Supp G., Pfurtscheller G. (2006). Online control of a brain-computer interface using phase synchronization. IEEE Trans. Biomed. Eng. 53, 2501–2506. 10.1109/tbme.2006.881775
    1. Bullmore E., Sporns O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198. 10.1038/nrn2575
    1. Butz M., Steenbuck I. D., van Ooyen A. (2014). Homeostatic structural plasticity increases the efficiency of small-world networks. Front. Synaptic Neurosci. 6:7. 10.3389/fnsyn.2014.00007
    1. Butz M., Wörgötter F., van Ooyen A. (2009). Activity-dependent structural plasticity. Brain Res. Rev. 60, 287–305. 10.1016/j.brainresrev.2008.12.023
    1. Buyck I., Wiersema J. R. (2014). Task-related electroencephalographic deviances in adults with attention deficit hyperactivity disorder. Neuropsychology [Epub ahead of print]. 10.1037/neu0000148
    1. Buzsáki G., Anastassiou C. A., Koch C. (2012). The origin of extracellular fields and currents–EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407–420. 10.1038/nrn3241
    1. Buzsáki G., Watson B. O. (2012). Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease. Dialogues Clin. Neurosci. 14, 345–367.
    1. Cabral J., Luckhoo H., Woolrich M., Joensson M., Mohseni H., Baker A., et al. . (2014). Exploring mechanisms of spontaneous functional connectivity in MEG: how delayed network interactions lead to structured amplitude envelopes of band-pass filtered oscillations. Neuroimage 90, 423–435. 10.1016/j.neuroimage.2013.11.047
    1. Canolty R. T., Ganguly K., Kennerley S. W., Cadieu C. F., Koepsell K., Wallis J. D., et al. . (2010). Oscillatory phase coupling coordinates anatomically dispersed functional cell assemblies. Proc. Natl. Acad. Sci. U S A 107, 17356–17361. 10.1073/pnas.1008306107
    1. Carter M. E., Yizhar O., Chikahisa S., Nguyen H., Adamantidis A., Nishino S., et al. . (2010). Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat. Neurosci. 13, 1526–1533. 10.1038/nn.2682
    1. Castro-Alamancos M. A. (2004). Dynamics of sensory thalamocortical synaptic networks during information processing states. Prog. Neurobiol. 74, 213–247. 10.1016/j.pneurobio.2004.09.002
    1. Castro-Alamancos M. A. (2009). Cortical up and activated states: implications for sensory information processing. Neuroscientist 15, 625–634. 10.1177/1073858409333074
    1. Cerf M., Thiruvengadam N., Mormann F., Kraskov A., Quiroga R. Q., Koch C., et al. . (2010). On-line, voluntary control of human temporal lobe neurons. Nature 467, 1104–1108. 10.1038/nature09510
    1. Chabot R. J., di Michele F., Prichep L. (2005). The role of quantitative electroencephalography in child and adolescent psychiatric disorders. Child Adolesc. Psychiatr. Clin. N. Am. 14, 21–53, v–vi. 10.1016/j.chc.2004.07.005
    1. Chen C.-R., Yang S.-R., Liu Y.-Y., Qu W.-M., Urade Y., Huang Z.-L. (2013). Roles of adrenergic α1 and dopamine D1 and D2 receptors in the mediation of the desynchronization effects of modafinil in a mouse EEG synchronization model. PLoS One 8:e76102. 10.1371/journal.pone.0076102
    1. Cho M. K., Jang H. S., Jeong S.-H., Jang I.-S., Choi B.-J., Lee M.-G. T. (2008). Alpha neurofeedback improves the maintaining ability of alpha activity. Neuroreport 19, 315–317. 10.1097/WNR.0b013e3282f4f022
    1. Chu C. J., Kramer M. A., Pathmanathan J., Bianchi M. T., Westover M. B., Wizon L., et al. . (2012). Emergence of stable functional networks in long-term human electroencephalography. J. Neurosci. 32, 2703–2713. 10.1523/JNEUROSCI.5669-11.2012
    1. Clarke A. R., Barry R. J., McCarthy R., Selikowitz M. (2001). Excess beta activity in children with attention-deficit/hyperactivity disorder: an atypical electrophysiological group. Psychiatry Res. 103, 205–218. 10.1016/s0165-1781(01)00277-3
    1. Clarke A. R., Barry R. J., McCarthy R., Selikowitz M., Johnstone S. J. (2007). Effects of stimulant medications on the EEG of girls with attention-deficit/hyperactivity disorder. Clin. Neurophysiol. 118, 2700–2708. 10.1016/j.clinph.2007.08.020
    1. Coburn K. L., Lauterbach E. C., Boutros N. N., Black K. J., Arciniegas D. B., Coffey C. E. (2006). The value of quantitative electroencephalography in clinical psychiatry: a report by the committee on research of the American neuropsychiatric association. J. Neuropsychiatry Clin. Neurosci. 18, 460–500. 10.1176/appi.neuropsych.18.4.460
    1. Cohen M. R., Maunsell J. H. R. (2009). Attention improves performance primarily by reducing interneuronal correlations. Nat. Neurosci. 12, 1594–1600. 10.1038/nn.2439
    1. Congedo M., Lubar J. F., Joffe D. (2004). Low-resolution electromagnetic tomography neurofeedback. IEEE Trans. Neural Syst. Rehabil. Eng. 12, 387–397. 10.1109/tnsre.2004.840492
    1. Contreras D., Steriade M. (1995). Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. J. Neurosci. 15, 604–622.
    1. Cooper L. N., Bear M. F. (2012). The BCM theory of synapse modification at 30: interaction of theory with experiment. Nat. Rev. Neurosci. 13, 798–810. 10.1038/nrn3353
    1. Cowan M. J., Kogan H., Burr R., Hendershot S., Buchanan L. (1990). Power spectral analysis of heart rate variability after biofeedback training. J. Electrocardiol. 23(Suppl.), 85–94. 10.1016/0022-0736(90)90081-c
    1. Cuspineda E., Machado C., Galán L., Aubert E., Alvarez M. A., Llopis F., et al. . (2007). QEEG prognostic value in acute stroke. Clin. EEG Neurosci. 38, 155–160. 10.1177/155005940703800312
    1. Davis N. J. (2014). Transcranial stimulation of the developing brain: a plea for extreme caution. Front. Hum. Neurosci. 8:600. 10.3389/fnhum.2014.00600
    1. Deco G., Hugues E. (2012). Neural network mechanisms underlying stimulus driven variability reduction. PLoS Comput. Biol. 8:e1002395. 10.1371/journal.pcbi.1002395
    1. Deco G., Jirsa V. K. (2012). Ongoing cortical activity at rest: criticality, multistability and ghost attractors. J. Neurosci. 32, 3366–3375. 10.1523/JNEUROSCI.2523-11.2012
    1. Dehaene S. (2014). Consciousness and the Brain: Deciphering how the Brain Codes our Thoughts. London: Penguin.
    1. Delagrange P., Canu M. H., Rougeul A., Buser P., Bouyer J. J. (1993). Effects of locus coeruleus lesions on vigilance and attentive behaviour in cat. Behav. Brain Res. 53, 155–165. 10.1016/s0166-4328(05)80275-x
    1. Destexhe A. (2007). High-conductance state. Scholarpedia 2, 1341 10.4249/scholarpedia.1341
    1. Doesburg S. M., Green J. J., McDonald J. J., Ward L. M. (2009a). From local inhibition to long-range integration: a functional dissociation of alpha-band synchronization across cortical scales in visuospatial attention. Brain Res. 1303, 97–110. 10.1016/j.brainres.2009.09.069
    1. Doesburg S. M., Green J. J., McDonald J. J., Ward L. M. (2009b). Rhythms of consciousness: binocular rivalry reveals large-scale oscillatory network dynamics mediating visual perception. PLoS One 4:e6142. 10.1371/journal.pone.0006142
    1. Drake M. E., Jr., Pakalnis A., Newell S. A. (1996). EEG frequency analysis in obsessive-compulsive disorder. Neuropsychobiology 33, 97–99. 10.1159/000119257
    1. Dustman R. E., Shearer D. E., Emmerson R. Y. (1999). Life-span changes in EEG spectral amplitude, amplitude variability and mean frequency. Clin. Neurophysiol. 110, 1399–1409. 10.1016/s1388-2457(99)00102-9
    1. Ecker A. S., Berens P., Keliris G. A., Bethge M., Logothetis N. K., Tolias A. S. (2010). Decorrelated neuronal firing in cortical microcircuits. Science 327, 584–587. 10.1126/science.1179867
    1. Edelman G. M., Gally J. A. (2001). Degeneracy and complexity in biological systems. Proc. Natl. Acad. Sci. U S A 98, 13763–13768. 10.1073/pnas.231499798
    1. Egner T., Zech T. F., Gruzelier J. H. (2004). The effects of neurofeedback training on the spectral topography of the electroencephalogram. Clin. Neurophysiol. 115, 2452–2460. 10.1016/j.clinph.2004.05.033
    1. Engel A. K., Gerloff C., Hilgetag C. C., Nolte G. (2013). Intrinsic coupling modes: multiscale interactions in ongoing brain activity. Neuron 80, 867–886. 10.1016/j.neuron.2013.09.038
    1. Enriquez-Geppert S., Huster R. J., Scharfenort R., Mokom Z. N., Vosskuhl J., Figge C., et al. . (2013). The morphology of midcingulate cortex predicts frontal-midline theta neurofeedback success. Front. Hum. Neurosci. 7:453. 10.3389/fnhum.2013.00453
    1. Ergenoglu T., Demiralp T., Bayraktaroglu Z., Ergen M., Beydagi H., Uresin Y. (2004). Alpha rhythm of the EEG modulates visual detection performance in humans. Brain Res. Cogn. Brain Res. 20, 376–383. 10.1016/j.cogbrainres.2004.03.009
    1. Escolano C., Navarro-Gil M., Garcia-Campayo J., Congedo M., Minguez J. (2014). The effects of individual upper alpha neurofeedback in ADHD: an open-label pilot study. Appl. Psychophysiol. Biofeedback 39, 193–202. 10.1007/s10484-014-9257-6
    1. Ezure K., Oshima T. (1981). Excitation of slow pyramidal tract cells and their family neurones during phasic and tonic phases of EEG arousal. Jpn. J. Physiol. 31, 737–748. 10.2170/jjphysiol.31.737
    1. Fan J., Byrne J., Worden M. S., Guise K. G., McCandliss B. D., Fossella J., et al. . (2007). The relation of brain oscillations to attentional networks. J. Neurosci. 27, 6197–6206. 10.1523/jneurosci.1833-07.2007
    1. Fetz E. E. (1969). Operant conditioning of cortical unit activity. Science 163, 955–958. 10.1126/science.163.3870.955
    1. Fingelkurts A. A., Fingelkurts A. A., Ermolaev V. A., Kaplan A. Y. (2006). Stability, reliability and consistency of the compositions of brain oscillations. Int. J. Psychophysiol. 59, 116–126. 10.1016/j.ijpsycho.2005.03.014
    1. Finnigan S. P., Rose S. E., Walsh M., Griffin M., Janke A. L., McMahon K. L., et al. . (2004). Correlation of quantitative EEG in acute ischemic stroke with 30-day NIHSS score: comparison with diffusion and perfusion MRI. Stroke 35, 899–903. 10.1161/01.str.0000122622.73916.d2
    1. Foster B. L., Kaveh A., Dastjerdi M., Miller K. J., Parvizi J. (2013). Human retrosplenial cortex displays transient theta phase locking with medial temporal cortex prior to activation during autobiographical memory retrieval. J. Neurosci. 33, 10439–10446. 10.1523/JNEUROSCI.0513-13.2013
    1. Fratello F., Veniero D., Curcio G., Ferrara M., Marzano C., Moroni F., et al. . (2006). Modulation of corticospinal excitability by paired associative stimulation: reproducibility of effects and intraindividual reliability. Clin. Neurophysiol. 117, 2667–2674. 10.1016/j.clinph.2006.07.315
    1. Freeman W. J. (1999). Consciousness, intentionality and causality. J. Conscious. Stud. 6, 143–172.
    1. Freyer F., Aquino K., Robinson P. A., Ritter P., Breakspear M. (2009). Bistability and non-Gaussian fluctuations in spontaneous cortical activity. J. Neurosci. 29, 8512–8524. 10.1523/JNEUROSCI.0754-09.2009
    1. Freyer F., Roberts J. A., Becker R., Robinson P. A., Ritter P., Breakspear M. (2011). Biophysical mechanisms of multistability in resting-state cortical rhythms. J. Neurosci. 31, 6353–6361. 10.1523/JNEUROSCI.6693-10.2011
    1. Fries P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9, 474–480. 10.1016/j.tics.2005.08.011
    1. Fries P., Reynolds J. H., Rorie A. E., Desimone R. (2001). Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291, 1560–1563. 10.1126/science.1055465
    1. Fuster J. M. (1958). Effects of stimulation of brain stem on tachistoscopic perception. Science 127:150. 10.1126/science.127.3290.150
    1. Ganguly K., Poo M. M. (2013). Activity-dependent neural plasticity from bench to bedside. Neuron 80, 729–741. 10.1016/j.neuron.2013.10.028
    1. Gervasoni D., Lin S.-C., Ribeiro S., Soares E. S., Pantoja J., Nicolelis M. A. L. (2004). Global forebrain dynamics predict rat behavioral states and their transitions. J. Neurosci. 24, 11137–11147. 10.1523/jneurosci.3524-04.2004
    1. Gevensleben H., Holl B., Albrecht B., Schlamp D., Kratz O., Studer P., et al. . (2009). Distinct EEG effects related to neurofeedback training in children with ADHD: a randomized controlled trial. Int. J. Psychophysiol. 74, 149–157. 10.1016/j.ijpsycho.2009.08.005
    1. Gevensleben H., Holl B., Albrecht B., Schlamp D., Kratz O., Studer P., et al. . (2010). Neurofeedback training in children with ADHD: 6-month follow-up of a randomised controlled trial. Eur. Child Adolesc. Psychiatry 19, 715–724. 10.1007/s00787-010-0109-5
    1. Ghaziri J., Tucholka A., Larue V., Blanchette-Sylvestre M., Reyburn G., Gilbert G., et al. . (2013). Neurofeedback training induces changes in white and gray matter. Clin. EEG Neurosci. 44, 265–272. 10.1177/1550059413476031
    1. Ghosh A., Rho Y., McIntosh A. R., Kötter R., Jirsa V. K. (2008). Noise during rest enables the exploration of the brain’s dynamic repertoire. PLoS Comput. Biol. 4:e1000196. 10.1371/journal.pcbi.1000196
    1. Gompf H. S., Mathai C., Fuller P. M., Wood D. A., Pedersen N. P., Saper C. B., et al. . (2010). Locus ceruleus and anterior cingulate cortex sustain wakefulness in a novel environment. J. Neurosci. 30, 14543–14551. 10.1523/JNEUROSCI.3037-10.2010
    1. Gorgoni M., Ferlazzo F., Ferrara M., Moroni F., D’Atri A., Fanelli S., et al. . (2014). Topographic electroencephalogram changes associated with psychomotor vigilance task performance after sleep deprivation. Sleep Med. 15, 1132–1139. 10.1016/j.sleep.2014.04.022
    1. Gregoriou G. G., Rossi A. F., Ungerleider L. G., Desimone R. (2014). Lesions of prefrontal cortex reduce attentional modulation of neuronal responses and synchrony in V4. Nat. Neurosci. 17, 1003–1011. 10.1038/nn.3742
    1. Grützner C., Wibral M., Sun L., Rivolta D., Singer W., Maurer K., et al. . (2013). Deficits in high- (>60 Hz) gamma-band oscillations during visual processing in schizophrenia. Front. Hum. Neurosci. 7:88. 10.3389/fnhum.2013.00088
    1. Gruzelier J. H. (2013). EEG-neurofeedback for optimising performance I: a review of cognitive and affective outcome in healthy participants. Neurosci. Biobehav. Rev. 44, 124–141. 10.1016/j.neubiorev.2013.09.015
    1. Grychtol B., Lakany H., Valsan G., Conway B. A. (2010). Human behavior integration improves classification rates in real-time BCI. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 362–368. 10.1109/TNSRE.2010.2053218
    1. Gudmundsson S., Runarsson T. P., Sigurdsson S., Eiriksdottir G., Johnsen K. (2007). Reliability of quantitative EEG features. Clin. Neurophysiol. 118, 2162–2171. 10.1016/j.clinph.2007.06.018
    1. Haegens S., Nácher V., Luna R., Romo R., Jensen O. (2011). α-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking. Proc. Natl. Acad. Sci. U S A 108, 19377–19382. 10.1073/pnas.1117190108
    1. Haimovici A., Tagliazucchi E., Balenzuela P., Chialvo D. R. (2013). Brain organization into resting state networks emerges at criticality on a model of the human connectome. Phys. Rev. Lett. 110:178101. 10.1103/physrevlett.110.178101
    1. Halder S., Varkuti B., Bogdan M., Kübler A., Rosenstiel W., Sitaram R., et al. . (2013). Prediction of brain-computer interface aptitude from individual brain structure. Front. Hum. Neurosci. 7:105. 10.3389/fnhum.2013.00105
    1. Hammond D. C. (2010). The need for individualization in neurofeedback: heterogeneity in QEEG patterns associated with diagnoses and symptoms. Appl. Psychophysiol. Biofeedback 35, 31–36. 10.1007/s10484-009-9106-1
    1. Hanslmayr S., Staudigl T., Fellner M.-C. (2012). Oscillatory power decreases and long-term memory: the information via desynchronization hypothesis. Front. Hum. Neurosci. 6:74. 10.3389/fnhum.2012.00074
    1. Harris K. D., Thiele A. (2011). Cortical state and attention. Nat. Rev. Neurosci. 12, 509–523. 10.1038/nrn3084
    1. Heisenberg M., Wolf R., Brembs B. (2001). Flexibility in a single behavioral variable of Drosophila. Learn. Mem. 8, 1–10. 10.1101/lm.8.1.1
    1. Héliot R., Ganguly K., Jimenez J., Carmena J. M. (2010). Learning in closed-loop brain-machine interfaces: modeling and experimental validation. IEEE Trans. Syst. Man Cybern. B Cybern. 40, 1387–1397. 10.1109/TSMCB.2009.2036931
    1. Hellyer P. J., Shanahan M., Scott G., Wise R. J. S., Sharp D. J., Leech R. (2014). The control of global brain dynamics: opposing actions of frontoparietal control and default mode networks on attention. J. Neurosci. 34, 451–461. 10.1523/JNEUROSCI.1853-13.2014
    1. Herrero J. L., Roberts M. J., Delicato L. S., Gieselmann M. A., Dayan P., Thiele A. (2008). Acetylcholine contributes through muscarinic receptors to attentional modulation in V1. Nature 454, 1110–1114. 10.1038/nature07141
    1. Hesse J., Gross T. (2014). Self-organized criticality as a fundamental property of neural systems. Front. Syst. Neurosci. 8:166. 10.3389/fnsys.2014.00166
    1. Hoedlmoser K., Pecherstorfer T., Gruber G., Anderer P., Doppelmayr M., Klimesch W., et al. . (2008). Instrumental conditioning of human sensorimotor rhythm (12–15 Hz) and its impact on sleep as well as declarative learning. Sleep 31, 1401–1408.
    1. Hsu D., Beggs J. M. (2006). Neuronal avalanches and criticality: a dynamical model for homeostasis. Neurocomputing 69, 1134–1136 10.1016/j.neucom.2005.12.060
    1. Huang R.-S., Jung T.-P., Delorme A., Makeig S. (2008). Tonic and phasic electroencephalographic dynamics during continuous compensatory tracking. Neuroimage 39, 1896–1909. 10.1016/j.neuroimage.2007.10.036
    1. Hung C.-S., Sarasso S., Ferrarelli F., Riedner B., Ghilardi M. F., Cirelli C., et al. . (2013). Local experience-dependent changes in the wake EEG after prolonged wakefulness. Sleep 36, 59–72. 10.5665/sleep.2302
    1. Jagadisha T., Gangadhar B., Janakiramiah N., Girish K., Ramakrishnan A. (2003). Post-seizure EEG fractal dimension and spectral power predict antidepressant response to unilateral ECT. Indian J. Psychiatry 45, 16–20.
    1. Jarosiewicz B., Chase S. M., Fraser G. W., Velliste M., Kass R. E., Schwartz A. B. (2008). Functional network reorganization during learning in a brain-computer interface paradigm. Proc. Natl. Acad. Sci. U S A 105, 19486–19491. 10.1073/pnas.0808113105
    1. Jasper H. H., Droogleever-Fortuyn J. (1948). Thalamo-cortical systems and the electrical activity of the brain. Fed. Proc. 7:61.
    1. Jensen O., Mazaheri A. (2010). Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front. Hum. Neurosci. 4:186. 10.3389/fnhum.2010.00186
    1. John E. R., Karmel B. Z., Corning W. C., Easton P., Brown D., Ahn H., et al. . (1977). Neurometrics. Science 196, 1393–1410. 10.1126/science.867036
    1. John E., Prichep L., Fridman J., Easton P. (1988). Neurometrics: computer-assisted differential diagnosis of brain dysfunctions. Science 239, 162–169. 10.1126/science.3336779
    1. John E. R., Prichep L. S., Winterer G., Herrmann W. M., diMichele F., Halper J., et al. . (2007). Electrophysiological subtypes of psychotic states. Acta Psychiatr. Scand. 116, 17–35. 10.1111/j.1600-0447.2006.00983.x
    1. Jokić-Begić N., Begić D. (2003). Quantitative electroencephalogram (qEEG) in combat veterans with post-traumatic stress disorder (PTSD). Nord. J. Psychiatry 57, 351–355. 10.1080/08039480310002688
    1. Kalmbach A., Waters J. (2014). Modulation of high- and low-frequency components of the cortical local field potential via nicotinic and muscarinic acetylcholine receptors in anesthetized mice. J. Neurophysiol. 111, 258–272. 10.1152/jn.00244.2013
    1. Kamiya J. (2011). The first communications about operant conditioning of the EEG. J. Neurother. 15, 65–73 10.1080/10874208.2011.545764
    1. Klimesch W., Doppelmayr M., Yonelinas A., Kroll N. E., Lazzara M., Röhm D., et al. . (2001). Theta synchronization during episodic retrieval: neural correlates of conscious awareness. Brain Res. Cogn. Brain Res. 12, 33–38. 10.1016/s0926-6410(01)00024-6
    1. Kluetsch R. C., Ros T., Théberge J., Frewen P. A., Calhoun V. D., Schmahl C., et al. . (2014). Plastic modulation of PTSD resting-state networks and subjective wellbeing by EEG neurofeedback. Acta Psychiatr. Scand. 130, 123–136. 10.1111/acps.12229
    1. Knoblauch A., Hauser F., Gewaltig M.-O., Körner E., Palm G. (2012). Does spike-timing-dependent synaptic plasticity couple or decouple neurons firing in synchrony? Front. Comput. Neurosci. 6:55. 10.3389/fncom.2012.00055
    1. Kopřivová J., Congedo M., Horáček J., Praško J., Raszka M., Brunovský M., et al. . (2011). EEG source analysis in obsessive-compulsive disorder. Clin. Neurophysiol. 122, 1735–1743. 10.1016/j.clinph.2011.01.051
    1. Koralek A. C., Costa R. M., Carmena J. M. (2013). Temporally precise cell-specific coherence develops in corticostriatal networks during learning. Neuron 79, 865–872. 10.1016/j.neuron.2013.06.047
    1. Koralek A. C., Jin X., Long J. D., 2nd, Costa R. M., Carmena J. M. (2012). Corticostriatal plasticity is necessary for learning intentional neuroprosthetic skills. Nature 483, 331–335. 10.1038/nature10845
    1. Kornmeier J., Bach M. (2012). Ambiguous figures—what happens in the brain when perception changes but not the stimulus. Front. Hum. Neurosci. 6:51. 10.3389/fnhum.2012.00051
    1. Kouijzer M. E. J., de Moor J. M. H., Gerrits B. J. L., Buitelaar J. K., van Schie H. T. (2009). Long-term effects of neurofeedback treatment in autism. Res. Autism Spectr. Disord. 3, 496–501 10.1016/j.rasd.2008.10.003
    1. Krichmar J. L. (2008). The neuromodulatory system: a framework for survival and adaptive behavior in a challenging world. Adapt. Behav. 16, 385–399 10.1177/1059712308095775
    1. Krienen F. M., Yeo B. T. T., Buckner R. L. (2014). Reconfigurable task-dependent functional coupling modes cluster around a core functional architecture. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369:20130526. 10.1098/rstb.2013.0526
    1. Lee S.-H., Dan Y. (2012). Neuromodulation of brain States. Neuron 76, 209–222. 10.1016/j.neuron.2012.09.012
    1. Legenstein R., Chase S. M., Schwartz A. B., Maass W. (2010). A reward-modulated hebbian learning rule can explain experimentally observed network reorganization in a brain control task. J. Neurosci. 30, 8400–8410. 10.1523/JNEUROSCI.4284-09.2010
    1. Legenstein R., Pecevski D., Maass W. (2008). A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback. PLoS Comput. Biol. 4:e1000180. 10.1371/journal.pcbi.1000180
    1. Le Van Quyen M. (2011). The brainweb of cross-scale interactions. New Ideas Psychol. 29, 57–63 10.1016/j.newideapsych.2010.11.001
    1. Liechti M. D., Maurizio S., Heinrich H., Jäncke L., Meier L., Steinhausen H.-C., et al. . (2012). First clinical trial of tomographic neurofeedback in attention-deficit/hyperactivity disorder: Evaluation of voluntary cortical control. Clin. Neurophysiol. 123, 1989–2005. 10.1016/j.clinph.2012.03.016
    1. Lindsley D. B., Schreiner L. H., Knowles W. B., Magoun H. W. (1950). Behavioral and EEG changes following chronic brain stem lesions in the cat. Electroencephalogr. Clin. Neurophysiol. 2, 483–498. 10.1016/0013-4694(50)90086-1
    1. Linkenkaer-Hansen K., Nikulin V. V., Palva S., Ilmoniemi R. J., Palva J. M. (2004). Prestimulus oscillations enhance psychophysical performance in humans. J. Neurosci. 24, 10186–10190. 10.1523/jneurosci.2584-04.2004
    1. Little S., Brown P. (2014). The functional role of beta oscillations in Parkinson’s disease. Parkinsonism Relat. Disord. 20(Suppl. 1), S44–S48. 10.1016/s1353-8020(13)70013-0
    1. Llinás R., Urbano F. J., Leznik E., Ramírez R. R., van Marle H. J. F. (2005). Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends Neurosci. 28, 325–333. 10.1016/j.tins.2005.04.006
    1. López M. E., Bruña R., Aurtenetxe S., Pineda-Pardo J. A., Marcos A., Arrazola J., et al. . (2014). Alpha-band hypersynchronization in progressive mild cognitive impairment: a magnetoencephalography study. J. Neurosci. 34, 14551–14559. 10.1523/JNEUROSCI.0964-14.2014
    1. Lotte F., Congedo M., Lécuyer A., Lamarche F., Arnaldi B. (2007). A review of classification algorithms for EEG-based brain-computer interfaces. J. Neural Eng. 4, R1–R13. 10.1088/1741-2560/4/2/r01
    1. Lubar J., Swartwood M. (1995). Quantitative EEG and auditory event-related potentials in the evaluation of attention-deficit/hyperactivity disorder: effects of methylphenidate and implications for. J. Psychoeduc. Assess. 143–160.
    1. Lubar J. F., Swartwood M. O., Swartwood J. N., O’Donnell P. H. (1995). Evaluation of the effectiveness of EEG neurofeedback training for ADHD in a clinical setting as measured by changes in T.O.V.A. scores, behavioral ratings and WISC-R performance. Biofeedback Self Regul. 20, 83–99. 10.1007/bf01712768
    1. Luczak A., Bartho P., Harris K. D. (2013). Gating of sensory input by spontaneous cortical activity. J. Neurosci. 33, 1684–1695. 10.1523/JNEUROSCI.2928-12.2013
    1. Lutzenberger W., Birbaumer N., Elbert T., Rockstroh B., Bippus W., Breidt R. (1980). Self-regulation of slow cortical potentials in normal subjects and patients with frontal lobe lesions. Prog. Brain Res. 54, 427–430. 10.1016/s0079-6123(08)61655-6
    1. Macdonald J. S. P., Mathan S., Yeung N. (2011). Trial-by-trial variations in subjective attentional state are reflected in ongoing prestimulus EEG alpha oscillations. Front. Psychol. 2:82. 10.3389/fpsyg.2011.00082
    1. MacIver M. B., Bland B. H. (2014). Chaos analysis of EEG during isoflurane-induced loss of righting in rats. Front. Syst. Neurosci. 8:203. 10.3389/fnsys.2014.00203
    1. Mangia A. L., Pirini M., Cappello A. (2014). Transcranial direct current stimulation and power spectral parameters: a tDCS/EEG co-registration study. Front. Hum. Neurosci. 8:601. 10.3389/fnhum.2014.00601
    1. Marken R. S. (2009). You say you had a revolution: methodological foundations of closed-loop psychology. Rev. Gen. Psychol. 13, 137–145 10.1037/a0015106
    1. Mayhew S. D., Hylands-White N., Porcaro C., Derbyshire S. W. G., Bagshaw A. P. (2013). Intrinsic variability in the human response to pain is assembled from multiple, dynamic brain processes. Neuroimage 75, 68–78. 10.1016/j.neuroimage.2013.02.028
    1. McCarthy-Jones S. (2012). Taking back the brain: could neurofeedback training be effective for relieving distressing auditory verbal hallucinations in patients with schizophrenia? Schizophr. Bull. 38, 678–682. 10.1093/schbul/sbs006
    1. McConnell G. C., So R. Q., Hilliard J. D., Lopomo P., Grill W. M. (2012). Effective deep brain stimulation suppresses low-frequency network oscillations in the basal ganglia by regularizing neural firing patterns. J. Neurosci. 32, 15657–15668. 10.1523/JNEUROSCI.2824-12.2012
    1. Mehrkanoon S., Breakspear M., Boonstra T. W. (2014). Low-dimensional dynamics of resting-state cortical activity. Brain Topogr. 27, 338–352. 10.1007/s10548-013-0319-5
    1. Millan J. D. R., Galan F., Vanhooydonck D., Lew E., Philips J., Nuttin M. (2009). Asynchronous non-invasive brain-actuated control of an intelligent wheelchair. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009, 3361–3364. 10.1109/IEMBS.2009.5332828
    1. Montez T., Poil S.-S., Jones B. F., Manshanden I., Verbunt J. P. A., van Dijk B. W., et al. . (2009). Altered temporal correlations in parietal alpha and prefrontal theta oscillations in early-stage Alzheimer disease. Proc. Natl. Acad. Sci. U S A 106, 1614–1619. 10.1073/pnas.0811699106
    1. Monto S., Vanhatalo S., Holmes M. D., Palva J. M. (2007). Epileptogenic neocortical networks are revealed by abnormal temporal dynamics in seizure-free subdural EEG. Cereb. Cortex 17, 1386–1393. 10.1093/cercor/bhl049
    1. Moruzzi G., Magoun H. W. (1949). Brain stem reticular formation and activation of the EEG. Electroencephalogr. Clin. Neurophysiol. 1, 455–473. 10.1016/0013-4694(49)90219-9
    1. Müller H. F., Achim A., Laur A., Buchbinder A. (1986). Topography and possible physiological significance of EEG amplitude variability in psychosis. Acta Psychiatr. Scand. 73, 665–675. 10.1111/j.1600-0447.1986.tb02741.x
    1. Müller-Dahlhaus J. F. M., Orekhov Y., Liu Y., Ziemann U. (2008). Interindividual variability and age-dependency of motor cortical plasticity induced by paired associative stimulation. Exp. Brain Res. 187, 467–475. 10.1007/s00221-008-1319-7
    1. Munz M., Gobert D., Schohl A., Poquérusse J., Podgorski K., Spratt P., et al. . (2014). Rapid Hebbian axonal remodeling mediated by visual stimulation. Science 344, 904–909. 10.1126/science.1251593
    1. Musall S., von Pföstl V., Rauch A., Logothetis N. K., Whittingstall K. (2012). Effects of neural synchrony on surface EEG. Cereb. Cortex 24, 1045–1053. 10.1093/cercor/bhs389
    1. Nagengast A. J., Braun D. A., Wolpert D. M. (2009). Optimal control predicts human performance on objects with internal degrees of freedom. PLoS Comput. Biol. 5:e1000419. 10.1371/journal.pcbi.1000419
    1. Näpflin M., Wildi M., Sarnthein J. (2007). Test-retest reliability of resting EEG spectra validates a statistical signature of persons. Clin. Neurophysiol. 118, 2519–2524. 10.1016/j.clinph.2007.07.022
    1. Näpflin M., Wildi M., Sarnthein J. (2008). Test-retest reliability of EEG spectra during a working memory task. Neuroimage 43, 687–693. 10.1016/j.neuroimage.2008.08.028
    1. Neuper C., Pfurtscheller G. (2001). Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates. Int. J. Psychophysiol. 43, 41–58. 10.1016/s0167-8760(01)00178-7
    1. Niv S. (2013). Clinical efficacy and potential mechanisms of neurofeedback. Pers. Individ. Dif. 54, 676–686 10.1016/j.paid.2012.11.037
    1. Nunez P. L. (2000). Toward a quantitative description of large-scale neocortical dynamic function and EEG. Behav. Brain Sci. 23, 371–398; discussion 399–437. 10.1017/s0140525x00003253
    1. Palva S., Palva J. M. (2012). Discovering oscillatory interaction networks with M/EEG: challenges and breakthroughs. Trends Cogn. Sci. 16, 219–230. 10.1016/j.tics.2012.02.004
    1. Panagiotaropoulos T. I., Deco G., Kapoor V., Logothetis N. K. (2012). Neuronal discharges and gamma oscillations explicitly reflect visual consciousness in the lateral prefrontal cortex. Neuron 74, 924–935. 10.1016/j.neuron.2012.04.013
    1. Papageorgiou T. D., Lisinski J. M., McHenry M. A., White J. P., LaConte S. M. (2013). Brain-computer interfaces increase whole-brain signal to noise. Proc. Natl. Acad. Sci. U S A 110, 13630–13635. 10.1073/pnas.1210738110
    1. Pastukhov A., García-Rodríguez P. E., Haenicke J., Guillamon A., Deco G., Braun J. (2013). Multi-stable perception balances stability and sensitivity. Front. Comput. Neurosci. 7:17. 10.3389/fncom.2013.00017
    1. Patton J. L., Wei Y. J., Bajaj P., Scheidt R. A. (2013). Visuomotor learning enhanced by augmenting instantaneous trajectory error feedback during reaching. PLoS One 8:e46466. 10.1371/journal.pone.0046466
    1. Perge J. A., Zhang S., Malik W. Q., Homer M. L., Cash S., Friehs G., et al. . (2014). Reliability of directional information in unsorted spikes and local field potentials recorded in human motor cortex. J. Neural Eng. 11:046007. 10.1088/1741-2560/11/4/046007
    1. Pezze M., McGarrity S., Mason R., Fone K. C., Bast T. (2014). Too little and too much: hypoactivation and disinhibition of medial prefrontal cortex cause attentional deficits. J. Neurosci. 34, 7931–7946. 10.1523/JNEUROSCI.3450-13.2014
    1. Pfister J.-P., Tass P. A. (2010). STDP in oscillatory recurrent networks: theoretical conditions for desynchronization and applications to deep brain stimulation. Front. Comput. Neurosci. 4:22 10.3389/fncom.2010.00022
    1. Pizoli C. E., Shah M. N., Snyder A. Z., Shimony J. S., Limbrick D. D., Raichle M. E., et al. . (2011). Resting-state activity in development and maintenance of normal brain function. Proc. Natl. Acad. Sci. U S A 108, 11638–11643. 10.1073/pnas.1109144108
    1. Pizzagalli D. A., Nitschke J. B., Oakes T. R., Hendrick A. M., Horras K. A., Larson C. L., et al. . (2002). Brain electrical tomography in depression: the importance of symptom severity, anxiety and melancholic features. Biol. Psychiatry 52, 73–85. 10.1016/s0006-3223(02)01313-6
    1. Plante D. T., Goldstein M. R., Landsness E. C., Riedner B. A., Guokas J. J., Wanger T., et al. . (2013). Altered overnight modulation of spontaneous waking EEG reflects altered sleep homeostasis in major depressive disorder: A high-density EEG investigation. J. Affect. Disord. 150, 1167–1173. 10.1016/j.jad.2013.05.084
    1. Poil S.-S., Bollmann S., Ghisleni C., O’Gorman R. L., Klaver P., Ball J., et al. . (2014). Age dependent electroencephalographic changes in attention deficit/hyperactivity disorder (ADHD). Clin. Neurophysiol. 125, 1626–1638. 10.1016/j.clinph.2013.12.118
    1. Poil S.-S., Hardstone R., Mansvelder H. D., Linkenkaer-Hansen K. (2012). Critical-state dynamics of avalanches and oscillations jointly emerge from balanced excitation/inhibition in neuronal networks. J. Neurosci. 32, 9817–9823. 10.1523/JNEUROSCI.5990-11.2012
    1. Poulet J. F. A., Petersen C. C. H. (2008). Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature 454, 881–885. 10.1038/nature07150
    1. Pradhan N., Sadasivan P. K., Chatterji S., Dutt D. N. (1995). Patterns of attractor dimensions of sleep EEG. Comput. Biol. Med. 25, 455–462. 10.1016/0010-4825(95)00032-y
    1. Quilichini P. P., Bernard C. (2012). Brain state-dependent neuronal computation. Front. Comput. Neurosci. 6:77. 10.3389/fncom.2012.00077
    1. Ramyead A., Kometer M., Studerus E., Koranyi S., Ittig S., Gschwandtner U., et al. . (2014). Aberrant current source-density and lagged phase synchronization of neural oscillations as markers for emerging psychosis. Schizophr. Bull. [Epub ahead of print]. 10.1093/schbul/sbu134
    1. Renart A., de la Rocha J., Bartho P., Hollender L., Parga N., Reyes A., et al. (2010). The asynchronous state in cortical circuits. Science 327, 587–590 10.1126/science.1179850
    1. Ridding M. C., Ziemann U. (2010). Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. J. Physiol. 588, 2291–2304. 10.1113/jphysiol.2010.190314
    1. Romei V., Brodbeck V., Michel C., Amedi A., Pascual-Leone A., Thut G. (2008). Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas. Cereb. cortex 18, 2010–2018. 10.1093/cercor/bhm229
    1. Ros T., Munneke M. A. M., Ruge D., Gruzelier J. H., Rothwell J. C. (2010). Endogenous control of waking brain rhythms induces neuroplasticity in humans. Eur. J. Neurosci. 31, 770–778. 10.1111/j.1460-9568.2010.07100.x
    1. Ros T., Théberge J., Frewen P. A., Kluetsch R., Densmore M., Calhoun V. D., et al. . (2013). Mind over chatter: plastic up-regulation of the fMRI salience network directly after EEG neurofeedback. Neuroimage 65, 324–335. 10.1016/j.neuroimage.2012.09.046
    1. Rosa M., Picarelli H., Teixeira M. J., Rosa M. O., Marcolin M. A. (2006). Accidental seizure with repetitive transcranial magnetic stimulation. J. ECT 22, 265–266. 10.1097/01.yct.0000244236.72049.9e
    1. Rosin B., Slovik M., Mitelman R., Rivlin-Etzion M., Haber S. N., Israel Z., et al. . (2011). Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron 72, 370–384. 10.1016/j.neuron.2011.08.023
    1. Russo R., Herrmann H. J., de Arcangelis L. (2014). Brain modularity controls the critical behavior of spontaneous activity. Sci. Rep. 4:4312. 10.1038/srep04312
    1. Sadaghiani S., Kleinschmidt A. (2013). Functional interactions between intrinsic brain activity and behavior. Neuroimage 80, 379–386. 10.1016/j.neuroimage.2013.04.100
    1. Schlee W., Schecklmann M., Lehner A., Kreuzer P. M., Vielsmeier V., Poeppl T. B., et al. . (2014). Reduced variability of auditory alpha activity in chronic tinnitus. Neural Plast. 2014:436146. 10.1155/2014/436146
    1. Schulman J. J., Cancro R., Lowe S., Lu F., Walton K. D., Llinás R. R. (2011). Imaging of thalamocortical dysrhythmia in neuropsychiatry. Front. Hum. Neurosci. 5:69. 10.3389/fnhum.2011.00069
    1. Sebban C., Zhang X. Q., Tesolin-Decros B., Millan M. J., Spedding M. (1999). Changes in EEG spectral power in the prefrontal cortex of conscious rats elicited by drugs interacting with dopaminergic and noradrenergic transmission. Br. J. Pharmacol. 128, 1045–1054. 10.1038/sj.bjp.0702894
    1. Shew W. L., Plenz D. (2013). The functional benefits of criticality in the cortex. Neuroscientist 19, 88–100. 10.1177/1073858412445487
    1. Shin D., Cho K.-H. (2013). Recurrent connections form a phase-locking neuronal tuner for frequency-dependent selective communication. Sci. Rep. 3:2519. 10.1038/srep02519
    1. Silberstein P., Pogosyan A., Kühn A. A., Hotton G., Tisch S., Kupsch A., et al. . (2005). Cortico-cortical coupling in Parkinson’s disease and its modulation by therapy. Brain 128, 1277–1291. 10.1093/brain/awh480
    1. Smit D. J. A., Linkenkaer-Hansen K., de Geus E. J. C. (2013). Long-range temporal correlations in resting-state Alpha oscillations predict human timing-error dynamics. J. Neurosci. 33, 11212–11220. 10.1523/jneurosci.2816-12.2013
    1. Smith S. M., Fox P. T., Miller K. L., Glahn D. C., Fox P. M., Mackay C. E., et al. . (2009). Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl. Acad. Sci. U S A 106, 13040–13045. 10.1073/pnas.0905267106
    1. Snyder S. M., Quintana H., Sexson S. B., Knott P., Haque A. F. M., Reynolds D. A. (2008). Blinded, multi-center validation of EEG and rating scales in identifying ADHD within a clinical sample. Psychiatry Res. 159, 346–358. 10.1016/j.psychres.2007.05.006
    1. Sohn H., Kim I., Lee W., Peterson B. S., Hong H., Chae J.-H., et al. . (2010). Linear and non-linear EEG analysis of adolescents with attention-deficit/hyperactivity disorder during a cognitive task. Clin. Neurophysiol. 121, 1863–1870. 10.1016/j.clinph.2010.04.007
    1. Stam C. J. (2005). Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin. Neurophysiol. 116, 2266–2301. 10.1016/j.clinph.2005.06.011
    1. Stam C. J. (2014). Modern network science of neurological disorders. Nat. Rev. Neurosci. 15, 683–695. 10.1038/nrn3801
    1. Stam C. J., Montez T., Jones B. F., Rombouts S. A. R. B., van der Made Y., Pijnenburg Y. A. L., et al. . (2005). Disturbed fluctuations of resting state EEG synchronization in Alzheimer’s disease. Clin. Neurophysiol. 116, 708–715. 10.1016/j.clinph.2004.09.022
    1. Stam C. J., van Cappellen van Walsum A.-M., Micheloyannis S. (2002). Variability of EEG synchronization during a working memory task in healthy subjects. Int. J. Psychophysiol. 46, 53–66. 10.1016/s0167-8760(02)00041-7
    1. Steiner N. J., Frenette E. C., Rene K. M., Brennan R. T., Perrin E. C. (2014). In-school neurofeedback training for ADHD: sustained improvements from a randomized control trial. Pediatrics 133, 483–492. 10.1542/peds.2013-2059
    1. Steriade M., Gloor P., Llinás R. R., Lopes da Silva F. H., Mesulam M.-M. (1990). Basic mechanisms of cerebral rhythmic activities. Electroencephalogr. Clin. Neurophysiol. 76, 481–508. 10.1016/0013-4694(90)90001-z
    1. Steriade M., McCormick D. A., Sejnowski T. J. (1993). Thalamocortical oscillations in the sleeping and aroused brain. Science 262, 679–685. 10.1126/science.8235588
    1. Sterman M. B., Howe R. C., Macdonald L. R. (1970). Facilitation of spindle-burst sleep by conditioning of electroencephalographic activity while awake. Science 167, 1146–1148. 10.1126/science.167.3921.1146
    1. Sterman M. B., LoPresti R. W., Fairchild M. D. (1969). “Electroencephalographic and behavioral studies of monomethylhydrazine toxicity in the cat,” in Technical Report AMRL-TR-69-3 (Ohio, USA: Aerospace Medical Division, Wright-Patterson Air Force Base).
    1. Strehl U., Birkle S. M., Wörz S., Kotchoubey B. (2014). Sustained reduction of seizures in patients with intractable epilepsy after self-regulation training of slow cortical potentials—10 years after. Front. Hum. Neurosci. 8:604. 10.3389/fnhum.2014.00604
    1. Tagliazucchi E., Carhart-Harris R., Leech R., Nutt D., Chialvo D. R. (2014). Enhanced repertoire of brain dynamical states during the psychedelic experience. Hum. Brain Mapp. 35, 5442–5456. 10.1002/hbm.22562
    1. Takahashi T., Cho R. Y., Mizuno T., Kikuchi M., Murata T., Takahashi K., et al. . (2010). Antipsychotics reverse abnormal EEG complexity in drug-naive schizophrenia: a multiscale entropy analysis. Neuroimage 51, 173–182. 10.1016/j.neuroimage.2010.02.009
    1. Tass P. A., Silchenko A. N., Hauptmann C., Barnikol U. B., Speckmann E.-J. (2009). Long-lasting desynchronization in rat hippocampal slice induced by coordinated reset stimulation. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80:011902. 10.1103/physreve.80.011902
    1. Thatcher R. W., Lubar J. F. (2009). History of the scientific standards of QEEG normative databases. Introd. Quant. EEG Neurofeedback 2009, 29–59 10.1016/b978-0-12-374534-7.00002-2
    1. Thatcher R. W., North D. M., Biver C. J. (2009). Self-organized criticality and the development of EEG phase reset. Hum. Brain Mapp. 30, 553–574. 10.1002/hbm.20524
    1. Todorov E. (2004). Optimality principles in sensorimotor control. Nat. Neurosci. 7, 907–915. 10.1038/nn1309
    1. Tognoli E., Kelso J. A. S. (2014). The metastable brain. Neuron 81, 35–48. 10.1016/j.neuron.2013.12.022
    1. Tononi G. (2004). An information integration theory of consciousness. BMC Neurosci. 5:42. 10.1186/1471-2202-5-42
    1. Tononi G., Cirelli C. (2006). Sleep function and synaptic homeostasis. Sleep Med. Rev. 10, 49–62. 10.1016/j.smrv.2005.05.002
    1. Tsanov M., Manahan-Vaughan D. (2009). Long-term plasticity is proportional to theta-activity. PLoS One 4:e5850. 10.1371/journal.pone.0005850
    1. Tseng H.-A., Martinez D., Nadim F. (2014). The frequency preference of neurons and synapses in a recurrent oscillatory network. J. Neurosci. 34, 12933–12945. 10.1523/jneurosci.2462-14.2014
    1. Tsukamoto-Yasui M., Sasaki T., Matsumoto W., Hasegawa A., Toyoda T., Usami A., et al. . (2007). Active hippocampal networks undergo spontaneous synaptic modification. PLoS One 2:e1250. 10.1371/journal.pone.0001250
    1. Uhlhaas P. J., Singer W. (2006). Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52, 155–168. 10.1016/j.neuron.2006.09.020
    1. Valdés-Hernández P. A., Ojeda-González A., Martínez-Montes E., Lage-Castellanos A., Virués-Alba T., Valdés-Urrutia L., et al. . (2010). White matter architecture rather than cortical surface area correlates with the EEG alpha rhythm. Neuroimage 49, 2328–2339. 10.1016/j.neuroimage.2009.10.030
    1. Van de Ville D., Britz J., Michel C. M. (2010). EEG microstate sequences in healthy humans at rest reveal scale-free dynamics. Proc. Natl. Acad. Sci. U S A 107, 18179–18184. 10.1073/pnas.1007841107
    1. Varela F., Lachaux J. P., Rodriguez E., Martinerie J. (2001). The brainweb: phase large-scale integration. Nat. Rev. Neurosci. 2, 229–239. 10.1038/35067550
    1. Villablanca J. R. (2004). Counterpointing the functional role of the forebrain and of the brainstem in the control of the sleep-waking system. J. Sleep Res. 13, 179–208. 10.1111/j.1365-2869.2004.00412.x
    1. Vyazovskiy V. V., Cirelli C., Pfister-Genskow M., Faraguna U., Tononi G. (2008). Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat. Neurosci. 11, 200–208. 10.1038/nn2035
    1. Wahbeh H., Oken B. S. (2013). Peak high-frequency HRV and peak alpha frequency higher in PTSD. Appl. Psychophysiol. Biofeedback 38, 57–69. 10.1007/s10484-012-9208-z
    1. Walter G. (1934). Thought and Brain: A Cambridge Experiment. London: The Spectator, 10.
    1. Wander J. D., Blakely T., Miller K. J., Weaver K. E., Johnson L. A., Olson J. D., et al. . (2013). Distributed cortical adaptation during learning of a brain-computer interface task. Proc. Natl. Acad. Sci. U S A 110, 10818–10823. 10.1073/pnas.1221127110
    1. Wang X.-J. (2010). Neurophysiological and computational principles of cortical rhythms in cognition. Physiol. Rev. 90, 1195–1268. 10.1152/physrev.00035.2008
    1. Wang X., Chen C., Zhang D., Yao H. (2014). Cumulative latency advance underlies fast visual processing in desynchronized brain state. Proc. Natl. Acad. Sci. U S A 111, 515–520. 10.1073/pnas.1316166111
    1. Wang S.-J., Hilgetag C. C., Zhou C. (2011a). Sustained activity in hierarchical modular neural networks: self-organized criticality and oscillations. Front. Comput. Neurosci. 5:30. 10.3389/fncom.2011.00030
    1. Wang Q., Sourina O., Nguyen M. K. (2011b). Fractal dimension based neurofeedback in serious games. Vis. Comput. 27, 299–309 10.1007/s00371-011-0551-5
    1. Wascher E., Rasch B., Sänger J., Hoffmann S., Schneider D., Rinkenauer G., et al. . (2014). Frontal theta activity reflects distinct aspects of mental fatigue. Biol. Psychol. 96, 57–65. 10.1016/j.biopsycho.2013.11.010
    1. Watrous A. J., Tandon N., Conner C. R., Pieters T., Ekstrom A. D. (2013). Frequency-specific network connectivity increases underlie accurate spatiotemporal memory retrieval. Nat. Neurosci. 16, 349–356. 10.1038/nn.3315
    1. Watson C. G., Herder J., Passini F. T. (1978). Alpha biofeedback therapy in alcoholics: an 18-month follow-up. J. Clin. Psychol. 34, 765–769. 10.1002/1097-4679(197807)34:3<765::aid-jclp2270340339>;2-5
    1. Werkle-Bergner M., Grandy T. H., Chicherio C., Schmiedek F., Lövdén M., Lindenberger U. (2014). Coordinated within-trial dynamics of low-frequency neural rhythms controls evidence accumulation. J. Neurosci. 34, 8519–8528. 10.1523/jneurosci.3801-13.2014
    1. Whitford T. J., Rennie C. J., Grieve S. M., Clark C. R., Gordon E., Williams L. M. (2007). Brain maturation in adolescence: concurrent changes in neuroanatomy and neurophysiology. Hum. Brain Mapp. 28, 228–237. 10.1002/hbm.20273
    1. Williams H. T. P. (2006). Homeostatic Adaptive Networks. Doctoral Thesis. Leeds: The University of Leeds.
    1. Wolpert D. M., Ghahramani Z., Jordan M. I. (1995). An internal model for sensorimotor integration. Science 269, 1880–1882. 10.1126/science.7569931
    1. Woltering S., Jung J., Liu Z., Tannock R. (2012). Resting state EEG oscillatory power differences in ADHD college students and their peers. Behav. Brain Funct. 8:60. 10.1186/1744-9081-8-60
    1. Womelsdorf T., Valiante T. A., Sahin N. T., Miller K. J., Tiesinga P. (2014). Dynamic circuit motifs underlying rhythmic gain control, gating and integration. Nat. Neurosci. 17, 1031–1039. 10.1038/nn.3764
    1. Wörgötter F., Suder K., Zhao Y., Kerscher N., Eysel U. T., Funke K. (1998). State-dependent receptive-field restructuring in the visual cortex. Nature 396, 165–168. 10.1038/24157
    1. Wyrwicka W., Sterman M. B. (1968). Instrumental conditioning of sensorimotor cortex EEG spindles in the waking cat. Physiol. Behav. 3, 703–707 10.1016/0031-9384(68)90139-x
    1. Xiong S., Cheng C., Wu X., Guo X., Yao L., Zhang J. (2014). Working memory training using EEG neurofeedback in normal young adults. Biomed. Mater. Eng. 24, 3637–3644. 10.3233/BME-141191
    1. Yordanova J., Kolev V. (1998). Developmental changes in the theta response system: a single sweep analysis. J. Psychophysiol. 12, 113–126.
    1. Zaehle T., Rach S., Herrmann C. S. (2010). Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS One 5:e13766. 10.1371/journal.pone.0013766
    1. Zagha E., Casale A. E., Sachdev R. N. S., McGinley M. J., McCormick D. A. (2013). Motor cortex feedback influences sensory processing by modulating network state. Neuron 79, 567–578. 10.1016/j.neuron.2013.06.008
    1. Zagha E., McCormick D. A. (2014). Neural control of brain state. Curr. Opin. Neurobiol. 29C, 178–186. 10.1016/j.conb.2014.09.010
    1. Zemankovics R., Veres J. M., Oren I., Hájos N. (2013). Feedforward inhibition underlies the propagation of cholinergically induced gamma oscillations from hippocampal CA3 to CA1. J. Neurosci. 33, 12337–12351. 10.1523/jneurosci.3680-12.2013

Source: PubMed

3
Abonnere