Imaging of hepatocellular carcinoma: diagnosis, staging and treatment monitoring

Tiffany Hennedige, Sudhakar Kundapur Venkatesh, Tiffany Hennedige, Sudhakar Kundapur Venkatesh

Abstract

Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Imaging is important for establishing a diagnosis of HCC. Several imaging modalities including ultrasonography (US), computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET) and angiography are used in evaluating patients with chronic liver disease and suspected HCC. CT, MRI and contrast-enhanced US have replaced biopsy for diagnosis of HCC. Dynamic multiphase contrast-enhanced CT or MRI is the current standard for imaging diagnosis of HCC. Functional imaging techniques such as perfusion CT and diffusion-weighted MRI provide additional information about tumor angiogenesis that may be useful for treatment. Techniques evaluating tissue mechanical properties such as magnetic resonance elastography, and acoustic radiation force impulse imaging are being explored for characterizing liver lesions. The role of PET in the evaluation of HCC is evolving with promise seen especially with the use of a hepatocyte-specific PET tracer. Imaging is also critical for assessment of treatment response and detection of recurrence following locoregional treatment. Knowledge of the post-treatment appearance of HCC is essential for correct interpretation. This review article provides an overview of the role of imaging in the diagnosis, staging and post-treatment follow-up of HCC.

Figures

Figure 1
Figure 1
HCC in a 58-year-old man with chronic hepatitis B. Unenhanced (a), arterial phase (b), portal venous phase (c) and delayed phase (d) CT images showing a rounded HCC (white arrow) that enhances in arterial phase and washes out in portal venous and delayed phases. A thin enhancing pseudocapsule (black arrow head) is best demonstrated in the delayed phase.
Figure 2
Figure 2
MRI of HCC in a 54-year-old woman with chronic hepatitis C. HCC (white arrow) appears mildly hyperintense to liver on the T2-weighted image (a), hypo- to isointense on the T1-weighted image, shows restricted diffusion on DWI (c), arterial phase enhancement (d) and washout in both portal venous (e) and delayed (f) phases. Note the enhancing capsule (black arrow) in both portal venous and delayed phases.
Figure 3
Figure 3
Large HCC (black arrow) in the right lobe of the liver showing heterogeneous enhancement in the arterial phase (a) and washout and mosaic appearance in the portal venous phase (b).
Figure 4
Figure 4
Fatty HCC. Unenhanced CT (a), in-phase (b) and opposed phase (c) MR images in the same patient showing heterogeneous HCC with fat component (arrow).
Figure 5
Figure 5
Large HCC (*) with portal vein invasion. Tumor thrombus within the portal vein (black arrow) showing enhancement in the arterial phase (a) and washout in the portal venous phase (b) similar to the main tumor.
Figure 6
Figure 6
Large HCC with portal vein tumor thrombus. The portal vein is expanded and completely filled with tumor thrombus (black arrow). The tumor thrombus demonstrates neovascularity of cast of vessels in the arterial phase (a) and washout in the portal venous phase (b). The primary tumor (curved arrow) does not show arterial phase enhancement but appears hypodense in the both phases.
Figure 7
Figure 7
Multifocal HCCs well demonstrated using super paramagnetic iron oxide particle imaging. A T2-weighted image following SPIO administration shows a large mass in the left lobe and multiple smaller lesions in the right lobe.
Figure 8
Figure 8
A 37-year-old man with chronic hepatitis B and raised AFP and histology proven HCC. Unenhanced (a) T1-weighted image showing a hypointense nodule (white arrow) in the left lobe and minimal enhancement in the arterial phase (b) and appears hypointense on the portal venous and delayed phases (not shown). Features are not typical for HCC. However, the nodule shows restricted diffusion on DWI with b = 500 and no uptake in the hepatocyte phase (d) after intravenous Gd-EOB-DTPA injection.
Figure 9
Figure 9
MR elastography of HCC in a background of cryptogenic liver cirrhosis. T2-weighted (a), unenhanced T1-weighted (b) and arterial phase (c) T1-weighted images showing typical HCC. Stiffness map from MR elastography (d) showing a high stiffness value of 10.6 kPa in the tumor. The stiffness of the liver parenchyma is 6.3 kPa, higher than the normal liver stiffness cut-off value of 2.93 kPa.
Figure 10
Figure 10
CEUS of HCC. Prompt intense enhancement of the segment 4 nodule (arrow) in the arterial phase (a) which is hypoechoic to surrounding liver on the grayscale image (b).
Figure 11
Figure 11
Unenhanced CT (a) and fused PET/CT image (b) of an FDG-avid moderately differentiated HCC (arrow).
Figure 12
Figure 12
CT arteriography of HCC (arrow) in a 66-year-old patient with cryptogenic cirrhosis. Intense enhancement in the arterial phase (a) and washout in the central portion of the tumor in the delayed phase (b).
Figure 13
Figure 13
CT appearances before and after RFA of HCC. Top row: arterial (a) and portal venous phase (b) CT images showing an HCC (black arrow) before RFA. Bottom row: CT after 6 weeks of ablation; the HCC is replaced by a zone of hypodensity that is larger than the tumor and shows no enhancement (white arrow) in both the arterial (c) and portal venous phase (d).
Figure 14
Figure 14
MR appearances of HCC before and after RF ablation. Before ablation (a–d), HCC is iso- to mildly hyperintense on the T2-weighted image (a), hypointense on the T1-weighted image (b), enhances in the arterial phase (c) and washes out in the portal venous phase (d). Post-ablation MRI (e–h) after 4 weeks showing a larger heterogeneous hypointensity on the T2-weighted image (e) and mixed hyperintensity on the T1-weighted image (f) representing the ablation zone (white arrows). There is no enhancement in the arterial phase (g) but a thin rim of post-ablation inflammatory enhancement (black arrow) seen in the portal venous phase (h).
Figure 15
Figure 15
Examples of post-RFA recurrence. Top row (a–c), a case of HCC (black arrow) in the background of non-alcoholic steatohepatitis and cirrhosis. Arterial phase CT before (a), 3 months after (b) and 1 year (c) after RFA. There is no recurrence at 3 months and the large ablation zone covers the tumor region. Nodular recurrence (white arrowheads) seen at 1 year at the margins of the ablation zone. Bottom row (d–f) is another example of nodular recurrence at the margin of the RFA zone illustrated on MRI. The recurrence is seen as hyperintense nodule on the T2-weighted image (d) and hypointense nodule on the T1-weighted image (e) in contrast to the ablated zone (curved arrow) and enhances in the arterial phase (f). (Image courtesy of Dr Grant Schmitt, MD, Mayo Clinic, Rochester, MN, USA.)
Figure 16
Figure 16
Examples of complete and partial response to TACE. Top row (a,b) showing a small HCC in the left lobe before (a) and 4 weeks after (b) TACE. There is mild reduction in the size of the tumor and no enhancement (black arrow). Bottom row (c,d) showing an HCC in the right lobe of the liver before (c) and 4 weeks after (d) TACE with residual tumor (black arrow head) seen in the post-TACE scan.
Figure 17
Figure 17
Examples of post-TARE response. Top row (a,b) showing arterial phase CT before (a) and 8 weeks after (b) TARE of a segment 6 HCC. There is complete necrosis of the tumor. (c,d) Arterial phase CT images in a patient with multifocal HCCs and partial response to TARE at 6 weeks. There is partial necrosis of the tumor (black arrowheads) and progression of tumor in segment 4 (white arrow).

References

    1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–2917. doi: 10.1002/ijc.25516. . PMid:21351269.
    1. Omata M, Lesmana LA, Tateishi R, et al. Asian Pacific Association for the Study of the Liver consensus recommendations on hepatocellular carcinoma. Hepatol Int. 2010;4:439–474. doi: 10.1007/s12072-010-9165-7. . PMid:20827404.
    1. Bruix J, Sherman M, Llovet JM, et al. Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver. J Hepatol. 2001;35:421–430. doi: 10.1016/S0168-8278(01)00130-1. . PMid:11592607.
    1. Bruix J, Sherman M. Practice Guidelines Committee, American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma. Hepatology. 2005;42:1208–1236. doi: 10.1002/hep.20933. . PMid:16250051.
    1. European Association for the Study of the Liver, European Organization for Research and Treatment of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2012;56:908–943.
    1. Bruix J, Sherman M. American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53:1020–1022. doi: 10.1002/hep.24199. . PMid:21374666.
    1. Simonetti RG, Camma C, Fiorello F, Politi F, D’Amico G, Pagliaro L. Hepatocellular carcinoma. A worldwide problem and the major risk factors. Dig Dis Sci. 1991;36:962–972. doi: 10.1007/BF01297149. . PMid:1649041.
    1. Ferenci P, Fried M, Labrecque D, et al. World Gastroenterology Organisation global guideline. Hepatocellular carcinoma (HCC): a global perspective. J Gastrointestin Liver Dis. 2010;19:311–317. PMid:20922197.
    1. Polesel J, Zucchetto A, Montella M, et al. The impact of obesity and diabetes mellitus on the risk of hepatocellular carcinoma. Ann Oncol. 2009;20:353–357. doi: 10.1093/annonc/mdn565. . PMid:18723550.
    1. Sanyal AJ, Yoon SK, Lencioni R. The etiology of hepatocellular carcinoma and consequences for treatment. Oncologist. 2010;15(Suppl 4):14–22. doi: 10.1634/theoncologist.2010-S4-14. . PMid:21115577.
    1. Montella M, Crispo A, Giudice A. HCC, diet and metabolic factors. Hepat Mon. 2011;11:159–162. PMid:22087137.
    1. El-Serag HB. Translational research: the study of community effectiveness in digestive and liver disorders. Gastroenterology. 2007;132:8–10. doi: 10.1053/j.gastro.2006.11.038. . PMid:17241853.
    1. Trichopoulos D, Bamia C, Lagious P, et al. Hepatocellular carcinoma risk factors and disease burden in a European cohort: a nested case-control study. J Natl Cancer Inst. 2011;103:1686–1695. doi: 10.1093/jnci/djr395. . PMid:22021666.
    1. Marcellin P, Pequignot F, Delarocque-Astagneau E, et al. Mortality related to chronic hepatitis B and chronic hepatitis C in France: evidence for the role of HIC coinfection and alcohol consumption. J Hepatol. 2008;48:200–207. doi: 10.1016/j.jhep.2007.09.010. . PMid:18086507.
    1. Dragani TA. Risk of HCC: genetic heterogeneity and complex genetics. J Hepatol. 2010;52:252–257. doi: 10.1016/j.jhep.2009.11.015. . PMid:20022654.
    1. Bolondi L. Screening for hepatocellular carcinoma in cirrhosis. J Hepatol. 2003;39:1076–1084. doi: 10.1016/S0168-8278(03)00349-0. . PMid:14642630.
    1. Singal A, Volk ML, Waljee A, et al. Meta-analysis: surveillance with ultrasound for early-stage hepatocellular carcinoma in patients with cirrhosis. Ailment Pharmacol Ther. 2009;30:37–47. doi: 10.1111/j.1365-2036.2009.04014.x.
    1. Zhang B, Yang B. Combined alpha fetoprotein testing and ultrasonography as a screening test for primary liver cancer. J Med Screen. 1999;6:108–110. PMid:10444731.
    1. Lok AS, Sterling RK, Everhart JE, et al. Des-gamma-carboxy prothrombin and alpha-fetoprotein as biomarkers for the early detection of hepatocellular carcinoma. Gastroenterology. 2010;138:493–502. doi: 10.1053/j.gastro.2009.10.031. . PMid:19852963.
    1. Willatt JM, Hussain HK, Adusumilli S, Marrero JA. MR imaging of hepatocellular carcinoma in the cirrhotic liver: challenges and controversies. Radiology. 2008;247:311–330. doi: 10.1148/radiol.2472061331. . PMid:18430871.
    1. Andersson KL, Salomon JA, Goldie SJ, Chung RT. Cost effectiveness of alternative surveillance strategies for hepatocellular carcinoma in patients with cirrhosis. Clin Gastroenterol Hepatol. 2008;6:1418–1424. doi: 10.1016/j.cgh.2008.08.005. . PMid:18848905.
    1. Leoni S, Piscaglia F, Golferi R, et al. The impact of vascular and nonvascular findings on the noninvasive diagnosis of small hepatocellular carcinoma based on the EASL and AASLD criteria. Am J Gastroenterol. 2010;105:599–609. doi: 10.1038/ajg.2009.654. . PMid:19935786.
    1. Forner A, Vilana R, Ayuso C, et al. Diagnosis of hepatic nodules 20 mm or smaller in cirrhosis: prospective validation of the noninvasive diagnostic criteria for hepatocellular carcinoma. Hepatology. 2008;47:97–104. doi: 10.1002/hep.21966. . PMid:18069697.
    1. Kojiro M, Roskams T. Early hepatocellular carcinoma and dysplastic nodules. Semin Liver Dis. 2005;25:133–142. doi: 10.1055/s-2005-871193. . PMid:15918142.
    1. Rimola J, Forner A, Reig M, et al. Cholangiocarcinoma in cirrhosis: absence of contrast washout in delayed phases by magnetic resonance imaging avoids misdiagnosis of hepatocellular carcinoma. Hepatology. 2009;50:791–198. doi: 10.1002/hep.23071. . PMid:19610049.
    1. Bolondi L, Gaiani S, Celli N, et al. Characterization of small nodules in cirrhosis by assessment of vascularity: the problem of hypovascular hepatocellular carcinoma. Hepatology. 2005;42:27–34. doi: 10.1002/hep.20728. . PMid:15954118.
    1. Sangiovanni A, Manini MA, Iavarone M, et al. The diagnostic and economic impact of contrast imaging techniques in the diagnosis of small hepatocellular carcinoma in cirrhosis. Gut. 2010;59:638–644. doi: 10.1136/gut.2009.187286. . PMid:19951909.
    1. Luca A, Caruso S, Milazzo M, et al. Multidetector-row computed tomography (MDCT) for the diagnosis of hepatocellular carcinoma in cirrhotic candidates for liver transplantation: prevalence of radiological vascular patterns and histological correlation with liver explants. Eur Radiol. 2010;20:898–907. doi: 10.1007/s00330-009-1622-0. . PMid:19802612.
    1. Choi BI, Lee JM. Advancement in HCC imaging: diagnosis, staging and treatment efficacy assessments: imaging diagnosis and staging of hepatocellular carcinoma. J Hepatobiliary Pancreat Sci. 2010;17:369–373. doi: 10.1007/s00534-009-0227-y. . PMid:19967573.
    1. Shah ZK, McKernan MG, Hahn PF, Sahani DV. Enhancing and expansile portal vein thrombosis: value in the diagnosis of hepatocellular carcinoma in patients with multiple hepatic leisons. AJR Am J Roentgenol. 2007;188:1320–1323. doi: 10.2214/AJR.06.0134. . PMid:17449777.
    1. Murakami T, Kim T, Hori M, Federle MP. Double arterial phase multi-detector row helical CT for detection of hypervascular hepatocellular carcinoma. Radiology. 2003;229:931–932. doi: 10.1148/radiol.2293030590. . PMid:14657326.
    1. Schima W, Hammerstingl R, Catalano C, et al. Quadruple-phase MDCT of the liver in patients with suspected hepatocellular carcinoma: effect of contrast material flow rate. AJR Am J Roentgenol. 2006;186:1571–1579. doi: 10.2214/AJR.05.1226. . PMid:16714645.
    1. Kim SK, Lim JH, Lee WJ, et al. Detection of hepatocellular carcinoma: comparison of dynamic three-phase computed tomography images and four-phase computed tomography images using multidetector row helical computed tomography. J Comput Assist Tomogr. 2002;26:691–698. doi: 10.1097/00004728-200209000-00005. . PMid:12439300.
    1. Laghi A, Iannaccone R, Rossi P, et al. Hepatocellular carcinoma: detection with triple-phase multi-detector row helical CT in patients with chronic hepatitis. Radiology. 2003;226:543–549. doi: 10.1148/radiol.2262012043. . PMid:12563152.
    1. Ippolito D, Sironi S, Pozzi M, et al. Perfusion CT in cirrhotic patients with early stage hepatocellular carcinoma: assessment of tumor-related vascularization. Eur J Radiol. 2010;73:148–152. doi: 10.1016/j.ejrad.2008.10.014. . PMid:19054640.
    1. Sahani DV, Holalkere NS, Mueller PR, Zhu AX. Advanced hepatocellular carcinoma: CT perfusion of liver and tumor tissue-initial experience. Radiology. 2007;243:736–743. doi: 10.1148/radiol.2433052020. . PMid:17517931.
    1. Zhu AX, Holalkere NS, Muzihansky A, Horgan K, Sahani DV. Early antiangiogenic activity of bevacizumab evaluated by computed tomography perfusion scan in patients with advanced hepatocellular carcinoma. Oncologist. 2008;13:120–125. doi: 10.1634/theoncologist.2007-0174. . PMid:18305056.
    1. Ippolito D, Sironi S, Pozzi M, et al. Hepatocellular carcinoma in cirrhotic liver disease: functional computed tomography with perfusion imaging in the assessment of tumor vascularization. Acad Radiol. 2008;15:919–927. doi: 10.1016/j.acra.2008.02.005. . PMid:18572129.
    1. Okada M, Kim T, Murakami T. Hepatocellular nodules in liver cirrhosis: state of the art CT evaluation (perfusion CT/volume helical shuttle scan/dual-energy CT, etc.) Abdom Imaging. 2011;36:273–281. doi: 10.1007/s00261-011-9684-2. . PMid:21267563.
    1. Kelekis NL, Semelka RC, Worawattanakul S, et al. Hepatocellular carcinoma in North America: a multi-institutional study of appearance on T1-weighted, T2-weighted, and serial gadolinium-enhanced gradient-echo images. AJR Am J Roentgenol. 1998;170:1005–1013. PMid:9530051.
    1. Hussain HK, Syed I, Nghiem HV, et al. T2-weighted MR imaging in the assessment of cirrhotic liver. Radiology. 2004;230:637–644. doi: 10.1148/radiol.2303020921. . PMid:14739306.
    1. Ebara M, Fukuda H, Kojima Y, et al. Small hepatocellular carcinoma: relationship of signal intensity to histopathologic findings and metal content of the tumor and surrounding hepatic parenchyma. Radiology. 1999;210:81–88. PMid:9885591.
    1. Mitchell DG, Palazzo J, Hann HW, Rifkin MD, Burk DL, Jr, Rubin R. Hepatocellular tumors with high signal on T1-weighted MR images: chemical shift MR imaging and histologic correlation. J Comput Assist Tomogr. 1991;15:762–769. doi: 10.1097/00004728-199109000-00007. . PMid:1653279.
    1. Imai Y, Murakami T, Yoshida S, et al. Superparamagnetic iron oxide-enhanced magnetic resonance images of hepatocellular carcinoma: correlation with histological grading. Hepatology. 2000;32:205–212. doi: 10.1053/jhep.2000.9113. . PMid:10915725.
    1. Yoo HJ, Lee JM, Lee JY, et al. Additional value of SPIO-enhanced MR imaging for the noninvasive imaging diagnosis of hepatocellular carcinoma in cirrhotic liver. Invest Radiol. 2009;44:800–807. doi: 10.1097/RLI.0b013e3181bc271d. . PMid:19838119.
    1. Lee DH, Kim SH, Lee JM, et al. Diagnostic performance of multidetector row computed tomography, superparamagnetic iron oxide-enhanced magnetic resonance imaging, and dual-contrast magnetic resonance imaging in predicting the appropriateness of a transplant recipient based on Milan criteria: correlation with histopathological findings. Invest Radiol. 2009;44:311–321. doi: 10.1097/RLI.0b013e31819c9f44. . PMid:19462486.
    1. Nasu K, Kuroki Y, Tsukamoto T, Nakajima H, Mori K, Minami M. Diffusion-weighted imaging of surgically resected hepatocellular carcinoma: imaging characteristics and relationship among signal intensity, apparent diffusion coefficient, and histopathologic grade. AJR Am J Roentgenol. 2009;193:438–444. doi: 10.2214/AJR.08.1424. . PMid:19620441.
    1. Kogita S, Imai Y, Okada M, et al. Gd-EOB-DTPA-enhanced magnetic resonance images of hepatocellular carcinoma: correlation with histological grading and portal blood flow. Eur Radiol. 2010;20:2405–2413. doi: 10.1007/s00330-010-1812-9. . PMid:20490505.
    1. Motosugi U, Ichikawa T, Sou H, et al. Distinguishing hypervascular pseudolesions of the liver from hypervascular hepatocellular carcinomas with gadoxetic acid-enhanced MR imaging. Radiology. 2010;256:151–158. doi: 10.1148/radiol.10091885. . PMid:20574092.
    1. Sano K, Ichikawa T, Motosugi U, Sou H, Muhi AM, Matsuda M. Imaging study of early hepatocellular carcinoma: usefulness of gadoxetic-acid-enhanced MR imaging. Radiology. 2011;261:834–844. doi: 10.1148/radiol.11101840. . PMid:21998047.
    1. Lee JM, Zech CJ, Bolondi L, et al. Consensus report of the 4th international forum for gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid magnetic resonance imaging. Korean J Radiol. 2011;12:403–415. doi: 10.3348/kjr.2011.12.4.403. . PMid:21852900.
    1. Ichikawa T, Saito K, Yoshioka N, et al. Detection and characterization of focal liver lesions: a Japanese phase III, multicenter comparison between gadoxetic acid disodium-enhanced magnetic resonance imaging and contrast-enhanced computed tomography predominantly in patients with hepatocellular carcinoma and chronic liver disease. Invest Radiol. 2010;45:133–141. doi: 10.1097/RLI.0b013e3181caea5b. . PMid:20098330.
    1. Lee SA, Lee CH, Jung WY, et al. Paradoxical high signal intensity of hepatocellular carcinoma in the hepatobiliary phase of Gd-EOB-DTPA enhanced MRI: initial experience. Magn Reson Imaging. 2011;29:83–90. doi: 10.1016/j.mri.2010.07.019. . PMid:20832227.
    1. Tsuboyama T, Onishi H, Kim T, et al. Hepatocellular carcinoma: hepatocyte-selective enhancement at gadoxetic-acid-enhanced MR imaging-correlation with expression of sinusoidal and canalicular transporters and bile accumulation. Radiology. 2010;255:824–833. doi: 10.1148/radiol.10091557. . PMid:20501720.
    1. Kim MJ. Current limitations and potential breakthroughs for the early diagnosis of hepatocellular carcinoma. Gut Liver. 2011;5:15–21. doi: 10.5009/gnl.2011.5.1.15. . PMid:21461067.
    1. Kamel IR, Liapi E, Reyes DK, Zahurak M, Bluemke DA, Geschwind JF. Unresectable hepatocellular carcinoma: serial early vascular and cellular changes after transarterial chemoembolization as detected with MR imaging. Radiology. 2009;250:466–473. doi: 10.1148/radiol.2502072222. . PMid:19188315.
    1. Naganawa S, Kawai H, Fukatsu H, et al. Diffusion-weighted imaging of the liver: technical challenges and prospects for the future. Magn Reson Med Sci. 2005;4:175–186. doi: 10.2463/mrms.4.175. . PMid:16543702.
    1. Piana G, Trinquart L, Meskine N, Barrau V, Beers BV, Vilgrain V. New MR imaging criteria with a diffusion-weighted sequence for the diagnosis of hepatocellular carcinoma in chronic liver diseases. J Hepatol. 2011;55:126–132. doi: 10.1016/j.jhep.2010.10.023. . PMid:21145857.
    1. Vandecaveye V, De Keyzer F, Verslype C, et al. Diffusion-weighted MRI provides additional value to conventional dynamic contrast-enhanced MRI for detection of hepatocellular carcinoma. Eur Radiol. 2009;19:2456–2466. doi: 10.1007/s00330-009-1431-5. . PMid:19440718.
    1. Kamel IR, Bluemke DA, Ramsey D, et al. Role of diffusion-weighted imaging in estimating tumour necrosis after chemoembolization of hepatocellular carcinoma. AJR Am J Roentgenol. 2003;181:708–710. PMid:12933464.
    1. Taouli B, Koh DM. Diffusion-weighted MR imaging of the liver. Radiology. 2010;254:47–66. doi: 10.1148/radiol.09090021. . PMid:20032142.
    1. Le Moigne F, Durieux M, Bancel B, et al. Impact of diffusion-weighted MR imaging on the characterization of small hepatocellular carcinoma in the cirrhotic liver. Magn Reson Imaging. 2012;30:656–665. doi: 10.1016/j.mri.2012.01.002. . PMid:22459435.
    1. Xu PJ, Yan FH, Wang JH, Shan Y, Ji Y, Chen CZ. Contribution of diffusion-weighted magnetic resonance imaging in the characterization of hepatocellular carcinomas and dysplastic nodules in cirrhotic liver. J Comput Assist Tomogr. 2010;34:506–512. doi: 10.1097/RCT.0b013e3181da3671. . PMid:20657216.
    1. Park MS, Kim S, Patel J, et al. Hepatocellular carcinoma: Detection with diffusion-weighted vs. contrast-enhanced MRI in pre-transplant patients. Hepatology. 2012;56:140–148. doi:10.1002/hep.25681.
    1. Xu PJ, Yan FH, Wang JH, et al. The value of breath-hold diffusion-weighted imaging in small hepatocellular carcinoma lesion (< or =3 cm) detection. Zhonghua Yi Xue Za Zhi. 2009;89:592–596. PMid:19595157.
    1. Taouli B, Ehman RL, Reeder SB. Advanced MRI methods for assessment of chronic liver disease. AJR Am J Roentgenol. 2009;193:14–27. doi: 10.2214/AJR.09.2601. . PMid:19542391.
    1. Yin M, Talwalkar JA, Glaser KJ, et al. A preliminary assessment of hepatic fibrosis with magnetic resonance elastography. Clin Gastroenterol Hepatol. 2007;5:1207–1213. doi: 10.1016/j.cgh.2007.06.012. . PMid:17916548.
    1. Huwart L, van Beers BE. MR elastography. Gastroenterol Clin Biol. 2008;32(Suppl. 1):68–72. doi: 10.1016/S0399-8320(08)73995-2. . PMid:18973848.
    1. Venkatesh SK, Yin M, Glockner JF, et al. MR elastography of liver tumours: preliminary results. AJR Am J Roentgenol. 2008;190:1534–1540. doi: 10.2214/AJR.07.3123. . PMid:18492904.
    1. Lencioni R, Piscaglia F, Bolondi L. Contrast-enhanced ultrasound in the diagnosis of hepatocellular carcinoma. J Hepatol. 2008;48:848–857. doi: 10.1016/j.jhep.2008.02.005. . PMid:18328590.
    1. Jang HJ, Kim TK, Burns PN, Wilson SR. Enhancement patterns of hepatocellular carcinoma at contrast-enhanced US: comparison with histologic differentiation. Radiology. 2007;244:898–906. doi: 10.1148/radiol.2443061520. . PMid:17709836.
    1. Lencioni R, Pinto F, Armillotta N, Bartolozzi C. Assessment of tumor vascularity in hepatocellular carcinoma: comparison of power Doppler US and color Doppler US. Radiology. 1996;201:353–358. PMid:8888222.
    1. Lencioni R, Mascalchi M, Caramella D, Bartolozzi C. Small hepatocellular carcinoma: differentiation from adenomatous hyperplasia with color Doppler US and dynamic Gd-DTPA-enhanced MR imaging. Abdom Imaging. 1996;21:41–48. doi: 10.1007/s002619900007. . PMid:8672971.
    1. Lee JM, Trevisani F, Vilgrain V, Wald C. Imaging diagnosis and staging of hepatocellular carcinoma. Liver Transpl. 2011;17 (Suppl 2):S34–43.
    1. Rimola J, Forner A, Reig M, et al. Cholangiocarcinoma in cirrhosis: absence of contrast washout in delayed phases by magnetic resonance imaging avoids misdiagnosis of hepatocellular carcinoma. Hepatology. 2009;50:791–798. doi: 10.1002/hep.23071. . PMid:19610049.
    1. Gheorghe L, Iacob S, Georghe C. Real time sonoelastography- a new application in the field of liver disease. J Gastrointestin Liver Dis. 2008;17:469–474. PMid:19104713.
    1. Rustemovic N, Hrstic I, Opacic M, et al. EUS elastography in the diagnosis of focal liver lesions. Gastrointest Endosc. 2007;66:823–824. PMid:17681503.
    1. Gheorghe L, Iacob S, Iacob R, et al. Real time elastography- a non-invasive diagnostic method of small hepatocellular carcinoma in cirrhosis. J Gastrointestin Liver Dis. 2009;18:439–446. PMid:20076816.
    1. Kwon HJ, Kang MJ, Cho JH, et al. Acoustic radiation force impulse elastography for hepatocellular carcinoma-associated radiofrequency ablation. World J Gastroenterol. 2011;17:1874–1878. doi: 10.3748/wjg.v17.i14.1874. . PMid:21528062.
    1. Heide R, Strobel D, Bernatik T, Goertz RS. Characterization of focal liver lesions (FLL) with acoustic radiation force impulse (ARFI) elastometry. Ultraschall Med. 2010;31:405–409. doi: 10.1055/s-0029-1245565. . PMid:20652853.
    1. Gallotti A, D’Onofrio M, Romanini L, Cantosani V, Pozzi Mucelli R. Acoustic radiation force impulse (ARFI) ultrasound imaging of solid focal liver lesions. Eur J Radiol. 2012;81:451–455. doi: 10.1016/j.ejrad.2010.12.071. . PMid:21330078.
    1. Ho CL, Chen S, Yeung DW, Cheng TK. Dual-tracer PET/CT imaging in evaluation of metastatic hepatocellular carcinoma. J Nucl Med. 2007;48:902–909. doi: 10.2967/jnumed.106.036673. . PMid:17504862.
    1. Sorensen M, Frisch K, Bender D, Keiding S. The potential use of 2-[18F]fluoro-2-deoxy-D-galactosis as a PET/CT tracer for detection of hepatocellular carcinoma. Eur J Nucl Med Mol Imaging. 2011;38:1723–1731. doi: 10.1007/s00259-011-1831-z. . PMid:21553087.
    1. Nagamachi S, Czernin J, Kim AS, et al. Reproducibility of measurements of regional resting and hyperemic myocardial blood flow assessed with PET. J Nucl Med. 1996;37:1626–1631. PMid:8862296.
    1. Delbeke D, Martin WH. Update of PET and PET/CT for hepatobiliary and pancreatic malignancies. HPB (Oxford) 2005;7:166–179. doi: 10.1080/13651820510028909.
    1. Park JW, Kim JH, Kim SK, et al. A prospective evaluation of 18-F-FDG and 11C-acetate PET/CT for detection of primary and metastatic hepatocellular carcinoma. J Nucl Med. 2008;49:1912–1921. doi: 10.2967/jnumed.108.055087. . PMid:18997056.
    1. El-Serag HB, Marrero JA, Rudolph L, Reddy KR. Diagnosis and treatment of hepatocellular carcinoma. Gastroenterology. 2008;134:1752–1763. doi: 10.1053/j.gastro.2008.02.090. . PMid:18471552.
    1. Stefaniuk P, Cianciara J, Wiercinska-Drapalo A. Present and future possibilities for early diagnosis of hepatocellular carcinoma. World J Gastroenterol. 2010;16:418–424. doi: 10.3748/wjg.v16.i4.418. . PMid:20101765.
    1. Heo CK, Woo MK, Yu DY, et al. Identification of autoantibody against fatty acid synthase in hepatocellular carcinoma muse model and its application to diagnosis of HCC. Int J Oncol. 2010;36:1453–1459. PMid:20428769.
    1. Llovet JM, Brú C, Bruix J. Prognosis of hepatocellular carcinoma: the BCLC staging classification. Semin Liver Dis. 1999;19:329–338. doi: 10.1055/s-2007-1007122. . PMid:10518312.
    1. Figueras J, Ibanez L, Ramos E, et al. Selection criteria for liver transplantation in early-stage hepatocellular carcinoma with cirrhosis: results of a multicenter study. Liver Transpl. 2001;7:877–883. doi: 10.1053/jlts.2001.27856. . PMid:11679986.
    1. Deshpande R, O’Reilly D, Sherlock D. Improving outcomes with surgical resection and other ablative therapies in HCC. Int J Hepatol. 2011 doi:10.4061/2011/686074.
    1. Bruix J, Sala M, Llovet JM. Chemoembolization for hepatocellular carcinoma. Gastroenterology. 2004;127:S179–188. doi: 10.1053/j.gastro.2004.09.032. . PMid:15508083.
    1. Hanje AJ, Yao FY. Current approach to down-staging of hepatocellular carcinoma prior to liver transplantation. Curr Opin Organ Transplant. 2008;13:234–240. doi: 10.1097/MOT.0b013e3282fc2633. . PMid:18685309.
    1. Lencioni R, de Baere T, Burrel M, et al. Transcatheter treatment of hepatocellular carcinoma with doxorubicin-loaded DC bead (DEBDOX): technical recommendations. Cardiovasc Intervent Radiol. 2012;35:980–985. doi: 10.1007/s00270-011-0287-7. . PMid:22009576.
    1. van Malenstein H, Maleux G, Vandecaveye V, et al. A randomized phase II study of drug-eluting beads versus transarterial chemoembolization for unresectable hepatocellular carcinoma. Onkologie. 2011;34:368–376. doi: 10.1159/000329602. . PMid:21734423.
    1. Vogl TJ, Nour-Eldin NE, Emad-Eldin S, et al. Portal vein thrombosis and arterioportal shunts: effects on tumour response after chemoembolization of hepatocellular carcinoma. World J Gastroenterol. 2011;17:1267–1275. doi: 10.3748/wjg.v17.i10.1267. . PMid:21455325.
    1. Lencioni R, Llovet JM. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis. 2010;30:52–60. doi: 10.1055/s-0030-1247132. . PMid:20175033.
    1. Schima W, Ba-Ssalamah A, Kurtaran A, Schindl M, Gruenberger T. Post-treatment imaging of liver tumours. Cancer Imaging. 2007;7(A):S28–36.
    1. Guan YS, Sun L, Zhou XP, Li X, Zheng XH. Hepatocellular carcinoma treatment with interventional procedures: CT and MRI follow-up. World J Gastroenterol. 2004;10:3543–3548. PMid:15534903.
    1. Choi D, Lim HK, Kim SH, et al. Assessment of therapeutic response in hepatocellular carcinoma treated with percutaneous radio frequency ablation: comparison of multiphase helical computed tomography and power Doppler ultrasonography with a microbubble contrast agent. J Ultrasound Med. 2002;21:391–401. PMid:11934096.
    1. Shibata T, Iimuro Y, Yamamoto Y, et al. Small hepatocellular carcinoma: comparison of radio-frequency ablation and percutaneous microwave coagulation therapy. Radiology. 2002;223:255–262.
    1. Choi SH, Lee JM, Yu NC, et al. Hepatocellular carcinoma in liver transplantation candidates: detection with gadobenate dimeglumine-enhanced MRI. AJR Am J Roentgenol. 2008;191:529–536. doi: 10.2214/AJR.07.2565. . PMid:18647927.
    1. Kim YK, Kim CS, Chung GH, et al. Comparison of gadobenate dimeglumine-enhanced dynamic MRI and 16-MDCT for the detection of hepatocellular carcinoma. AJR Am J Roentgenol. 2006;186:149–157. doi: 10.2214/AJR.04.1206. . PMid:16357395.
    1. Taouli B, Krinsky GA. Diagnostic imaging of hepatocellular carcinoma in patients with cirrhosis before liver transplantation. Liver Transpl. 2006;12(Suppl 2):S1–7. doi: 10.1002/lt.20935. . PMid:17051556.
    1. Kamel IR, Reyes DK, Liapi E, Bluemke DA, Geschwind JF. Functional MR imaging assessment of tumour response after 90Y microsphere treatment in patients with unresectable hepatocellular carcinoma. J Vasc Interv Radiol. 2007;18:49–56. doi: 10.1016/j.jvir.2006.10.005. . PMid:17296704.
    1. Dierckx R, Maes A, Peeters M, Van De Wiele C. FDG PET for monitoring response to local and loco regional therapy in HCC and liver metastases. Q J Nucl Med Mol Imaging. 2009;53:336–342. PMid:19521313.
    1. Lin CY, Chen JH, Liang JA, Lin CC, Jeng LB, Kao CH. 18F-FDG PET or PET/CT for detecting extrahepatic metastases or recurrent hepatocellular carcinoma: a systematic review and meta-analysis. Eur J Radiol. 2012;81:2417–2422. doi: 10.1016/j.ejrad.2011.08.004. . PMid:21899970.
    1. Paudyal B, Oriuchi N, Paudyal P, et al. Early diagnosis of recurrent hepatocellular carcinoma with 18F-FDG PET after radiofrequency ablation therapy. Oncol Rep. 2007;18:1469–1473. PMid:17982632.

Source: PubMed

3
Abonnere