The Pathophysiology of Gestational Diabetes Mellitus

Jasmine F Plows, Joanna L Stanley, Philip N Baker, Clare M Reynolds, Mark H Vickers, Jasmine F Plows, Joanna L Stanley, Philip N Baker, Clare M Reynolds, Mark H Vickers

Abstract

Gestational diabetes mellitus (GDM) is a serious pregnancy complication, in which women without previously diagnosed diabetes develop chronic hyperglycemia during gestation. In most cases, this hyperglycemia is the result of impaired glucose tolerance due to pancreatic β-cell dysfunction on a background of chronic insulin resistance. Risk factors for GDM include overweight and obesity, advanced maternal age, and a family history or any form of diabetes. Consequences of GDM include increased risk of maternal cardiovascular disease and type 2 diabetes and macrosomia and birth complications in the infant. There is also a longer-term risk of obesity, type 2 diabetes, and cardiovascular disease in the child. GDM affects approximately 16.5% of pregnancies worldwide, and this number is set to increase with the escalating obesity epidemic. While several management strategies exist-including insulin and lifestyle interventions-there is not yet a cure or an efficacious prevention strategy. One reason for this is that the molecular mechanisms underlying GDM are poorly defined. This review discusses what is known about the pathophysiology of GDM, and where there are gaps in the literature that warrant further exploration.

Keywords: gestational diabetes; molecular; pathology; pathophysiology; physiology; pregnancy.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Simplified diagram of insulin signaling. Binding of insulin to the insulin receptor (IR) activates IRS-1. Adiponectin promotes IRS-1 activation through AMP-activated protein kinase (AMPK), while pro-inflammatory cytokines activate protein kinase C (PKC) via IκB kinase (IKK), which inhibits IRS-1. IRS-1 activates phosphatidylinositol-3-kinase (PI3K), which phosphorylates phosphatidylinositol-4, 5-bisphosphate (PIP2) to phosphatidylinositol-3, 4, 5-phosphate (PIP3). PIP3 activates Akt2, which promotes GLUT4 translocation and glucose uptake into the cell.
Figure 2
Figure 2
β-cell, blood glucose, and insulin sensitivity during normal pregnancy and GDM. During normal pregnancy, β-cells undergo hyperplasia and hypertrophy in order to meet the metabolic demands of pregnancy. Blood glucose rises as insulin sensitivity falls. Following pregnancy, β-cells, blood glucose, and insulin sensitivity return to normal. During gestational diabetes, β-cells fail to compensate for the demands of pregnancy, and, when combined with reduced insulin sensitivity, this results in hyperglycemia. Following pregnancy, β-cells, blood glucose, and insulin sensitivity may return to normal or may remain impaired on a pathway toward GDM in future pregnancy or T2DM. Pancreas image obtained from The Noun Project under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/), by artist Arif Fajar Vulianto.
Figure 3
Figure 3
Organs involved in the pathophysiology of GDM (Images in this figure were obtained from The Noun Project under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Brain and Gut by Hunotika; Liver by Lavmik; Pancreas by Arif Fajar Vulianto; Placenta by Charmeleon Design; Muscle by Misha Petrishchev).

References

    1. American Diabetes Association Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2018. Diabetes Care. 2018;41:S13–S27. doi: 10.2337/dc18-S002.
    1. International Diabetes Federation . IDF Diabetes Atlas. 8th ed. IDF; Brussels, Belgium: 2017.
    1. Feig D.S., Moses R.G. Metformin Therapy during Pregnancy Good for the goose and good for the gosling too? Diabetes Care. 2011;34:2329–2330. doi: 10.2337/dc11-1153.
    1. Camelo Castillo W., Boggess K., Stürmer T., Brookhart M.A., Benjamin D.K., Jonsson Funk M. Association of Adverse Pregnancy Outcomes with Glyburide vs Insulin in Women with Gestational Diabetes. JAMA Pediatr. 2015;169:452–458. doi: 10.1001/jamapediatrics.2015.74.
    1. Di Cianni G., Miccoli R., Volpe L., Lencioni C., Del Prato S. Intermediate metabolism in normal pregnancy and in gestational diabetes. Diabetes Metab. Res. Rev. 2003;19:259–270. doi: 10.1002/dmrr.390.
    1. Catalano P.M., Tyzbir E.D., Roman N.M., Amini S.B., Sims E.A. Longitudinal changes in insulin release and insulin resistance in nonobese pregnant women. Am. J. Obstet. Gynecol. 1991;165:1667–1672. doi: 10.1016/0002-9378(91)90012-G.
    1. Phelps R.L., Metzger B.E., Freinkel N. Carbohydrate metabolism in pregnancy: XVII. Diurnal profiles of plasma glucose, insulin, free fatty acids, triglycerides, cholesterol, and individual amino acids in late normal pregnancy. Am. J. Obstet. Gynecol. 1981;140:730–736. doi: 10.1016/0002-9378(81)90731-6.
    1. Parsons J.A., Brelje T.C., Sorenson R.L. Adaptation of islets of Langerhans to pregnancy: Increased islet cell proliferation and insulin secretion correlates with the onset of placental lactogen secretion. Endocrinology. 1992;130:1459–1466. doi: 10.1210/endo.130.3.1537300.
    1. Ryan E.A., O’Sullivan M.J., Skyler J.S. Insulin Action During Pregnancy: Studies with the Euglycemic Clamp Technique. Diabetes. 1985;34:380–389. doi: 10.2337/diab.34.4.380.
    1. Chiefari E., Arcidiacono B., Foti D., Brunetti A. Gestational diabetes mellitus: An updated overview. J. Endocrinol. Investig. 2017;40:899–909. doi: 10.1007/s40618-016-0607-5.
    1. HAPO Study Cooperative Research Group. Metzger B.E., Lowe L.P., Dyer A.R., Trimble E.R., Chaovarindr U., Coustan D.R., Hadden D.R., McCance D.R., Hod M., et al. Hyperglycemia and adverse pregnancy outcomes. N. Engl. J. Med. 2008;358:1991–2002. doi: 10.1056/NEJMoa0707943.
    1. Egan A.M., Vellinga A., Harreiter J., Simmons D., Desoye G., Corcoy R., Adelantado J.M., Devlieger R., Assche A.V., Galjaard S., et al. Epidemiology of gestational diabetes mellitus according to IADPSG/WHO 2013 criteria among obese pregnant women in Europe. Diabetologia. 2017:1–9. doi: 10.1007/s00125-017-4353-9.
    1. Williams C.B., Iqbal S., Zawacki C.M., Yu D., Brown M.B., Herman W.H. Effect of selective screening for gestational diabetes. Diabetes Care. 1999;22:418–421. doi: 10.2337/diacare.22.3.418.
    1. Griffin M.E., Coffey M., Johnson H., Scanlon P., Foley M., Stronge J., O’Meara N.M., Firth R.G. Universal vs. risk factor-based screening for gestational diabetes mellitus: Detection rates, gestation at diagnosis and outcome. Diabet. Med. J. Br. Diabet. Assoc. 2000;17:26–32. doi: 10.1046/j.1464-5491.2000.00214.x.
    1. Capula C., Chiefari E., Vero A., Arcidiacono B., Iiritano S., Puccio L., Pullano V., Foti D.P., Brunetti A., Vero R. Gestational Diabetes Mellitus: Screening and Outcomes in Southern Italian Pregnant Women. [(accessed on 9 October 2018)]; Available online:
    1. Zhu Y., Zhang C. Prevalence of Gestational Diabetes and Risk of Progression to Type 2 Diabetes: A Global Perspective. Curr. Diabetes Rep. 2016;16:7. doi: 10.1007/s11892-015-0699-x.
    1. Yuen L., Wong V.W. Gestational diabetes mellitus: Challenges for different ethnic groups. World J. Diabetes. 2015;6:1024–1032. doi: 10.4239/wjd.v6.i8.1024.
    1. Moses R.G., Wong V.C.K., Lambert K., Morris G.J., Gil F.S. Seasonal Changes in the Prevalence of Gestational Diabetes Mellitus. Diabetes Care. 2016;39:1218–1221. doi: 10.2337/dc16-0451.
    1. Haneda M., Noda M., Origasa H., Noto H., Yabe D., Fujita Y., Goto A., Kondo T., Araki E. Japanese Clinical Practice Guideline for Diabetes 2016. J. Diabetes Investig. 2018;9:657–697. doi: 10.1111/jdi.12810.
    1. Chiu K.C., Go R.C., Aoki M., Riggs A.C., Tanizawa Y., Acton R.T., Bell D.S., Goldenberg R.L., Roseman J.M., Permutt M.A. Glucokinase gene in gestational diabetes mellitus: Population association study and molecular scanning. Diabetologia. 1994;37:104–110. doi: 10.1007/BF00428785.
    1. Damm P., Kühl C., Buschard K., Jakobsen B.K., Svejgaard A., Sodoyez-Goffaux F., Shattock M., Bottazzo G.F., Mølsted-Pedersen L. Prevalence and predictive value of islet cell antibodies and insulin autoantibodies in women with gestational diabetes. Diabet. Med. J. Br. Diabet. Assoc. 1994;11:558–563. doi: 10.1111/j.1464-5491.1994.tb02035.x.
    1. Buchanan T.A., Xiang A.H. Gestational diabetes mellitus. J. Clin. Investig. 2005;115:485–491. doi: 10.1172/JCI200524531.
    1. Catalano P.M., Huston L., Amini S.B., Kalhan S.C. Longitudinal changes in glucose metabolism during pregnancy in obese women with normal glucose tolerance and gestational diabetes mellitus. Am. J. Obstet. Gynecol. 1999;180:903–916. doi: 10.1016/S0002-9378(99)70662-9.
    1. Pendergrass M., Fazioni E., DeFronzo R.A. Non-insulin-dependent diabetes mellitus and gestational diabetes mellitus: Same disease, another name? Diabetes Rev. 1995;3:566–583.
    1. Zajdenverg L., Negrato C.A. Gestational diabetes mellitus and type 2 diabetes: Same disease in a different moment of life? Maybe not. Arch. Endocrinol. MeTable. 2017;61:208–210. doi: 10.1590/2359-3997000000276.
    1. Ben-Haroush A., Yogev Y., Hod M. Epidemiology of gestational diabetes mellitus and its association with Type 2 diabetes. Diabet. Med. 2004;21:103–113. doi: 10.1046/j.1464-5491.2003.00985.x.
    1. Metzger B.E., Buchanan T.A., Coustan D.R., de Leiva A., Dunger D.B., Hadden D.R., Hod M., Kitzmiller J.L., Kjos S.L., Oats J.N., et al. Summary and Recommendations of the Fifth International Workshop-Conference on Gestational Diabetes Mellitus. Diabetes Care. 2007;30:S251–S260. doi: 10.2337/dc07-s225.
    1. Okosun I.S., Chandra K.M.D., Boev A., Boltri J.M., Choi S.T., Parish D.C., Dever G.E.A. Abdominal adiposity in U.S. adults: Prevalence and trends, 1960-2000. Prev. Med. 2004;39:197–206. doi: 10.1016/j.ypmed.2004.01.023.
    1. Durnwald C. Gestational diabetes: Linking epidemiology, excessive gestational weight gain, adverse pregnancy outcomes, and future metabolic syndrome. Semin. Perinatol. 2015;39:254–258. doi: 10.1053/j.semperi.2015.05.002.
    1. Zhang C., Tobias D.K., Chavarro J.E., Bao W., Wang D., Ley S.H., Hu F.B. Adherence to healthy lifestyle and risk of gestational diabetes mellitus: prospective cohort study. BMJ. 2014;349:g5450. doi: 10.1136/bmj.g5450.
    1. Jenum A.K., Mørkrid K., Sletner L., Vange S., Torper J.L., Nakstad B., Voldner N., Rognerud-Jensen O.H., Berntsen S., Mosdøl A., et al. Impact of ethnicity on gestational diabetes identified with the WHO and the modified International Association of Diabetes and Pregnancy Study Groups criteria: A population-based cohort study. Eur. J. Endocrinol. 2012;166:317–324. doi: 10.1530/EJE-11-0866.
    1. Anghebem-Oliveira M.I., Martins B.R., Alberton D., de Ramos E.A.S., Picheth G., de Rego F.G.M. Type 2 diabetes-associated genetic variants of FTO, LEPR, PPARg, and TCF7L2 in gestational diabetes in a Brazilian population. Arch. Endocrinol. MeTable. 2017;61:238–248. doi: 10.1590/2359-3997000000258.
    1. Lao T.T., Ho L.-F., Chan B.C.P., Leung W.-C. Maternal Age and Prevalence of Gestational Diabetes Mellitus. Diabetes Care. 2006;29:948–949. doi: 10.2337/diacare.29.04.06.dc05-2568.
    1. Pettitt D.J., Jovanovic L. Low Birth Weight as a Risk Factor for Gestational Diabetes, Diabetes, and Impaired Glucose Tolerance During Pregnancy. Diabetes Care. 2007;30:S147–S149. doi: 10.2337/dc07-s207.
    1. Levy A., Wiznitzer A., Holcberg G., Mazor M., Sheiner E. Family history of diabetes mellitus as an independent risk factor for macrosomia and cesarean delivery. J. Matern. Fetal Neonatal Med. 2010;23:148–152. doi: 10.3109/14767050903156650.
    1. Bowers K., Tobias D.K., Yeung E., Hu F.B., Zhang C. A prospective study of prepregnancy dietary fat intake and risk of gestational diabetes. Am. J. Clin. Nutr. 2012;95:446–453. doi: 10.3945/ajcn.111.026294.
    1. Zhang C., Schulze M.B., Solomon C.G., Hu F.B. A prospective study of dietary patterns, meat intake and the risk of gestational diabetes mellitus. Diabetologia. 2006;49:2604–2613. doi: 10.1007/s00125-006-0422-1.
    1. Taschereau-Charron A., Da Silva M.S., Bilodeau J.-F., Morisset A.-S., Julien P., Rudkowska I. Alterations of fatty acid profiles in gestational diabetes and influence of the diet. Maturitas. 2017;99:98–104. doi: 10.1016/j.maturitas.2017.01.014.
    1. Zhang C., Liu S., Solomon C.G., Hu F.B. Dietary Fiber Intake, Dietary Glycemic Load, and the Risk for Gestational Diabetes Mellitus. Diabetes Care. 2006;29:2223–2230. doi: 10.2337/dc06-0266.
    1. Bao W., Bowers K., Tobias D.K., Olsen S.F., Chavarro J., Vaag A., Kiely M., Zhang C. Prepregnancy low-carbohydrate dietary pattern and risk of gestational diabetes mellitus: A prospective cohort study. Am. J. Clin. Nutr. 2014;99:1378–1384. doi: 10.3945/ajcn.113.082966.
    1. Sivan E., Boden G. Free fatty acids, insulin resistance, and pregnancy. Curr. Diabetes Rep. 2003;3:319–322. doi: 10.1007/s11892-003-0024-y.
    1. Fung T.T., McCullough M.L., Newby P.K., Manson J.E., Meigs J.B., Rifai N., Willett W.C., Hu F.B. Diet-quality scores and plasma concentrations of markers of inflammation and endothelial dysfunction. Am. J. Clin. Nutr. 2005;82:163–173. doi: 10.1093/ajcn/82.1.163.
    1. Zhang C. Gestational Diabetes during and after Pregnancy. Springer; London, UK: 2010. Risk Factors for Gestational Diabetes: From an Epidemiological Standpoint; pp. 71–81.
    1. Dahlquist G. The aetiology of type 1 diabetes: An epidemiological perspective. Acta Paediatr. Oslo Nor. 1992 Suppl. 1998;425:5–10. doi: 10.1111/j.1651-2227.1998.tb01244.x.
    1. Lijinsky W. N-Nitroso compounds in the diet. Mutat. Res. 1999;443:129–138. doi: 10.1016/S1383-5742(99)00015-0.
    1. Bao W., Bowers K., Tobias D.K., Hu F.B., Zhang C. Prepregnancy Dietary Protein Intake, Major Dietary Protein Sources, and the Risk of Gestational Diabetes Mellitus. Diabetes Care. 2013;36:2001–2008. doi: 10.2337/dc12-2018.
    1. Maslova E., Hansen S., Grunnet L.G., Strøm M., Bjerregaard A.A., Hjort L., Kampmann F.B., Madsen C.M., Thuesen A.B., Bech B.H., et al. Maternal protein intake in pregnancy and offspring metabolic health at age 9–16 y: Results from a Danish cohort of gestational diabetes mellitus pregnancies and controls. Am. J. Clin. Nutr. 2017:ajcn128637. doi: 10.3945/ajcn.115.128637.
    1. Pang W.W., Colega M., Cai S., Chan Y.H., Padmapriya N., Chen L.-W., Soh S.-E., Han W.M., Tan K.H., Lee Y.S., et al. Higher Maternal Dietary Protein Intake Is Associated with a Higher Risk of Gestational Diabetes Mellitus in a Multiethnic Asian Cohort. J. Nutr. 2017;147:653–660. doi: 10.3945/jn.116.243881.
    1. Tremblay F., Lavigne C., Jacques H., Marette A. Role of dietary proteins and amino acids in the pathogenesis of insulin resistance. Annu. Rev. Nutr. 2007;27:293–310. doi: 10.1146/annurev.nutr.25.050304.092545.
    1. Zhang F., Zhao S., Yan W., Xia Y., Chen X., Wang W., Zhang J., Gao C., Peng C., Yan F., et al. Branched Chain Amino Acids Cause Liver Injury in Obese/Diabetic Mice by Promoting Adipocyte Lipolysis and Inhibiting Hepatic Autophagy. EBioMedicine. 2016;13:157–167. doi: 10.1016/j.ebiom.2016.10.013.
    1. Garofano A., Czernichow P., Bréant B. In utero undernutrition impairs rat beta-cell development. Diabetologia. 1997;40:1231–1234. doi: 10.1007/s001250050812.
    1. Ikenasio-Thorpe B.A., Breier B.H., Vickers M.H., Fraser M. Prenatal influences on susceptibility to diet-induced obesity are mediated by altered neuroendocrine gene expression. J. Endocrinol. 2007;193:31–37. doi: 10.1677/joe.1.07017.
    1. Vickers M.H., Breier B.H., Cutfield W.S., Hofman P.L., Gluckman P.D. Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition. Am. J. Physiol. Endocrinol. MeTable. 2000;279:E83-87. doi: 10.1152/ajpendo.2000.279.1.E83.
    1. Desai M., Jellyman J.K., Han G., Beall M., Lane R.H., Ross M.G. Maternal obesity and high-fat diet program offspring metabolic syndrome. Am. J. Obstet. Gynecol. 2014;211:237.e1–237.e13. doi: 10.1016/j.ajog.2014.03.025.
    1. Portha B., Chavey A., Movassat J. Early-Life Origins of Type 2 Diabetes: Fetal Programming of the Beta-Cell Mass. Exp. Diabetes Res. 2011;2011 doi: 10.1155/2011/105076.
    1. Byrn M., Penckofer S. The relationship between gestational diabetes and antenatal depression. J. Obstet. Gynecol. Neonatal Nurs. 2015;44:246–255. doi: 10.1111/1552-6909.12554.
    1. Tan P.C., Ling L.P., Omar S.Z. The 50-g glucose challenge test and pregnancy outcome in a multiethnic Asian population at high risk for gestational diabetes. Int. J. Gynecol. Obstet. 2009;105:50–55. doi: 10.1016/j.ijgo.2008.11.038.
    1. Peters R.K., Kjos S.L., Xiang A., Buchanan T.A. Long-term diabetogenic effect of single pregnancy in women with previous gestational diabetes mellitus. Lancet Lond. Engl. 1996;347:227–230. doi: 10.1016/S0140-6736(96)90405-5.
    1. Shostrom D.C.V., Sun Y., Oleson J.J., Snetselaar L.G., Bao W. History of Gestational Diabetes Mellitus in Relation to Cardiovascular Disease and Cardiovascular Risk Factors in US Women. Front. Endocrinol. 2017;8:144. doi: 10.3389/fendo.2017.00144.
    1. World Health Organization (WHO) Global Action Plan for the Prevention and Control of NCDs 2013–2020. WHO; Geneva, Switzerland: 2013.
    1. Schwartz R., Gruppuso P.A., Petzold K., Brambilla D., Hiilesmaa V., Teramo K.A. Hyperinsulinemia and macrosomia in the fetus of the diabetic mother. Diabetes Care. 1994;17:640–648. doi: 10.2337/diacare.17.7.640.
    1. Fetita L.-S., Sobngwi E., Serradas P., Calvo F., Gautier J.-F. Consequences of Fetal Exposure to Maternal Diabetes in Offspring. J. Clin. Endocrinol. MeTable. 2006;91:3718–3724. doi: 10.1210/jc.2006-0624.
    1. Gascho C.L.L., Leandro D.M.K., Ribeiro E., Silva T., Silva J.C. Predictors of cesarean delivery in pregnant women with gestational diabetes mellitus. Rev. Bras. Ginecol. Obstet. 2017;39:60–65. doi: 10.1055/s-0037-1598644.
    1. Scifres C.M., Feghali M., Dumont T., Althouse A.D., Speer P., Caritis S.N., Catov J.M. Large-for-Gestational-Age Ultrasound Diagnosis and Risk for Cesarean Delivery in Women With Gestational Diabetes Mellitus. Obstet. Gynecol. 2015;126:978–986. doi: 10.1097/AOG.0000000000001097.
    1. Esakoff T.F., Cheng Y.W., Sparks T.N., Caughey A.B. The association between birthweight 4000 g or greater and perinatal outcomes in patients with and without gestational diabetes mellitus. Am. J. Obstet. Gynecol. 2009;200:672.e1–672.e4. doi: 10.1016/j.ajog.2009.02.035.
    1. Langer O., Yogev Y., Most O., Xenakis E.M.J. Gestational diabetes: The consequences of not treating. Am. J. Obstet. Gynecol. 2005;192:989–997. doi: 10.1016/j.ajog.2004.11.039.
    1. Vohr B.R., Boney C.M. Gestational diabetes: the forerunner for the development of maternal and childhood obesity and metabolic syndrome? J. Matern. Fetal Neonatal Med. 2008;21:149–157. doi: 10.1080/14767050801929430.
    1. Tam W.H., Ma R.C.W., Ozaki R., Li A.M., Chan M.H.M., Yuen L.Y., Lao T.T.H., Yang X., Ho C.S., Tutino G.E., et al. In Utero Exposure to Maternal Hyperglycemia Increases Childhood Cardiometabolic Risk in Offspring. Diabetes Care. 2017;40:679–686. doi: 10.2337/dc16-2397.
    1. Petitt D.J., Bennett P.H., Knowler W.C., Baird H.R., Aleck K.A. Gestational diabetes mellitus and impaired glucose tolerance during pregnancy. Long-term effects on obesity and glucose tolerance in the offspring. Diabetes. 1985;34(Suppl. 2):119–122. doi: 10.2337/diab.34.2.S119.
    1. Lee S.C., Pu Y.B., Chow C.C., Yeung V.T., Ko G.T., So W.Y., Li J.K., Chan W.B., Ma R.C., Critchley J.A., et al. Diabetes in Hong Kong Chinese: Evidence for familial clustering and parental effects. Diabetes Care. 2000;23:1365–1368. doi: 10.2337/diacare.23.9.1365.
    1. Homko C., Sivan E., Chen X., Reece E.A., Boden G. Insulin secretion during and after pregnancy in patients with gestational diabetes mellitus. J. Clin. Endocrinol. MeTable. 2001;86:568–573. doi: 10.1210/jc.86.2.568.
    1. Weir G.C., Laybutt D.R., Kaneto H., Bonner-Weir S., Sharma A. Beta-cell adaptation and decompensation during the progression of diabetes. Diabetes. 2001;50(Suppl. 1):S154–159. doi: 10.2337/diabetes.50.2007.S154.
    1. DeFronzo R.A. From the Triumvirate to the Ominous Octet: A New Paradigm for the Treatment of Type 2 Diabetes Mellitus. Diabetes. 2009;58:773–795. doi: 10.2337/db09-9028.
    1. Zraika S., Hull R.L., Verchere C.B., Clark A., Potter K.J., Fraser P.E., Raleigh D.P., Kahn S.E. Toxic oligomers and islet beta cell death: Guilty by association or convicted by circumstantial evidence? Diabetologia. 2010;53:1046–1056. doi: 10.1007/s00125-010-1671-6.
    1. Prentki M., Nolan C.J. Islet beta cell failure in type 2 diabetes. J. Clin. Investig. 2006;116:1802–1812. doi: 10.1172/JCI29103.
    1. Ashcroft F.M., Rohm M., Clark A., Brereton M.F. Is Type 2 Diabetes a Glycogen Storage Disease of Pancreatic β Cells? Cell MeTable. 2017;26:17–23. doi: 10.1016/j.cmet.2017.05.014.
    1. Delghingaro-Augusto V., Nolan C.J., Gupta D., Jetton T.L., Latour M.G., Peshavaria M., Madiraju S.R.M., Joly E., Peyot M.-L., Prentki M., et al. Islet beta cell failure in the 60% pancreatectomised obese hyperlipidaemic Zucker fatty rat: Severe dysfunction with altered glycerolipid metabolism without steatosis or a falling beta cell mass. Diabetologia. 2009;52:1122–1132. doi: 10.1007/s00125-009-1317-8.
    1. Simmons R.A., Templeton L.J., Gertz S.J. Intrauterine growth retardation leads to the development of type 2 diabetes in the rat. Diabetes. 2001;50:2279–2286. doi: 10.2337/diabetes.50.10.2279.
    1. Pinney S.E., Simmons R.A. Epigenetic mechanisms in the development of type 2 diabetes. Trends Endocrinol. Metab. 2010;21:223–229. doi: 10.1016/j.tem.2009.10.002.
    1. Auffret J., Freemark M., Carré N., Mathieu Y., Tourrel-Cuzin C., Lombès M., Movassat J., Binart N. Defective prolactin signaling impairs pancreatic β-cell development during the perinatal period. Am. J. Physiol. Endocrinol. MeTable. 2013;305:E1309–E1318. doi: 10.1152/ajpendo.00636.2012.
    1. Butler A.E., Janson J., Bonner-Weir S., Ritzel R., Rizza R.A., Butler P.C. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52:102–110. doi: 10.2337/diabetes.52.1.102.
    1. Rahier J., Guiot Y., Goebbels R.M., Sempoux C., Henquin J.C. Pancreatic beta-cell mass in European subjects with type 2 diabetes. Diabetes Obes. MeTable. 2008;10(Suppl. 4):32–42. doi: 10.1111/j.1463-1326.2008.00969.x.
    1. Van Assche F.A., Aerts L., De Prins F. A morphological study of the endocrine pancreas in human pregnancy. Br. J. Obstet. Gynaecol. 1978;85:818–820. doi: 10.1111/j.1471-0528.1978.tb15835.x.
    1. Catalano P.M. Trying to understand gestational diabetes. Diabet. Med. 2014;31:273–281. doi: 10.1111/dme.12381.
    1. Barbour L.A., McCurdy C.E., Hernandez T.L., Kirwan J.P., Catalano P.M., Friedman J.E. Cellular mechanisms for insulin resistance in normal pregnancy and gestational diabetes. Diabetes Care. 2007;30(Suppl. 2):S112–S119. doi: 10.2337/dc07-s202.
    1. Friedman J.E., Kirwan J.P., Jing M., Presley L., Catalano P.M. Increased Skeletal Muscle Tumor Necrosis Factor-α and Impaired Insulin Signaling Persist in Obese Women with Gestational Diabetes Mellitus 1 Year Postpartum. Diabetes. 2008;57:606–613. doi: 10.2337/db07-1356.
    1. Morton G.J., Cummings D.E., Baskin D.G., Barsh G.S., Schwartz M.W. Central nervous system control of food intake and body weight. Nature. 2006;443:289–295. doi: 10.1038/nature05026.
    1. Thorens B. Glucose sensing and the pathogenesis of obesity and type 2 diabetes. Int. J. Obes. 2005. 2008;32(Suppl. 6):S62–S71. doi: 10.1038/ijo.2008.208.
    1. Cai S., Tan S., Gluckman P.D., Godfrey K.M., Saw S.-M., Teoh O.H., Chong Y.-S., Meaney M.J., Kramer M.S., Gooley J.J., et al. Sleep Quality and Nocturnal Sleep Duration in Pregnancy and Risk of Gestational Diabetes Mellitus. Sleep. 2017;40 doi: 10.1093/sleep/zsw058.
    1. Facco F.L., Grobman W.A., Reid K.J., Parker C.B., Hunter S.M., Silver R.M., Basner R.C., Saade G.R., Pien G.W., Manchanda S., et al. Objectively measured short sleep duration and later sleep midpoint in pregnancy are associated with a higher risk of gestational diabetes. Am. J. Obstet. Gynecol. 2017 doi: 10.1016/j.ajog.2017.05.066.
    1. Fukami T., Sun X., Li T., Desai M., Ross M.G. Mechanism of Programmed Obesity in Intrauterine Fetal Growth Restricted Offspring: Paradoxically Enhanced Appetite Stimulation in Fed and Fasting States. Reprod. Sci. 2012;19:423–430. doi: 10.1177/1933719111424448.
    1. Plagemann A., Harder T., Brunn M., Harder A., Roepke K., Wittrock-Staar M., Ziska T., Schellong K., Rodekamp E., Melchior K., et al. Hypothalamic proopiomelanocortin promoter methylation becomes altered by early overfeeding: An epigenetic model of obesity and the metabolic syndrome. J. Physiol. 2009;587:4963–4976. doi: 10.1113/jphysiol.2009.176156.
    1. Farr O.M., Gavrieli A., Mantzoros C.S. Leptin applications in 2015: What have we learned about leptin and obesity? Curr. Opin. Endocrinol. Diabetes Obes. 2015;22:353–359. doi: 10.1097/MED.0000000000000184.
    1. Zhang Y., Proenca R., Maffei M., Barone M., Leopold L., Friedman J.M. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–432. doi: 10.1038/372425a0.
    1. Farooqi I.S., O’Rahilly S. 20 years of leptin: Human disorders of leptin action. J. Endocrinol. 2014;223:T63–T70. doi: 10.1530/JOE-14-0480.
    1. Hamilton B.S., Paglia D., Kwan A.Y., Deitel M. Increased obese mRNA expression in omental fat cells from massively obese humans. Nat. Med. 1995;1:953–956. doi: 10.1038/nm0995-953.
    1. Koch C.E., Lowe C., Pretz D., Steger J., Williams L.M., Tups A. High-fat diet induces leptin resistance in leptin-deficient mice. J. Neuroendocrinol. 2014;26:58–67. doi: 10.1111/jne.12131.
    1. Honnorat D., Disse E., Millot L., Mathiotte E., Claret M., Charrie A., Drai J., Garnier L., Maurice C., Durand E., et al. Are third-trimester adipokines associated with higher metabolic risk among women with gestational diabetes? Diabetes MeTable. 2015;41:393–400. doi: 10.1016/j.diabet.2015.03.003.
    1. Maple-Brown L., Ye C., Hanley A.J., Connelly P.W., Sermer M., Zinman B., Retnakaran R. Maternal pregravid weight is the primary determinant of serum leptin and its metabolic associations in pregnancy, irrespective of gestational glucose tolerance status. J. Clin. Endocrinol. MeTable. 2012;97:4148–4155. doi: 10.1210/jc.2012-2290.
    1. Masuzaki H., Ogawa Y., Sagawa N., Hosoda K., Matsumoto T., Mise H., Nishimura H., Yoshimasa Y., Tanaka I., Mori T., et al. Nonadipose tissue production of leptin: Leptin as a novel placenta-derived hormone in humans. Nat. Med. 1997;3:1029–1033. doi: 10.1038/nm0997-1029.
    1. Pérez-Pérez A., Maymó J.L., Gambino Y.P., Guadix P., Dueñas J.L., Varone C.L., Sánchez-Margalet V. Activated translation signaling in placenta from pregnant women with gestational diabetes mellitus: Possible role of leptin. Horm. Metab. Res. 2013;45:436–442. doi: 10.1055/s-0032-1333276.
    1. Williams M.A., Qiu C., Muy-Rivera M., Vadachkoria S., Song T., Luthy D.A. Plasma adiponectin concentrations in early pregnancy and subsequent risk of gestational diabetes mellitus. J. Clin. Endocrinol. MeTable. 2004;89:2306–2311. doi: 10.1210/jc.2003-031201.
    1. Retnakaran R., Hanley A.J.G., Raif N., Connelly P.W., Sermer M., Zinman B. Reduced adiponectin concentration in women with gestational diabetes: A potential factor in progression to type 2 diabetes. Diabetes Care. 2004;27:799–800. doi: 10.2337/diacare.27.3.799.
    1. Yamauchi T., Kamon J., Minokoshi Y., Ito Y., Waki H., Uchida S., Yamashita S., Noda M., Kita S., Ueki K., et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 2002;8:1288–1295. doi: 10.1038/nm788.
    1. Kishida K., Funahashi T., Shimomura I. Molecular mechanisms of diabetes and atherosclerosis: Role of adiponectin. Endocr. Metab. Immune Disord. Drug Targets. 2012;12:118–131. doi: 10.2174/187153012800493468.
    1. Chen J., Tan B., Karteris E., Zervou S., Digby J., Hillhouse E.W., Vatish M., Randeva H.S. Secretion of adiponectin by human placenta: Differential modulation of adiponectin and its receptors by cytokines. Diabetologia. 2006;49:1292–1302. doi: 10.1007/s00125-006-0194-7.
    1. Fasshauer M., Blüher M., Stumvoll M. Adipokines in gestational diabetes. Lancet Diabetes Endocrinol. 2014;2:488–499. doi: 10.1016/S2213-8587(13)70176-1.
    1. Bouchard L., Hivert M.-F., Guay S.-P., St-Pierre J., Perron P., Brisson D. Placental adiponectin gene DNA methylation levels are associated with mothers’ blood glucose concentration. Diabetes. 2012;61:1272–1280. doi: 10.2337/db11-1160.
    1. Succurro E., Marini M.A., Frontoni S., Hribal M.L., Andreozzi F., Lauro R., Perticone F., Sesti G. Insulin secretion in metabolically obese, but normal weight, and in metabolically healthy but obese individuals. Obesity. 2008;16:1881–1886. doi: 10.1038/oby.2008.308.
    1. Wajchenberg B.L. Subcutaneous and visceral adipose tissue: Their relation to the metabolic syndrome. Endocr. Rev. 2000;21:697–738. doi: 10.1210/edrv.21.6.0415.
    1. Stefan N., Kantartzis K., Machann J., Schick F., Thamer C., Rittig K., Balletshofer B., Machicao F., Fritsche A., Häring H.-U. Identification and characterization of metabolically benign obesity in humans. Arch. Intern. Med. 2008;168:1609–1616. doi: 10.1001/archinte.168.15.1609.
    1. Rojas-Rodriguez R., Lifshitz L.M., Bellve K.D., Min S.Y., Pires J., Leung K., Boeras C., Sert A., Draper J.T., Corvera S., et al. Human adipose tissue expansion in pregnancy is impaired in gestational diabetes mellitus. Diabetologia. 2015;58:2106–2114. doi: 10.1007/s00125-015-3662-0.
    1. Lappas M. Effect of pre-existing maternal obesity, gestational diabetes and adipokines on the expression of genes involved in lipid metabolism in adipose tissue. Metabolism. 2014;63:250–262. doi: 10.1016/j.metabol.2013.10.001.
    1. Kautzky-Willer A., Krssak M., Winzer C., Pacini G., Tura A., Farhan S., Wagner O., Brabant G., Horn R., Stingl H., et al. Increased intramyocellular lipid concentration identifies impaired glucose metabolism in women with previous gestational diabetes. Diabetes. 2003;52:244–251. doi: 10.2337/diabetes.52.2.244.
    1. Forbes S., Taylor-Robinson S.D., Patel N., Allan P., Walker B.R., Johnston D.G. Increased prevalence of non-alcoholic fatty liver disease in European women with a history of gestational diabetes. Diabetologia. 2011;54:641–647. doi: 10.1007/s00125-010-2009-0.
    1. Kim J.-H., Bachmann R.A., Chen J. Interleukin-6 and insulin resistance. Vitam. Horm. 2009;80:613–633. doi: 10.1016/S0083-6729(08)00621-3.
    1. Atègbo J.-M., Grissa O., Yessoufou A., Hichami A., Dramane K.L., Moutairou K., Miled A., Grissa A., Jerbi M., Tabka Z., et al. Modulation of adipokines and cytokines in gestational diabetes and macrosomia. J. Clin. Endocrinol. MeTable. 2006;91:4137–4143. doi: 10.1210/jc.2006-0980.
    1. Kirwan J.P., Hauguel-De Mouzon S., Lepercq J., Challier J.-C., Huston-Presley L., Friedman J.E., Kalhan S.C., Catalano P.M. TNF-alpha is a predictor of insulin resistance in human pregnancy. Diabetes. 2002;51:2207–2213. doi: 10.2337/diabetes.51.7.2207.
    1. Radaelli T., Varastehpour A., Catalano P., Hauguel-de Mouzon S. Gestational diabetes induces placental genes for chronic stress and inflammatory pathways. Diabetes. 2003;52:2951–2958. doi: 10.2337/diabetes.52.12.2951.
    1. Lappas M., Mitton A., Mittion A., Permezel M. In response to oxidative stress, the expression of inflammatory cytokines and antioxidant enzymes are impaired in placenta, but not adipose tissue, of women with gestational diabetes. J. Endocrinol. 2010;204:75–84. doi: 10.1677/JOE-09-0321.
    1. Burks D.J., White M.F. IRS proteins and beta-cell function. Diabetes. 2001;50(Suppl. 1):S140–S145. doi: 10.2337/diabetes.50.2007.S140.
    1. Giorgino F., Laviola L., Eriksson J.W. Regional differences of insulin action in adipose tissue: Insights from in vivo and in vitro studies. Acta Physiol. Scand. 2005;183:13–30. doi: 10.1111/j.1365-201X.2004.01385.x.
    1. Nolan C.J., Damm P., Prentki M. Type 2 diabetes across generations: From pathophysiology to prevention and management. Lancet Lond. Engl. 2011;378:169–181. doi: 10.1016/S0140-6736(11)60614-4.
    1. Kelley D.E., Goodpaster B.H., Storlien L. Muscle triglyceride and insulin resistance. Annu. Rev. Nutr. 2002;22:325–346. doi: 10.1146/annurev.nutr.22.010402.102912.
    1. Hoy A.J., Brandon A.E., Turner N., Watt M.J., Bruce C.R., Cooney G.J., Kraegen E.W. Lipid and insulin infusion-induced skeletal muscle insulin resistance is likely due to metabolic feedback and not changes in IRS-1, Akt, or AS160 phosphorylation. Am. J. Physiol. Endocrinol. MeTable. 2009;297:E67–E75. doi: 10.1152/ajpendo.90945.2008.
    1. Patti M.-E., Corvera S. The role of mitochondria in the pathogenesis of type 2 diabetes. Endocr. Rev. 2010;31:364–395. doi: 10.1210/er.2009-0027.
    1. Gomez-Arango L.F., Barrett H.L., McIntyre H.D., Callaway L.K., Morrison M., Dekker Nitert M., SPRING Trial Group. Connections Between the Gut Microbiome and Metabolic Hormones in Early Pregnancy in Overweight and Obese Women. Diabetes. 2016;65:2214–2223. doi: 10.2337/db16-0278.
    1. Fugmann M., Breier M., Rottenkolber M., Banning F., Ferrari U., Sacco V., Grallert H., Parhofer K.G., Seissler J., Clavel T., et al. The stool microbiota of insulin resistant women with recent gestational diabetes, a high risk group for type 2 diabetes. Sci. Rep. 2015;5:13212. doi: 10.1038/srep13212.
    1. Furet J.-P., Kong L.-C., Tap J., Poitou C., Basdevant A., Bouillot J.-L., Mariat D., Corthier G., Doré J., Henegar C., et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: Links with metabolic and low-grade inflammation markers. Diabetes. 2010;59:3049–3057. doi: 10.2337/db10-0253.
    1. Larsen N., Vogensen F.K., van den Berg F.W.J., Nielsen D.S., Andreasen A.S., Pedersen B.K., Al-Soud W.A., Sørensen S.J., Hansen L.H., Jakobsen M. Gut Microbiota in Human Adults with Type 2 Diabetes Differs from Non-Diabetic Adults. PLoS ONE. 2010;5:e9085. doi: 10.1371/journal.pone.0009085.
    1. Mouzaki M., Comelli E.M., Arendt B.M., Bonengel J., Fung S.K., Fischer S.E., McGilvray I.D., Allard J.P. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology (Baltimore) 2013;58:120–127. doi: 10.1002/hep.26319.
    1. Roager H.M., Licht T.R., Poulsen S.K., Larsen T.M., Bahl M.I. Microbial enterotypes, inferred by the prevotella-to-bacteroides ratio, remained stable during a 6-month randomized controlled diet intervention with the new nordic diet. Appl. Environ. Microbiol. 2014;80:1142–1149. doi: 10.1128/AEM.03549-13.
    1. David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E., Ling A.V., Devlin A.S., Varma Y., Fischbach M.A., et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–563. doi: 10.1038/nature12820.
    1. Jayashree B., Bibin Y.S., Prabhu D., Shanthirani C.S., Gokulakrishnan K., Lakshmi B.S., Mohan V., Balasubramanyam M. Increased circulatory levels of lipopolysaccharide (LPS) and zonulin signify novel biomarkers of proinflammation in patients with type 2 diabetes. Mol. Cell. Biochem. 2014;388:203–210. doi: 10.1007/s11010-013-1911-4.
    1. Mokkala K., Tertti K., Rönnemaa T., Vahlberg T., Laitinen K. Evaluation of serum zonulin for use as an early predictor for gestational diabetes. Nutr. Diabetes. 2017;7:e253. doi: 10.1038/nutd.2017.9.
    1. Bäckhed F., Ley R.E., Sonnenburg J.L., Peterson D.A., Gordon J.I. Host-bacterial mutualism in the human intestine. Science. 2005;307:1915–1920. doi: 10.1126/science.1104816.
    1. Lappas M., Hiden U., Desoye G., Froehlich J., Hauguel-de Mouzon S., Jawerbaum A. The role of oxidative stress in the pathophysiology of gestational diabetes mellitus. Antioxid. Redox Signal. 2011;15:3061–3100. doi: 10.1089/ars.2010.3765.
    1. Halliwell B., Gutteridge J. Free Radicals in Biology and Medicine. 4th ed. Oxford University Press; Oxford, UK: 2007.
    1. Zhu C., Yang H., Geng Q., Ma Q., Long Y., Zhou C., Chen M. Association of oxidative stress biomarkers with gestational diabetes mellitus in pregnant women: A case-control study. PLoS ONE. 2015;10:e0126490. doi: 10.1371/journal.pone.0126490.
    1. Pessler D., Rudich A., Bashan N. Oxidative stress impairs nuclear proteins binding to the insulin responsive element in the GLUT4 promoter. Diabetologia. 2001;44:2156–2164. doi: 10.1007/s001250100024.
    1. Manea A., Tanase L.I., Raicu M., Simionescu M. Transcriptional regulation of NADPH oxidase isoforms, Nox1 and Nox4, by nuclear factor-kappaB in human aortic smooth muscle cells. Biochem. Biophys. Res. Commun. 2010;396:901–907. doi: 10.1016/j.bbrc.2010.05.019.
    1. Javadian P., Alimohamadi S., Gharedaghi M.H., Hantoushzadeh S. Gestational diabetes mellitus and iron supplement; effects on pregnancy outcome. Acta Med. Iran. 2014;52:385–389.
    1. Puntarulo S. Iron, oxidative stress and human health. Mol. Asp. Med. 2005;26:299–312. doi: 10.1016/j.mam.2005.07.001.
    1. Bo S., Lezo A., Menato G., Gallo M.-L., Bardelli C., Signorile A., Berutti C., Massobrio M., Pagano G.F. Gestational hyperglycemia, zinc, selenium, and antioxidant vitamins. Nutrition. 2005;21:186–191. doi: 10.1016/j.nut.2004.05.022.
    1. Patterson S., Flatt P.R., Brennan L., Newsholme P., McClenaghan N.H. Detrimental actions of metabolic syndrome risk factor, homocysteine, on pancreatic beta-cell glucose metabolism and insulin secretion. J. Endocrinol. 2006;189:301–310. doi: 10.1677/joe.1.06537.
    1. Gong T., Wang J., Yang M., Shao Y., Liu J., Wu Q., Xu Q., Wang H., He X., Chen Y., et al. Serum homocysteine level and gestational diabetes mellitus: A meta-analysis. J. Diabetes Investig. 2016;7:622–628. doi: 10.1111/jdi.12460.
    1. Debreceni B., Debreceni L. The role of homocysteine-lowering B-vitamins in the primary prevention of cardiovascular disease. Cardiovasc. Ther. 2014;32:130–138. doi: 10.1111/1755-5922.12064.
    1. Augustin R. The protein family of glucose transport facilitators: It’s not only about glucose after all. IUBMB Life. 2010;62:315–333. doi: 10.1002/iub.315.
    1. Hiden U., Maier A., Bilban M., Ghaffari-Tabrizi N., Wadsack C., Lang I., Dohr G., Desoye G. Insulin control of placental gene expression shifts from mother to foetus over the course of pregnancy. Diabetologia. 2006;49:123–131. doi: 10.1007/s00125-005-0054-x.
    1. Jansson T., Powell T.L. Role of the placenta in fetal programming: Underlying mechanisms and potential interventional approaches. Clin. Sci. Lond. Engl. 1979. 2007;113:1–13. doi: 10.1042/CS20060339.
    1. Jones H.N., Jansson T., Powell T.L. IL-6 stimulates system A amino acid transporter activity in trophoblast cells through STAT3 and increased expression of SNAT2. Am. J. Physiol. Cell Physiol. 2009;297:C1228–C1235. doi: 10.1152/ajpcell.00195.2009.
    1. Radaelli T., Lepercq J., Varastehpour A., Basu S., Catalano P.M., Hauguel-De Mouzon S. Differential regulation of genes for fetoplacental lipid pathways in pregnancy with gestational and type 1 diabetes mellitus. Am. J. Obstet. Gynecol. 2009;201:209.e1–209.e10. doi: 10.1016/j.ajog.2009.04.019.
    1. Catalano P.M., McIntyre H.D., Cruickshank J.K., McCance D.R., Dyer A.R., Metzger B.E., Lowe L.P., Trimble E.R., Coustan D.R., Hadden D.R., et al. The hyperglycemia and adverse pregnancy outcome study: Associations of GDM and obesity with pregnancy outcomes. Diabetes Care. 2012;35:780–786. doi: 10.2337/dc11-1790.
    1. Reichetzeder C., Dwi Putra S.E., Pfab T., Slowinski T., Neuber C., Kleuser B., Hocher B. Increased global placental DNA methylation levels are associated with gestational diabetes. Clin. Epigenetics. 2016;8:82. doi: 10.1186/s13148-016-0247-9.
    1. Roverso M., Brioschi M., Banfi C., Visentin S., Burlina S., Seraglia R., Traldi P., Lapolla A. A preliminary study on human placental tissue impaired by gestational diabetes: A comparison of gel-based versus gel-free proteomics approaches. Eur. J. Mass Spectrom. 2016;22:71–82. doi: 10.1255/ejms.1412.
    1. Lesseur C., Chen J. Adverse Maternal Metabolic Intrauterine Environment and Placental Epigenetics: Implications for Fetal Metabolic Programming. Curr. Environ. Health Rep. 2018 doi: 10.1007/s40572-018-0217-9.
    1. Li J., Song L., Zhou L., Wu J., Sheng C., Chen H., Liu Y., Gao S., Huang W. A MicroRNA Signature in Gestational Diabetes Mellitus Associated with Risk of Macrosomia. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2015;37:243–252. doi: 10.1159/000430349.
    1. Zhao C., Dong J., Jiang T., Shi Z., Yu B., Zhu Y., Chen D., Xu J., Huo R., Dai J., et al. Early Second-Trimester Serum MiRNA Profiling Predicts Gestational Diabetes Mellitus. PLoS ONE. 2011;6:e23925. doi: 10.1371/journal.pone.0023925.
    1. Ehrlich S., Lambers D., Baccarelli A., Khoury J., Macaluso M., Ho S.-M. Endocrine Disruptors: A Potential Risk Factor for Gestational Diabetes Mellitus. Am. J. Perinatol. 2016;33:1313–1318. doi: 10.1055/s-0036-1586500.
    1. Dolinoy D.C. The agouti mouse model: An epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutr. Rev. 2008;66:S7–S11. doi: 10.1111/j.1753-4887.2008.00056.x.

Source: PubMed

3
Abonnere