The Influence of Meal Frequency and Timing on Health in Humans: The Role of Fasting

Antonio Paoli, Grant Tinsley, Antonino Bianco, Tatiana Moro, Antonio Paoli, Grant Tinsley, Antonino Bianco, Tatiana Moro

Abstract

The influence of meal frequency and timing on health and disease has been a topic of interest for many years. While epidemiological evidence indicates an association between higher meal frequencies and lower disease risk, experimental trials have shown conflicting results. Furthermore, recent prospective research has demonstrated a significant increase in disease risk with a high meal frequency (≥6 meals/day) as compared to a low meal frequency (1⁻2 meals/day). Apart from meal frequency and timing we also have to consider breakfast consumption and the distribution of daily energy intake, caloric restriction, and night-time eating. A central role in this complex scenario is played by the fasting period length between two meals. The physiological underpinning of these interconnected variables may be through internal circadian clocks, and food consumption that is asynchronous with natural circadian rhythms may exert adverse health effects and increase disease risk. Additionally, alterations in meal frequency and meal timing have the potential to influence energy and macronutrient intake.A regular meal pattern including breakfast consumption, consuming a higher proportion of energy early in the day, reduced meal frequency (i.e., 2⁻3 meals/day), and regular fasting periods may provide physiological benefits such as reduced inflammation, improved circadian rhythmicity, increased autophagy and stress resistance, and modulation of the gut microbiota.

Keywords: cardiovascular health; diabetes; fasting; meal frequency; meal timing; obesity; time-restricted feeding.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Effects of external factors on the inner central clock that influence different downstream mechanisms and peripheral clocks (CNS: central nervous system).
Figure 2
Figure 2
Mechanisms involved in health effects of the ketogenic diet (KD), caloric restriction (CR), and fasting. The size of the arrows is related to the relative effect of KD (orange), CR (blue), and fasting (green) on the different pathways involved (IGF-1: insulin-like growth factor-1; Murf2: Muscle-specific RING finger-2; Nf-kB:nuclear factor kappa-light-chain-enhancer of activated B cells).
Figure 3
Figure 3
Effects of different meals timing and frequency on different variables. At the centre of the picture the reciprocal influences of brain, heart and gut was showed. AMPK: AMP-activated protein kinase.
Figure 4
Figure 4
Effects (green: positive; red: negative; blue: neutral) of meal timing on different CVD risks factors and diseases. CHD: coronary heart disease; CVD: cardiovascular disease; TRF: time restricted feeding.
Figure 5
Figure 5
Effects (green: positive; red: negative; blue: neutral) of meal frequency on different CVD risks factors and diseases.CHD: coronary heart disease; CVD: cardiovascular disease.

References

    1. Flandrin J.-L., Montanari M. Storia dell’alimentazione. Laterza; Bari, Italy: 2003.
    1. Carroll A. Three Squares: The Invention of the American Meal. Basic Books (AZ); New York, NY, USA: 2013.
    1. Affinita A., Catalani L., Cecchetto G., De Lorenzo G., Dilillo D., Donegani G., Fransos L., Lucidi F., Mameli C., Manna E., et al. Breakfast: A multidisciplinary approach. Ital. J. Pediatr. 2013;39:44. doi: 10.1186/1824-7288-39-44.
    1. Albala K. Food in Early Modern Europe. Greenwood Publishing Group; Santa Barbara, CA, USA: 2003.
    1. Dolve M.A. Three Meals a Day. SDSU; Brookings, SD, USA: 1925.
    1. Mattson M.P., Allison D.B., Fontana L., Harvie M., Longo V.D., Malaisse W.J., Mosley M., Notterpek L., Ravussin E., Scheer F.A., et al. Meal frequency and timing in health and disease. Proc. Natl. Acad. Sci. USA. 2014;111:16647–16653. doi: 10.1073/pnas.1413965111.
    1. Potter C., Griggs R.L., Brunstrom J.M., Rogers P.J. Breaking the fast: Meal patterns and beliefs about healthy eating style are associated with adherence to intermittent fasting diets. Appetite. 2018;133:32–39. doi: 10.1016/j.appet.2018.10.020.
    1. Gwinup G., Byron R.C., Roush W.H., Kruger F.A., Hamwi G.J. Effect of nibbling versus gorging on serum lipids in man. Am. J. Clin. Nutr. 1963;13:209–213. doi: 10.1093/ajcn/13.4.209.
    1. Fabry P., Hejl Z., Fodor J., Braun T., Zvolankova K. The frequency of meals. Its relation to overweight, hypercholesterolaemia, and decreased glucose-tolerance. Lancet. 1964;2:614–615. doi: 10.1016/S0140-6736(64)90510-0.
    1. Fabry P., Fodor J., Hejl Z., Geizerova H., Balcarova O. Meal frequency and ischaemic heart-disease. Lancet. 1968;2:190–191. doi: 10.1016/S0140-6736(68)92622-6.
    1. Edelstein S.L., Barrett-Connor E.L., Wingard D.L., Cohn B.A. Increased meal frequency associated with decreased cholesterol concentrations; rancho bernardo, ca, 1984–1987. Am. J. Clin. Nutr. 1992;55:664–669. doi: 10.1093/ajcn/55.3.664.
    1. Jenkins D.J., Wolever T.M., Vuksan V., Brighenti F., Cunnane S.C., Rao A.V., Jenkins A.L., Buckley G., Patten R., Singer W., et al. Nibbling versus gorging: Metabolic advantages of increased meal frequency. N. Engl. J. Med. 1989;321:929–934. doi: 10.1056/NEJM198910053211403.
    1. Titan S.M., Bingham S., Welch A., Luben R., Oakes S., Day N., Khaw K.T. Frequency of eating and concentrations of serum cholesterol in the norfolk population of the european prospective investigation into cancer (epic-norfolk): Cross sectional study. BMJ. 2001;323:1286–1288. doi: 10.1136/bmj.323.7324.1286.
    1. Ma Y., Bertone E.R., Stanek E.J., 3rd, Reed G.W., Hebert J.R., Cohen N.L., Merriam P.A., Ockene I.S. Association between eating patterns and obesity in a free-living us adult population. Am. J. Epidemiol. 2003;158:85–92. doi: 10.1093/aje/kwg117.
    1. Holmback I., Ericson U., Gullberg B., Wirfalt E. A high eating frequency is associated with an overall healthy lifestyle in middle-aged men and women and reduced likelihood of general and central obesity in men. Br. J. Nutr. 2010;104:1065–1073. doi: 10.1017/S0007114510001753.
    1. Mekary R.A., Giovannucci E., Willett W.C., van Dam R.M., Hu F.B. Eating patterns and type 2 diabetes risk in men: Breakfast omission, eating frequency, and snacking. Am. J. Clin. Nutr. 2012;95:1182–1189. doi: 10.3945/ajcn.111.028209.
    1. Mekary R.A., Giovannucci E., Cahill L., Willett W.C., van Dam R.M., Hu F.B. Eating patterns and type 2 diabetes risk in older women: Breakfast consumption and eating frequency. Am. J. Clin. Nutr. 2013;98:436–443. doi: 10.3945/ajcn.112.057521.
    1. Cahill L.E., Chiuve S.E., Mekary R.A., Jensen M.K., Flint A.J., Hu F.B., Rimm E.B. Prospective study of breakfast eating and incident coronary heart disease in a cohort of male us health professionals. Circulation. 2013;128:337–343. doi: 10.1161/CIRCULATIONAHA.113.001474.
    1. St-Onge M.P., Ard J., Baskin M.L., Chiuve S.E., Johnson H.M., Kris-Etherton P., Varady K., American Heart Association Obesity Committee of the Council onLifestyle and Cardiometabolic Health. Council on Cardiovascular Disease in the Young. Council on Clinical Cardiology et al. Meal timing and frequency: Implications for cardiovascular disease prevention: A scientific statement from the american heart association. Circulation. 2017;135:e96–e121. doi: 10.1161/CIR.0000000000000476.
    1. Mann J. Meal frequency and plasma lipids and lipoproteins. Br. J. Nutr. 1997;77:S83–S90. doi: 10.1079/BJN19970106.
    1. Collaborators G.B.D.O., Afshin A., Forouzanfar M.H., Reitsma M.B., Sur P., Estep K., Lee A., Marczak L., Mokdad A.H., Moradi-Lakeh M., et al. Health effects of overweight and obesity in 195 countries over 25 years. N. Engl. J. Med. 2017;377:13–27. doi: 10.1056/NEJMoa1614362.
    1. Obesity and Overweight, Fact Sheet N 311, Updated March 2013. [(accessed on 11 February 2019)]; Available online: .
    1. Koh-Banerjee P., Wang Y., Hu F.B., Spiegelman D., Willett W.C., Rimm E.B. Changes in body weight and body fat distribution as risk factors for clinical diabetes in us men. Am. J. Epidemiol. 2004;159:1150–1159. doi: 10.1093/aje/kwh167.
    1. Thompson W.G., Cook D.A., Clark M.M., Bardia A., Levine J.A. Treatment of obesity. Mayo Clin. Proc. 2007;82:93–101. doi: 10.1016/S0025-6196(11)60971-3.
    1. Paoli A., Moro T., Marcolin G., Neri M., Bianco A., Palma A., Grimaldi K. High-intensity interval resistance training (hirt) influences resting energy expenditure and respiratory ratio in non-dieting individuals. J. Transl. Med. 2012;10:237. doi: 10.1186/1479-5876-10-237.
    1. Garaulet M., Gomez-Abellan P. Timing of food intake and obesity: A novel association. Physiol. Behav. 2014;134:44–50. doi: 10.1016/j.physbeh.2014.01.001.
    1. Kulovitz M.G., Kravitz L.R., Mermier C., Gibson A.L., Conn C.A., Kolkmeyer D., Kerksick C.M. Potential role of meal frequency as a strategy for weight loss and health in overweight or obese adults. Nutrition. 2014;30:386–392. doi: 10.1016/j.nut.2013.08.009.
    1. Kahleova H., Lloren J.I., Mashchak A., Hill M., Fraser G.E. Meal frequency and timing are associated with changes in body mass index in adventist health study 2. J. Nutr. 2017;147:1722–1728. doi: 10.3945/jn.116.244749.
    1. Jones P.J., Leitch C.A., Pederson R.A. Meal-frequency effects on plasma hormone concentrations and cholesterol synthesis in humans. Am. J. Clin. Nutr. 1993;57:868–874. doi: 10.1093/ajcn/57.6.868.
    1. McGrath S.A., Gibney M.J. The effects of altered frequency of eating on plasma lipids in free-living healthy males on normal self-selected diets. Eur. J. Clin. Nutr. 1994;48:402–407.
    1. Keast D.R., Nicklas T.A., O’Neil C.E. Snacking is associated with reduced risk of overweight and reduced abdominal obesity in adolescents: National health and nutrition examination survey (nhanes) 1999–2004. Am. J. Clin. Nutr. 2010;92:428–435. doi: 10.3945/ajcn.2009.28421.
    1. Van der Heijden A.A., Hu F.B., Rimm E.B., van Dam R.M. A prospective study of breakfast consumption and weight gain among U.S. Men. Obesity. 2007;15:2463–2469. doi: 10.1038/oby.2007.292.
    1. Howarth N.C., Huang T.T., Roberts S.B., Lin B.H., McCrory M.A. Eating patterns and dietary composition in relation to BMI in younger and older adults. Int. J. Obes. (Lond.) 2007;31:675–684. doi: 10.1038/sj.ijo.0803456.
    1. Taylor M.A., Garrow J.S. Compared with nibbling, neither gorging nor a morning fast affect short-term energy balance in obese patients in a chamber calorimeter. Int. J. Obes. Relat. Metab. Disord. 2001;25:519–528. doi: 10.1038/sj.ijo.0801572.
    1. Romon M., Edme J.L., Boulenguez C., Lescroart J.L., Frimat P. Circadian variation of diet-induced thermogenesis. Am. J. Clin. Nutr. 1993;57:476–480. doi: 10.1093/ajcn/57.4.476.
    1. Bo S., Fadda M., Castiglione A., Ciccone G., De Francesco A., Fedele D., Guggino A., Parasiliti Caprino M., Ferrara S., VezioBoggio M., et al. Is the timing of caloric intake associated with variation in diet-induced thermogenesis and in the metabolic pattern? A randomized cross-over study. Int. J. Obes. (Lond.) 2015;39:1689–1695. doi: 10.1038/ijo.2015.138.
    1. Morris C.J., Garcia J.I., Myers S., Yang J.N., Trienekens N., Scheer F.A. The human circadian system has a dominating role in causing the morning/evening difference in diet-induced thermogenesis. Obesity. 2015;23:2053–2058. doi: 10.1002/oby.21189.
    1. Weststrate J.A., Weys P.J., Poortvliet E.J., Deurenberg P., Hautvast J.G. Diurnal variation in postabsorptive resting metabolic rate and diet-induced thermogenesis. Am. J. Clin. Nutr. 1989;50:908–914. doi: 10.1093/ajcn/50.5.908.
    1. Kanaley J.A., Heden T.D., Liu Y., Fairchild T.J. Alteration of postprandial glucose and insulin concentrations with meal frequency and composition. Br. J. Nutr. 2014;112:1484–1493. doi: 10.1017/S0007114514002128.
    1. Ohkawara K., Cornier M.A., Kohrt W.M., Melanson E.L. Effects of increased meal frequency on fat oxidation and perceived hunger. Obesity. 2013;21:336–343. doi: 10.1002/oby.20032.
    1. Paoli A., Bosco G., Camporesi E.M., Mangar D. Ketosis, ketogenic diet and food intake control: A complex relationship. Front. Psychol. 2015;6:27. doi: 10.3389/fpsyg.2015.00027.
    1. Alhussain M.H., Macdonald I.A., Taylor M.A. Irregular meal-pattern effects on energy expenditure, metabolism, and appetite regulation: A randomized controlled trial in healthy normal-weight women. Am. J. Clin. Nutr. 2016;104:21–32. doi: 10.3945/ajcn.115.125401.
    1. Lecerf J.M., de Lorgeril M. Dietary cholesterol: From physiology to cardiovascular risk. Br. J. Nutr. 2011;106:6–14. doi: 10.1017/S0007114511000237.
    1. Nayor M., Vasan R.S. Recent update to the us cholesterol treatment guidelines: A comparison with international guidelines. Circulation. 2016;133:1795–1806. doi: 10.1161/CIRCULATIONAHA.116.021407.
    1. Dietschy J.M., Brown M.S. Effect of alterations of the specific activity of the intracellular acetyl coa pool on apparent rates of hepatic cholesterogenesis. J. Lipid Res. 1974;15:508–516.
    1. Ness G.C., Zhao Z., Wiggins L. Insulin and glucagon modulate hepatic 3-hydroxy-3-methylglutaryl-coenzyme a reductase activity by affecting immunoreactive protein levels. J. Biol. Chem. 1994;269:29168–29172.
    1. Trapani L., Pallottini V. Hypercholesterolemia and 3-hydroxy 3-methylglutaryl coenzyme a reductase regulation during ageing. Sci. World J. 2009;9:564–574. doi: 10.1100/tsw.2009.81.
    1. Dong X.Y., Tang S.Q. Insulin-induced gene: A new regulator in lipid metabolism. Peptides. 2010;31:2145–2150. doi: 10.1016/j.peptides.2010.07.020.
    1. Paoli A. Ketogenic diet for obesity: Friend or foe? Int. J. Environ. Res. Public Health. 2014;11:2092–2107. doi: 10.3390/ijerph110202092.
    1. Paoli A., Rubini A., Volek J.S., Grimaldi K.A. Beyond weight loss: A review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur. J. Clin. Nutr. 2013;67:789–796. doi: 10.1038/ejcn.2013.116.
    1. Paoli A., Cenci L., Grimaldi K.A. Effect of ketogenic mediterranean diet with phytoextracts and low carbohydrates/high-protein meals on weight, cardiovascular risk factors, body composition and diet compliance in italian council employees. Nutr. J. 2011;10:112. doi: 10.1186/1475-2891-10-112.
    1. Sutherland W.H., de Jong S.A., Walker R.J. Effect of dietary cholesterol and fat on cell cholesterol transfer to postprandial plasma in hyperlipidemic men. Lipids. 2007;42:901–911. doi: 10.1007/s11745-007-3101-1.
    1. Paoli A., Moro T., Bosco G., Bianco A., Grimaldi K.A., Camporesi E., Mangar D. Effects of n-3 polyunsaturated fatty acids (omega-3) supplementation on some cardiovascular risk factors with a ketogenic mediterranean diet. Mar. Drugs. 2015;13:996–1009. doi: 10.3390/md13020996.
    1. Chapelot D. The role of snacking in energy balance: A biobehavioral approach. J. Nutr. 2011;141:158–162. doi: 10.3945/jn.109.114330.
    1. Leidy H.J., Armstrong C.L., Tang M., Mattes R.D., Campbell W.W. The influence of higher protein intake and greater eating frequency on appetite control in overweight and obese men. Obesity. 2010;18:1725–1732. doi: 10.1038/oby.2010.45.
    1. Belinova L., Kahleova H., Malinska H., Topolcan O., Windrichova J., Oliyarnyk O., Kazdova L., Hill M., Pelikanova T. The effect of meal frequency in a reduced-energy regimen on the gastrointestinal and appetite hormones in patients with type 2 diabetes: A randomised crossover study. PLoS ONE. 2017;12:e0174820. doi: 10.1371/journal.pone.0174820.
    1. McCrory M.A., Campbell W.W. Effects of eating frequency, snacking, and breakfast skipping on energy regulation: Symposium overview. J. Nutr. 2011;141:144–147. doi: 10.3945/jn.109.114918.
    1. Nas A., Mirza N., Hagele F., Kahlhofer J., Keller J., Rising R., Kufer T.A., Bosy-Westphal A. Impact of breakfast skipping compared with dinner skipping on regulation of energy balance and metabolic risk. Am. J. Clin. Nutr. 2017;105:1351–1361. doi: 10.3945/ajcn.116.151332.
    1. Almoosawi S., Vingeliene S., Karagounis L.G., Pot G.K. Chrono-nutrition: A review of current evidence from observational studies on global trends in time-of-day of energy intake and its association with obesity. Proc. Nutr. Soc. 2016;75:487–500. doi: 10.1017/S0029665116000306.
    1. Leech R.M., Timperio A., Livingstone K.M., Worsley A., McNaughton S.A. Temporal eating patterns: Associations with nutrient intakes, diet quality, and measures of adiposity. Am. J. Clin. Nutr. 2017;106:1121–1130. doi: 10.3945/ajcn.117.156588.
    1. Jakubowicz D., Barnea M., Wainstein J., Froy O. High caloric intake at breakfast vs. Dinner differentially influences weight loss of overweight and obese women. Obesity. 2013;21:2504–2512. doi: 10.1002/oby.20460.
    1. Dhurandhar E.J., Dawson J., Alcorn A., Larsen L.H., Thomas E.A., Cardel M., Bourland A.C., Astrup A., St-Onge M.-P., Hill J.O., et al. The effectiveness of breakfast recommendations on weight loss: A randomized controlled trial. Am. J. Clin. Nutr. 2014;100:507–513. doi: 10.3945/ajcn.114.089573.
    1. Uzhova I., Fuster V., Fernandez-Ortiz A., Ordovas J.M., Sanz J., Fernandez-Friera L., Lopez-Melgar B., Mendiguren J.M., Ibanez B., Bueno H., et al. The importance of breakfast in atherosclerosis disease: Insights from the pesa study. J. Am. Coll. Cardiol. 2017;70:1833–1842. doi: 10.1016/j.jacc.2017.08.027.
    1. Betts J.A., Chowdhury E.A., Gonzalez J.T., Richardson J.D., Tsintzas K., Thompson D. Is breakfast the most important meal of the day? Proc. Nutr. Soc. 2016;75:464–474. doi: 10.1017/S0029665116000318.
    1. Chowdhury E.A., Richardson J.D., Holman G.D., Tsintzas K., Thompson D., Betts J.A. The causal role of breakfast in energy balance and health: A randomized controlled trial in obese adults. Am. J. Clin. Nutr. 2016;103:747–756. doi: 10.3945/ajcn.115.122044.
    1. Betts J.A., Richardson J.D., Chowdhury E.A., Holman G.D., Tsintzas K., Thompson D. The causal role of breakfast in energy balance and health: A randomized controlled trial in lean adults. Am. J. Clin. Nutr. 2014;100:539–547. doi: 10.3945/ajcn.114.083402.
    1. Fong M., Caterson I.D., Madigan C.D. Are large dinners associated with excess weight, and does eating a smaller dinner achieve greater weight loss? A systematic review and meta-analysis. Br. J. Nutr. 2017;118:616–628. doi: 10.1017/S0007114517002550.
    1. Pavlovski I., Evans J.A., Mistlberger R.E. Feeding time entrains the olfactory bulb circadian clock in anosmic per2::Luc mice. Neuroscience. 2018;393:175–184. doi: 10.1016/j.neuroscience.2018.10.009.
    1. Laermans J., Broers C., Beckers K., Vancleef L., Steensels S., Thijs T., Tack J., Depoortere I. Shifting the circadian rhythm of feeding in mice induces gastrointestinal, metabolic and immune alterations which are influenced by ghrelin and the core clock gene bmal1. PLoS ONE. 2014;9:e110176. doi: 10.1371/journal.pone.0110176.
    1. Bouchard-Cannon P., Cheng H.Y. Scheduled feeding alters the timing of the suprachiasmatic nucleus circadian clock in dexras1-deficient mice. Chronobiol. Int. 2012;29:965–981. doi: 10.3109/07420528.2012.707264.
    1. Vollmers C., Gill S., DiTacchio L., Pulivarthy S.R., Le H.D., Panda S. Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc. Natl. Acad. Sci. USA. 2009;106:21453–21458. doi: 10.1073/pnas.0909591106.
    1. Albrecht U. The circadian clock, metabolism and obesity. Obes. Rev. 2017;18:25–33. doi: 10.1111/obr.12502.
    1. Scheer F.A., Kalsbeek A., Buijs R.M. Cardiovascular control by the suprachiasmatic nucleus: Neural and neuroendocrine mechanisms in human and rat. Biol. Chem. 2003;384:697–709. doi: 10.1515/BC.2003.078.
    1. Kim P., Oster H., Lehnert H., Schmid S.M., Salamat N., Barclay J.L., Maronde E., Inder W., Rawashdeh O. Coupling the circadian clock to homeostasis: The role of period in timing physiology. Endocr. Rev. 2019;40:66–95. doi: 10.1210/er.2018-00049.
    1. McHill A.W., Phillips A.J., Czeisler C.A., Keating L., Yee K., Barger L.K., Garaulet M., Scheer F.A., Klerman E.B. Later circadian timing of food intake is associated with increased body fat. Am. J. Clin. Nutr. 2017;106:1213–1219. doi: 10.3945/ajcn.117.161588.
    1. Poggiogalle E., Jamshed H., Peterson C.M. Circadian regulation of glucose, lipid, and energy metabolism in humans. Metabolism. 2018;84:11–27. doi: 10.1016/j.metabol.2017.11.017.
    1. Mazzoccoli G., Pazienza V., Vinciguerra M. Clock genes and clock-controlled genes in the regulation of metabolic rhythms. Chronobiol. Int. 2012;29:227–251. doi: 10.3109/07420528.2012.658127.
    1. Wehrens S.M.T., Christou S., Isherwood C., Middleton B., Gibbs M.A., Archer S.N., Skene D.J., Johnston J.D. Meal timing regulates the human circadian system. Curr. Biol. 2017;27:1768–1775. doi: 10.1016/j.cub.2017.04.059.
    1. Spiegel K., Tasali E., Penev P., Van Cauter E. Brief communication: Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann. Intern. Med. 2004;141:846–850. doi: 10.7326/0003-4819-141-11-200412070-00008.
    1. Maroni M.J., Capri K.M., Cushman A.V., Monteiro De Pina I.K., Chasse M.H., Seggio J.A. Constant light alters serum hormone levels related to thyroid function in male cd-1 mice. Chronobiol. Int. 2018;35:1456–1463. doi: 10.1080/07420528.2018.1488259.
    1. Garaulet M., Vera B., Bonnet-Rubio G., Gomez-Abellan P., Lee Y.C., Ordovas J.M. Lunch eating predicts weight-loss effectiveness in carriers of the common allele at perilipin1: The ontime (obesity, nutrigenetics, timing, mediterranean) study. Am. J. Clin. Nutr. 2016;104:1160–1166. doi: 10.3945/ajcn.116.134528.
    1. Garaulet M., Esteban Tardido A., Lee Y.C., Smith C.E., Parnell L.D., Ordovas J.M. Sirt1 and clock 3111t> c combined genotype is associated with evening preference and weight loss resistance in a behavioral therapy treatment for obesity. Int. J. Obes. (Lond.) 2012;36:1436–1441. doi: 10.1038/ijo.2011.270.
    1. Chaix A., Lin T., Le H.D., Chang M.W., Panda S. Time-restricted feeding prevents obesity and metabolic syndrome in mice lacking a circadian clock. Cell Metab. 2018;29:303–319. doi: 10.1016/j.cmet.2018.08.004.
    1. Fukuda Y., Morita T. Effects of the light-dark cycle on diurnal rhythms of diet-induced thermogenesis in humans. Chronobiol. Int. 2017;34:1465–1472. doi: 10.1080/07420528.2017.1362422.
    1. Oike H., Oishi K., Kobori M. Nutrients, clock genes, and chrononutrition. Curr. Nutr. Rep. 2014;3:204–212. doi: 10.1007/s13668-014-0082-6.
    1. Stenvers D.J., Scheer F., Schrauwen P., la Fleur S.E., Kalsbeek A. Circadian clocks and insulin resistance. Nat. Rev. Endocrinol. 2018;15:75–89. doi: 10.1038/s41574-018-0122-1.
    1. Carlson O., Martin B., Stote K.S., Golden E., Maudsley S., Najjar S.S., Ferrucci L., Ingram D.K., Longo D.L., Rumpler W.V., et al. Impact of reduced meal frequency without caloric restriction on glucose regulation in healthy, normal-weight middle-aged men and women. Metabolism. 2007;56:1729–1734. doi: 10.1016/j.metabol.2007.07.018.
    1. Stote K.S., Baer D.J., Spears K., Paul D.R., Harris G.K., Rumpler W.V., Strycula P., Najjar S.S., Ferrucci L., Ingram D.K., et al. A controlled trial of reduced meal frequency without caloric restriction in healthy, normal-weight, middle-aged adults. Am. J. Clin. Nutr. 2007;85:981–988. doi: 10.1093/ajcn/85.4.981.
    1. Rothschild J., Hoddy K.K., Jambazian P., Varady K.A. Time-restricted feeding and risk of metabolic disease: A review of human and animal studies. Nutr. Rev. 2014;72:308–318. doi: 10.1111/nure.12104.
    1. Longo V.D., Mattson M.P. Fasting: Molecular mechanisms and clinical applications. Cell Metab. 2014;19:181–192. doi: 10.1016/j.cmet.2013.12.008.
    1. Noyan H., El-Mounayri O., Isserlin R., Arab S., Momen A., Cheng H.S., Wu J., Afroze T., Li R.K., Fish J.E., et al. Cardioprotective signature of short-term caloric restriction. PLoS ONE. 2015;10:e0130658. doi: 10.1371/journal.pone.0130658.
    1. Fontana L., Villareal D.T., Das S.K., Smith S.R., Meydani S.N., Pittas A.G., Klein S., Bhapkar M., Rochon J., Ravussin E., et al. Effects of 2-year calorie restriction on circulating levels of igf-1, igf-binding proteins and cortisol in nonobese men and women: A randomized clinical trial. Aging Cell. 2016;15:22–27. doi: 10.1111/acel.12400.
    1. Most J., Tosti V., Redman L.M., Fontana L. Calorie restriction in humans: An update. Ageing Res. Rev. 2017;39:36–45. doi: 10.1016/j.arr.2016.08.005.
    1. Acosta-Rodriguez V.A., de Groot M.H.M., Rijo-Ferreira F., Green C.B., Takahashi J.S. Mice under caloric restriction self-impose a temporal restriction of food intake as revealed by an automated feeder system. Cell Metab. 2017;26:267–277. doi: 10.1016/j.cmet.2017.06.007.
    1. Castellini M.A., Rea L.D. The biochemistry of natural fasting at its limits. Experientia. 1992;48:575–582. doi: 10.1007/BF01920242.
    1. Paoli A., Bianco A., Grimaldi K.A. The ketogenic diet and sport: A possible marriage? Exerc. Sport Sci. Rev. 2015;43:153–162. doi: 10.1249/JES.0000000000000050.
    1. Paoli A., Bianco A., Grimaldi K.A., Lodi A., Bosco G. Long term successful weight loss with a combination biphasic ketogenic mediterranean diet and mediterranean diet maintenance protocol. Nutrients. 2013;5:5205–5217. doi: 10.3390/nu5125205.
    1. Veech R.L., Bradshaw P.C., Clarke K., Curtis W., Pawlosky R., King M.T. Ketone bodies mimic the life span extending properties of caloric restriction. IUBMB Life. 2017;69:305–314. doi: 10.1002/iub.1627.
    1. Tinsley G.M., Bounty P.M.L. Effects of intermittent fasting on body composition and clinical health markers in humans. Nutr. Rev. 2015;73:661–674. doi: 10.1093/nutrit/nuv041.
    1. Moro T., Tinsley G., Bianco A., Marcolin G., Pacelli Q.F., Battaglia G., Palma A., Gentil P., Neri M., Paoli A. Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. J. Transl. Med. 2016;14:290. doi: 10.1186/s12967-016-1044-0.
    1. Tinsley G.M., Forsse J.S., Butler N.K., Paoli A., Bane A.A., La Bounty P.M., Morgan G.B., Grandjean P.W. Time-restricted feeding in young men performing resistance training: A randomized controlled trial. Eur. J. Sport Sci. 2016;17:1–8. doi: 10.1080/17461391.2016.1223173.
    1. Kul S., Savas E., Ozturk Z.A., Karadag G. Does ramadan fasting alter body weight and blood lipids and fasting blood glucose in a healthy population? A meta-analysis. J. Relig. Health. 2014;53:929–942. doi: 10.1007/s10943-013-9687-0.
    1. Mammucari C., Schiaffino S., Sandri M. Downstream of akt: Foxo3 and mtor in the regulation of autophagy in skeletal muscle. Autophagy. 2008;4:524–526. doi: 10.4161/auto.5905.
    1. Gatica D., Chiong M., Lavandero S., Klionsky D.J. Molecular mechanisms of autophagy in the cardiovascular system. Circ. Res. 2015;116:456–467. doi: 10.1161/CIRCRESAHA.114.303788.
    1. Godar R.J., Ma X., Liu H., Murphy J.T., Weinheimer C.J., Kovacs A., Crosby S.D., Saftig P., Diwan A. Repetitive stimulation of autophagy-lysosome machinery by intermittent fasting preconditions the myocardium to ischemia-reperfusion injury. Autophagy. 2015;11:1537–1560. doi: 10.1080/15548627.2015.1063768.
    1. Ahmet I., Wan R., Mattson M.P., Lakatta E.G., Talan M. Cardioprotection by intermittent fasting in rats. Circulation. 2005;112:3115–3121. doi: 10.1161/CIRCULATIONAHA.105.563817.
    1. Soeters M.R., Soeters P.B., Schooneman M.G., Houten S.M., Romijn J.A. Adaptive reciprocity of lipid and glucose metabolism in human short-term starvation. Am. J. Physiol. 2012;303:E1397–E1407. doi: 10.1152/ajpendo.00397.2012.
    1. Mager D.E., Wan R., Brown M., Cheng A., Wareski P., Abernethy D.R., Mattson M.P. Caloric restriction and intermittent fasting alter spectral measures of heart rate and blood pressure variability in rats. FASEB J. 2006;20:631–637. doi: 10.1096/fj.05-5263com.
    1. Hatori M., Vollmers C., Zarrinpar A., DiTacchio L., Bushong E.A., Gill S., Leblanc M., Chaix A., Joens M., Fitzpatrick J.A., et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012;15:848–860. doi: 10.1016/j.cmet.2012.04.019.
    1. Albenberg L.G., Wu G.D. Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterology. 2014;146:1564–1572. doi: 10.1053/j.gastro.2014.01.058.
    1. Karbach S.H., Schonfelder T., Brandao I., Wilms E., Hormann N., Jackel S., Schuler R., Finger S., Knorr M., Lagrange J., et al. Gut microbiota promote angiotensin ii-induced arterial hypertension and vascular dysfunction. J. Am. Heart Assoc. 2016;5:e003698. doi: 10.1161/JAHA.116.003698.
    1. Li J., Zhao F., Wang Y., Chen J., Tao J., Tian G., Wu S., Liu W., Cui Q., Geng B., et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5:14. doi: 10.1186/s40168-016-0222-x.
    1. Koeth R.A., Levison B.S., Culley M.K., Buffa J.A., Wang Z., Gregory J.C., Org E., Wu Y., Li L., Smith J.D., et al. Gamma-butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of l-carnitine to tmao. Cell Metab. 2014;20:799–812. doi: 10.1016/j.cmet.2014.10.006.
    1. Zhu W., Gregory J.C., Org E., Buffa J.A., Gupta N., Wang Z., Li L., Fu X., Wu Y., Mehrabian M., et al. Gut microbial metabolite tmao enhances platelet hyperreactivity and thrombosis risk. Cell. 2016;165:111–124. doi: 10.1016/j.cell.2016.02.011.
    1. Asher G., Sassone-Corsi P. Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock. Cell. 2015;161:84–92. doi: 10.1016/j.cell.2015.03.015.
    1. Voigt R.M., Forsyth C.B., Green S.J., Mutlu E., Engen P., Vitaterna M.H., Turek F.W., Keshavarzian A. Circadian disorganization alters intestinal microbiota. PLoS ONE. 2014;9:e97500. doi: 10.1371/journal.pone.0097500.
    1. Schoenfeld B.J., Aragon A.A., Krieger J.W. Effects of meal frequency on weight loss and body composition: a meta-analysis. Nutr. Rev. 2015;73:69–82. doi: 10.1093/nutrit/nuu017.
    1. Thaiss C.A., Zeevi D., Levy M., Zilberman-Schapira G., Suez J., Tengeler A.C., Abramson L., Katz M.N., Korem T., Zmora N., et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell. 2014;159:514–529. doi: 10.1016/j.cell.2014.09.048.
    1. Phillips M.L. Circadian rhythms: Of owls, larks and alarm clocks. Nature. 2009;458:142–144. doi: 10.1038/458142a.
    1. Putilov A.A. Owls, larks, swifts, woodcocks and they are not alone: A historical review of methodology for multidimensional self-assessment of individual differences in sleep-wake pattern. Chronobiol. Int. 2017;34:426–437. doi: 10.1080/07420528.2017.1278704.
    1. Maukonen M., Kanerva N., Partonen T., Kronholm E., Tapanainen H., Kontto J., Männistö S. Chronotype differences in timing of energy and macronutrient intakes:A population-based study in adults. Obesity (Silver Spring) 2017;25:608–615. doi: 10.1002/oby.21747.
    1. Tahara Y., Shibata S. Entrainment of the mouse circadian clock: Effects of stress, exercise, and nutrition. Free Radic. Biol. Med. 2018;119:129–138. doi: 10.1016/j.freeradbiomed.2017.12.026.

Source: PubMed

3
Abonnere