Long-Term Effects of Balance Training on Habitual Physical Activity in Older Adults with Parkinson's Disease

Håkan Nero, Erika Franzén, Agneta Ståhle, Martin Benka Wallén, Maria Hagströmer, Håkan Nero, Erika Franzén, Agneta Ståhle, Martin Benka Wallén, Maria Hagströmer

Abstract

The HiBalance program is a progressive and highly challenging balance training intervention incorporating Parkinson's disease (PD) specific balance components. The program improves balance and gait and increases the amount of ambulation in short-term, in older adults with PD. Yet, potential short- and long-term effects on habitual physical activity and sedentary behavior are currently unidentified. The aim of this study was to conduct preplanned secondary analyses of short- and long-term effects of the HiBalance program on objectively measured amount and bouts of brisk walking, sedentary behavior, and total physical activity in older adults with PD. Further, our aim was to investigate demographic, intervention-related, disease-related, and function-related factors potentially related to a difference in activity after intervention. A total of 100 older adults with mild-moderate PD were recruited. The intervention group participated in the HiBalance program, and the control received care as usual and was offered the HiBalance program after study termination. Physical activity data were collected using accelerometers at baseline, after intervention and after 6 and 12 months. A multilevel model was utilized to investigate the postintervention and long-term (6 and 12 months) effects on total physical activity, amount and bouts of brisk walking (i.e., moderate intensity physical activity), and sedentary behavior. Between-group difference for the main outcome brisk walking was at postintervention: Δ -10, CI -23.78 to 3.69 min/day (p < 0.05); 6 months: Δ -10, CI -23.89 to 3.89 min/day (p < 0.05); and 12 months: Δ -4, CI -16.81 to 8.81 min/day (p=0.43). Being part of the intervention group as well as finishing training during spring/summer showed an independent association to increased brisk walking after the intervention period. In conclusion, the HiBalance program increases the physical activity on moderate intensity after intervention and at 6 months but not at 12 months, independently of improved balance. Season seems to influence the effect on the physical activity.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Figures

Figure 1
Figure 1
Flow chart of physical activity data from baseline to the 12 months follow-up.

References

    1. Pickering R. M., Grimbergen Y. A. M., Rigney U., et al. A meta-analysis of six prospective studies of falling in Parkinson’s disease. Movement Disorders. 2007;22(13):1892–1900. doi: 10.1002/mds.21598.
    1. Rahman S., Griffin H. J., Quinn N. P., Jahanshahi M. On the nature of fear of falling in Parkinson’s disease. Behavioural Neurology. 2011;24(3):219–228. doi: 10.1155/2011/274539.
    1. Dontje M. L., de Greef M. H. G., Speelman A. D., et al. Quantifying daily physical activity and determinants in sedentary patients with Parkinson’s disease. Parkinsonism & Related Disorders. 2013;19(10):878–882. doi: 10.1016/j.parkreldis.2013.05.014.
    1. Lord S., Godfrey A., Galna B., Mhiripiri D., Burn D., Rochester L. Ambulatory activity in incident Parkinson’s: more than meets the eye? Journal of Neurology. 2013;260(12):2964–2972. doi: 10.1007/s00415-013-7037-5.
    1. World Health Organisation. Global Recommendations on Physical Activity for Health. Geneva, Switzerland: WHO; 2010.
    1. Paterson D. H., Warburton D. E. R. Physical activity and functional limitations in older adults: a systematic review related to Canada’s physical activity guidelines. International Journal of Behavioral Nutrition and Physical Activity. 2010;7(1):p. 38. doi: 10.1186/1479-5868-7-38.
    1. Warburton D. E. R., Nicol C. W., Bredin S. S. Health benefits of physical activity: the evidence. Canadian Medical Association Journal. 2006;174(6):801–809. doi: 10.1503/cmaj.051351.
    1. Lopez A. D., Mathers C. D., Ezzati M., Jamison D. T., Murray C. J. L. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. The Lancet. 2006;367(9524):1747–1757. doi: 10.1016/s0140-6736(06)68770-9.
    1. Murray C. J. L., Lopez A. D. Global mortality, disability, and the contribution of risk factors: global burden of disease study. The Lancet. 1997;349(9063):1436–1442. doi: 10.1016/s0140-6736(96)07495-8.
    1. Allen N. E., Schwarzel A. K., Canning C. G. Recurrent falls in Parkinson’s disease: a systematic review. Parkinson’s Disease. 2013;2013:16. doi: 10.1155/2013/906274.906274
    1. Bryant M. S., Rintala D. H., Hou J.-G., Protas E. J. Relationship of falls and fear of falling to activity limitations and physical inactivity in Parkinson’s disease. Journal of Aging and Physical Activity. 2015;23(2):187–193. doi: 10.1123/japa.2013-0244.
    1. Allen N. E., Sherrington C., Paul S. S., Canning C. G. Balance and falls in Parkinson’s disease: a meta-analysis of the effect of exercise and motor training. Movement Disorders. 2011;26(9):1605–1615. doi: 10.1002/mds.23790.
    1. Conradsson D., Löfgren N., Nero H., et al. The effects of highly challenging balance training in elderly with Parkinson’s disease. Neurorehabilitation and Neural Repair. 2015;29(9):827–836. doi: 10.1177/1545968314567150.
    1. de Dreu M. J., van der Wilk A. S. D., Poppe E., Kwakkel G., van Wegen E. E. H. Rehabilitation, exercise therapy and music in patients with Parkinson’s disease: a meta-analysis of the effects of music-based movement therapy on walking ability, balance and quality of life. Parkinsonism & Related Disorders. 2012;18:S114–S119. doi: 10.1016/s1353-8020(11)70036-0.
    1. Conradsson D., Löfgren N., Ståhle A., Hagströmer M., Franzén E. A novel conceptual framework for balance training in Parkinson’s disease-study protocol for a randomised controlled trial. BMC Neurology. 2012;12(1):p. 111. doi: 10.1186/1471-2377-12-111.
    1. Benka Wallen M., Hagströmer M., Conradsson D., Sorjonen K., Franzén E. Long-term effects of highly challenging balance training in Parkinson’s disease—a randomized controlled trial. Clinical Rehabilitation. 2018;32(11):1520–1529. doi: 10.1177/0269215518784338.
    1. Haskell W. L., Lee I.-M., Pate R. R., et al. Physical activity and public health. Medicine & Science in Sports & Exercise. 2007;39(8):1423–1434. doi: 10.1249/mss.0b013e3180616b27.
    1. Nelson M. E., Rejeski W. J., Blair S. N., et al. Physical activity and public health in older adults. Medicine & Science in Sports & Exercise. 2007;39(8):1435–1445. doi: 10.1249/mss.0b013e3180616aa2.
    1. Corder K., Brage S., Ekelund U. Accelerometers and pedometers: methodology and clinical application. Current Opinion in Clinical Nutrition and Metabolic Care. 2007;10(5):597–603. doi: 10.1097/mco.0b013e328285d883.
    1. Province M. A., Hadley E. C., Hornbrook M. C., et al. The effects of exercise on falls in elderly patients. A preplanned meta-analysis of the FICSIT Trials. Frailty and Injuries: cooperative studies of intervention techniques. JAMA: The Journal of the American Medical Association. 1995;273(17):1341–1347. doi: 10.1001/jama.273.17.1341.
    1. Hayashi D., Gonçalves C. G., Parreira R. B., et al. Postural balance and physical activity in daily life (PADL) in physically independent older adults with different levels of aerobic exercise capacity. Archives of Gerontology and Geriatrics. 2012;55(2):480–485. doi: 10.1016/j.archger.2012.04.009.
    1. Hughes A. J., Daniel S. E., Kilford L., Lees A. J. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. Journal of Neurology, Neurosurgery & Psychiatry. 1992;55(3):181–184. doi: 10.1136/jnnp.55.3.181.
    1. Choi L., Liu Z., Matthews C. E., Buchowski M. S. Validation of accelerometer wear and nonwear time classification algorithm. Medicine & Science in Sports & Exercise. 2011;43(2):357–364. doi: 10.1249/mss.0b013e3181ed61a3.
    1. Wallén M. B., Nero H., Franzén E., Hagströmer M. Comparison of two accelerometer filter settings in individuals with Parkinson’s disease. Physiological Measurement. 2014;35(11):2287–2296. doi: 10.1088/0967-3334/35/11/2287.
    1. Trost S. G., McIver K. L., Pate R. R. Conducting accelerometer-based activity assessments in field-based research. Medicine & Science in Sports & Exercise. 2005;37:S531–S543. doi: 10.1249/01.mss.0000185657.86065.98.
    1. Matthews C. E., Ainsworth B. E., Thompson R. W., Bassett D. R., Jr. Sources of variance in daily physical activity levels as measured by an accelerometer. Medicine & Science in Sports & Exercise. 2002;34(8):1376–1381. doi: 10.1097/00005768-200208000-00021.
    1. Benka Wallen M., Franzen E., Nero H., Hagstromer M. Levels and patterns of physical activity and sedentary behavior in elderly people with mild to moderate Parkinson disease. Physical Therapy. 2015;95(8):1135–1141. doi: 10.2522/ptj.20140374.
    1. Nero H., Benka Wallen M., Franzen E., Stahle A., Hagstromer M. Accelerometer cut points for physical activity assessment of older adults with Parkinson’s disease. PLoS One. 2015;10(9) doi: 10.1371/journal.pone.0135899.e0135899
    1. Aguilar-Farías N., Brown W. J., Peeters G. M. E. E. ActiGraph GT3X+ cut-points for identifying sedentary behaviour in older adults in free-living environments. Journal of Science and Medicine in Sport. 2014;17(3):293–299. doi: 10.1016/j.jsams.2013.07.002.
    1. Shiroma E. J., Freedson P. S., Trost S. G., Lee I.-M. Patterns of accelerometer-assessed sedentary behavior in older women. JAMA. 2013;310(23):2562–2563. doi: 10.1001/jama.2013.278896.
    1. Bassett D. R., Troiano R. P., McClain J. J., Wolff D. L. Accelerometer-based physical activity. Medicine & Science in Sports & Exercise. 2015;47(4):833–838. doi: 10.1249/mss.0000000000000468.
    1. Fahn S., Elton R. L. In: Unified Parkinson’s Disease Rating Scale. Fahn S., Calne D., Marsden C. D., Goldstein M., editors. London, UK: Macmillan; 1987.
    1. Movement Disorder Society Task Force on Rating Scales for Parkinson’s Disease. The unified Parkinson’s disease rating scale (UPDRS): status and recommendations. Movement Disorders. 2003;18(7):738–750. doi: 10.1002/mds.10473.
    1. Tomlinson C. L., Stowe R., Patel S., Rick C., Gray R., Clarke C. E. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Movement Disorders. 2010;25(15):2649–2653. doi: 10.1002/mds.23429.
    1. Franchignoni F., Horak F., Godi M., Nardone A., Giordano A. Using psychometric techniques to improve the balance evaluation systems test: the mini-BESTest. Journal of Rehabilitation Medicine. 2010;42(4):323–331. doi: 10.2340/16501977-0537.
    1. Löfgren N., Lenholm E., Conradsson D., Ståhle A., Franzén E. The mini-BESTest—a clinically reproducible tool for balance evaluations in mild to moderate Parkinson’s disease? BMC Neurology. 2014;14(1):p. 235. doi: 10.1186/s12883-014-0235-7.
    1. Tucker P., Gilliland J. The effect of season and weather on physical activity: a systematic review. Public Health. 2007;121(12):909–922. doi: 10.1016/j.puhe.2007.04.009.
    1. Little R. J. A. A test of missing completely at random for multivariate data with missing values. Journal of the American Statistical Association. 1988;83(404):1198–1202. doi: 10.1080/01621459.1988.10478722.
    1. West B. T. Analyzing longitudinal data with the linear mixed models procedure in SPSS. Evaluation & the Health Professions. 2009;32(3):207–228. doi: 10.1177/0163278709338554.
    1. US Department of Health and Human Services. Physical Activity Guidelines Advisory Committee. Physical Activity Guidelines Advisory Committee Report (PAGAC) Washington, DC, USA: US Department of Health and Human Services; 2018.
    1. Wen C. P., Wai J. P. M., Tsai M. K., et al. Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. The Lancet. 2011;378(9798):1244–1253. doi: 10.1016/s0140-6736(11)60749-6.
    1. Altenburg W. A., ten Hacken N. H. T., Bossenbroek L., Kerstjens H. A. M., de Greef M. H. G., Wempe J. B. Short- and long-term effects of a physical activity counselling programme in COPD: a randomized controlled trial. Respiratory Medicine. 2015;109(1):112–121. doi: 10.1016/j.rmed.2014.10.020.
    1. Müller-Riemenschneider F., Reinhold T., Nocon M., Willich S. N. Long-term effectiveness of interventions promoting physical activity: a systematic review. Preventive Medicine. 2008;47(4):354–368. doi: 10.1016/j.ypmed.2008.07.006.
    1. Leavy B., Roaldsen K. S., Nylund K., Hagstromer M., Franzen E. “Pushing the limits”: rethinking motor and cognitive resources after a highly challenging balance training program for Parkinson’s disease. Physical Therapy. 2017;97(1):81–89. doi: 10.2522/ptj.20160090.
    1. Brooks A. G., Gunn S. M., Withers R. T., Gore C. J., Plummer J. L. Predicting walking METs and energy expenditure from speed or accelerometry. Medicine & Science in Sports & Exercise. 2005;37(7):1216–1223. doi: 10.1249/01.mss.0000170074.19649.0e.
    1. Togo F., Watanabe E., Park H., Shephard R. J., Aoyagi Y. Meteorology and the physical activity of the elderly: the Nakanojo study. International Journal of Biometeorology. 2005;50(2):83–89. doi: 10.1007/s00484-005-0277-z.
    1. Ogawa T., Spina R. J., Martin W. H., III, et al. Effects of aging, sex, and physical training on cardiovascular responses to exercise. Circulation. 1992;86(2):494–503. doi: 10.1161/01.cir.86.2.494.
    1. Rosen M. J., Sorkin J. D., Goldberg A. P., Hagberg J. M., Katzel L. I. Predictors of age-associated decline in maximal aerobic capacity: a comparison of four statistical models. Journal of Applied Physiology. 1998;84(6):2163–2170. doi: 10.1152/jappl.1998.84.6.2163.
    1. Prioli A. C., Freitas Júnior P. B., Barela J. A. Physical activity and postural control in the elderly: coupling between visual information and body sway. Gerontology. 2005;51(3):145–148. doi: 10.1159/000083984.
    1. Gauchard G. C., Gangloff P., Jeandel C., Perrin P. P. Influence of regular proprioceptive and bioenergetic physical activities on balance control in elderly women. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2003;58(9):M846–M850. doi: 10.1093/gerona/58.9.m846.
    1. Hughes M. A., Duncan P. W., Rose D. K., Chandler J. M., Studenski S. A. The relationship of postural sway to sensorimotor function, functional performance, and disability in the elderly. Archives of Physical Medicine and Rehabilitation. 1996;77(6):567–572. doi: 10.1016/s0003-9993(96)90296-8.
    1. Onambélé G. L., Maganaris C. N., Mian O. S., et al. Neuromuscular and balance responses to flywheel inertial versus weight training in older persons. Journal of Biomechanics. 2008;41(15):3133–3138. doi: 10.1016/j.jbiomech.2008.09.004.

Source: PubMed

3
Abonnere