Effects of Orlistat/Phentermine versus Phentermine on Vascular Endothelial Cell Function in Obese and Overweight Adults: A Randomized, Double-Blinded, Placebo-Controlled Trial

Yu-Jin Kwon, Hyangkyu Lee, Chung Mo Nam, Hyuk-Jae Chang, Young-Ran Yoon, Hye Sun Lee, Ji-Won Lee, Yu-Jin Kwon, Hyangkyu Lee, Chung Mo Nam, Hyuk-Jae Chang, Young-Ran Yoon, Hye Sun Lee, Ji-Won Lee

Abstract

Background: In clinical practice, concomitant treatment of orlistat with phentermine is commonly used off-label. However, clinical trials have not been performed to evaluate whether their combination improves metabolic parameters and cardiovascular risk factors other than weight loss. Therefore, we aimed to compare the efficacy of concomitant administration of orlistat and phentermine versus phentermine alone on the endothelial cell function in overweight and obese adults with back pain.

Methods: We conducted a 12-week, double-blinded, placebo-controlled clinical trial involving 114 patients with a body mass index of ≥30 (obese) or ≥27 (overweight) with weight-related comorbidities. We randomly assigned patients in a 1:1 ratio to receive orlistat (120mg) three times daily and phentermine (37.5mg) once daily, or a placebo three times daily and phentermine (37.5mg) once daily. Primary endpoint was changes in endothelium-dependent vasodilatation measured using ultrasound assessment of flow-mediated dilatation (FMD). Differences within groups after intervention were compared using the paired t-test or Wilcoxon signed-rank test. Differences in changes between the groups were calculated using an analysis of covariance after adjusting for each baseline value.

Results: Mean weight loss during the 12-week study period was 6.1kg in the orlistat/phentermine group and in the placebo/phentermine group. Adjusted mean changes in total and non-high-density lipoprotein cholesterol were significantly greater in the orlistat/phentermine group than in the placebo/phentermine group. Adjusted mean changes in endothelium-dependent FMD were significantly greater in the orlistat/phentermine group than in the placebo/phentermine group (4.97±0.98% vs 2.05±0.99%, respectively; p=0.038). Changes in endothelium-independent nitroglycerin-mediated dilatation were not significantly different between the groups.

Conclusion: Orlistat/phentermine significantly improved the vascular endothelial cell function compared with phentermine alone. Orlistat might have beneficial effects on the decrease of the risk of cardiovascular disease, especially in overweight and obese patients with comorbidities.

Trial registration: ClinicalTrails.gov number, NCT03675191.

Keywords: endothelial cell function; obesity; orlistat; phentermine.

Conflict of interest statement

The authors have nothing to declare.

© 2021 Kwon et al.

Figures

Figure 1
Figure 1
Flow chart of study cohort enrollment, allocation, follow-up, and completion.

References

    1. Afshin A, Forouzanfar MH, Reitsma MB, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377(1):13–27. doi:10.1056/NEJMoa1614362
    1. Seo MH, Lee WY, Kim SS, et al. 2018 Korean society for the study of obesity guideline for the management of obesity in Korea. J Obes Metab Syndr. 2019;28(1):40–45. doi:10.7570/jomes.2019.28.1.40
    1. Deanfield JE, Halcox JP, Rabelink TJ. Endothelial function and dysfunction: testing and clinical relevance. Circulation. 2007;115(10):1285–1295. doi:10.1161/circulationaha.106.652859
    1. Yeboah J, Folsom AR, Burke GL, et al. Predictive value of brachial flow-mediated dilation for incident cardiovascular events in a population-based study: the multi-ethnic study of atherosclerosis. Circulation. 2009;120(6):502–509. doi:10.1161/circulationaha.109.864801
    1. Meyers MR, Gokce N. Endothelial dysfunction in obesity: etiological role in atherosclerosis. Curr Opin Endocrinol Diabetes Obes. 2007;14(5):365–369. doi:10.1097/MED.0b013e3282be90a8
    1. Bergholm R, Tiikkainen M, Vehkavaara S, et al. Lowering of LDL cholesterol rather than moderate weight loss improves endothelium-dependent vasodilatation in obese women with previous gestational diabetes. Diabetes Care. 2003;26(6):1667–1672. doi:10.2337/diacare.26.6.1667
    1. Nakamura T, Uematsu M, Yoshizaki T, Kobayashi T, Watanabe Y, Kugiyama K. Improvement of endothelial dysfunction is mediated through reduction of remnant lipoprotein after statin therapy in patients with coronary artery disease. J Cardiol. 2020;75(3):270–274. doi:10.1016/j.jjcc.2019.08.006
    1. Dell’Oro R, Maloberti A, Nicoli F, et al. Long-term saxagliptin treatment improves endothelial function but not pulse wave velocity and intima-media thickness in type 2 diabetic patients. High Blood Press Cardiovasc Prev. 2017;24(4):393–400. doi:10.1007/s40292-017-0215-2
    1. Stafford RS, Radley DC. National trends in antiobesity medication use. Arch Intern Med. 2003;163(9):1046–1050. doi:10.1001/archinte.163.9.1046
    1. Kang JG, Park CY, Kang JH, Park YW, Park SW. Randomized controlled trial to investigate the effects of a newly developed formulation of phentermine diffuse-controlled release for obesity. Diabetes Obes Metab. 2010;12(10):876–882. doi:10.1111/j.1463-1326.2010.01242.x
    1. Srivastava G, Apovian CM. Current pharmacotherapy for obesity. Nat Rev Endocrinol. 2018;14(1):12–24. doi:10.1038/nrendo.2017.122
    1. Ballinger A. Orlistat in the treatment of obesity. Expert Opin Pharmacother. 2000;1(4):841–847. doi:10.1517/14656566.1.4.841
    1. Torgerson JS, Hauptman J, Boldrin MN, Sjöström L. XENical in the prevention of diabetes in obese subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care. 2004;27(1):155–161. doi:10.2337/diacare.27.1.155
    1. Browne CD, Hindmarsh EJ, Smith JW. Inhibition of endothelial cell proliferation and angiogenesis by orlistat, a fatty acid synthase inhibitor. FASEB j. 2006;20(12):2027–2035. doi:10.1096/fj.05-5404com
    1. Kridel SJ, Axelrod F, Rozenkrantz N, Smith JW. Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Res. 2004;64(6):2070–2075. doi:10.1158/0008-5472.CAN-03-3645
    1. Halpern B, Oliveira ES, Faria AM, et al. Combinations of drugs in the treatment of obesity. Pharmaceuticals. 2010;3(8):2398–2415. doi:10.3390/ph3082398
    1. Corretti MC, Anderson TJ, Benjamin EJ, et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol. 2002;39(2):257–265. doi:10.1016/s0735-1097(01)01746-6
    1. Ras RT, Fuchs D, Koppenol WP, et al. The effect of a low-fat spread with added plant sterols on vascular function markers: results of the Investigating Vascular Function Effects of Plant Sterols (INVEST) study. Am J Clin Nutr. 2015;101(4):733–741. doi:10.3945/ajcn.114.102053
    1. Matsui S, Kajikawa M, Hida E, et al. Optimal target level of low-density lipoprotein cholesterol for vascular function in statin naive individuals. Sci Rep. 2017;7(1):8422. doi:10.1038/s41598-017-09043-1
    1. Muls E, Kolanowski J, Scheen A, Van Gaal L. The effects of orlistat on weight and on serum lipids in obese patients with hypercholesterolemia: a randomized, double-blind, placebo-controlled, multicentre study. Int J Obes Relat Metab Disord. 2001;25(11):1713–1721. doi:10.1038/sj.ijo.0801814
    1. Wadden TA, Berkowitz RI, Womble LG, Sarwer DB, Arnold ME, Steinberg CM. Effects of sibutramine plus orlistat in obese women following 1 year of treatment by sibutramine alone: a placebo-controlled trial. Obes Res. 2000;8(6):431–437. doi:10.1038/oby.2000.53
    1. Sari R, Balci MK, Cakir M, Altunbas H, Karayalcin U. Comparison of efficacy of sibutramine or orlistat versus their combination in obese women. Endocr Res. 2004;30(2):159–167. doi:10.1081/ERC-200027356
    1. Erdmann J, Lippl F, Klose G, Schusdziarra V. Cholesterol lowering effect of dietary weight loss and orlistat treatment–efficacy and limitations. Aliment Pharmacol Ther. 2004;19(11):1173–1179. doi:10.1111/j.1365-2036.2004.01966.x
    1. Sekuri C, Tavli T, Avsar A, Sozcuer H, Uyanik BS, Ari Z. The acute effect of orlistat on endothelial function in young obese women. Int J Clin Pharmacol Res. 2003;23(4):111–117.
    1. Liu J, Sun N, Yang S, Ma Z, Yang J. Effect of orlistat-assisted weight loss on endothelium-dependent vasodilation in obese Chinese subjects with hypertension. Clin Exp Hypertens. 2010;32(6):395–399. doi:10.3109/10641961003667906
    1. Dinh QN, Drummond GR, Sobey CG, Chrissobolis S. Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension. Biomed Res Int. 2014;2014:406960. doi:10.1155/2014/406960
    1. Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol. 2007;49(25):2379–2393. doi:10.1016/j.jacc.2007.02.059
    1. Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest. 2011;121(6):2111–2117. doi:10.1172/jci57132
    1. Samuelsson L, Gottsater A, Lindgarde F. Decreasing levels of tumour necrosis factor alpha and interleukin 6 during lowering of body mass index with orlistat or placebo in obese subjects with cardiovascular risk factors. Diabetes Obes Metab. 2003;5(3):195–201. doi:10.1046/j.1463-1326.2003.00264.x
    1. Steinberg HO, Tarshoby M, Monestel R, et al. Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J Clin Invest. 1997;100(5):1230–1239. doi:10.1172/jci119636
    1. Kim F, Tysseling KA, Rice J, et al. Free fatty acid impairment of nitric oxide production in endothelial cells is mediated by IKKbeta. Arterioscler Thromb Vasc Biol. 2005;25(5):989–994. doi:10.1161/01.ATV.0000160549.60980.a8
    1. Esenabhalu VE, Schaeffer G, Graier WF. Free fatty acid overload attenuates Ca2+ signaling and NO production in endothelial cells. Antioxid Redox Signal. 2003;5(2):147–153. doi:10.1089/152308603764816505
    1. Zhang WY, Schwartz E, Wang Y, Attrep J, Li Z, Reaven P. Elevated concentrations of nonesterified fatty acids increase monocyte expression of CD11b and adhesion to endothelial cells. Arterioscler Thromb Vasc Biol. 2006;26(3):514–519. doi:10.1161/01.atv.0000200226.53994.09
    1. Feron O, Dessy C, Moniotte S, Desager JP, Balligand JL. Hypercholesterolemia decreases nitric oxide production by promoting the interaction of caveolin and endothelial nitric oxide synthase. J Clin Invest. 1999;103(6):897–905. doi:10.1172/jci4829

Source: PubMed

3
Abonnere