The Effect of Exercise on Nutritional Status and Body Composition in Hemodialysis: A Systematic Review

Dimitra Rafailia Bakaloudi, Antonios Siargkas, Kalliopi Anna Poulia, Evangelia Dounousi, Michail Chourdakis, Dimitra Rafailia Bakaloudi, Antonios Siargkas, Kalliopi Anna Poulia, Evangelia Dounousi, Michail Chourdakis

Abstract

Chronic kidney disease (CKD) is associated with aggravating factors which can affect both body composition and nutritional status. The purpose of the present systematic review was to investigate the potential effects of any physical activity on body composition or nutritional status among patients with stage 5 CKD undergoing hemodialysis (HD). A literature search on PubMed, Scopus, Web of Science, Google Scholar, and Cochrane was conducted and 14 randomized clinical trials were included. Skeletal muscle index and mid-arm muscular circumference increased after resistance exercise, and the results on body mass index, % body fat, and lean body mass varied. Serum albumin and C-reactive protein, in most cases, showed a slight increase and decrease, respectively. An improvement was also observed in body strength and overall performance status. The results suggest that physical activity can be beneficial for both the body composition and nutritional status of patients undergoing HD and can help in the prevention of sarcopenia. However, further research is needed mainly in the field of nutritional status.

Keywords: body composition; chronic kidney disease; hemodialysis; nutritional status; physical activity; sarcopenia.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram of the study selection process.
Figure 2
Figure 2
Risk of bias graph of included studies.
Figure 3
Figure 3
Risk of bias summary for included studies.

References

    1. Hill N.R., Fatoba S.T., Oke J.L., Hirst J.A., O’Callaghan C.A., Lasserson D.S., Hobbs F.D. Global Prevalence of Chronic Kidney Disease—A Systematic Review and Meta-Analysis. PLoS ONE. 2016;11:e0158765. doi: 10.1371/journal.pone.0158765.
    1. Levey A.S., Coresh J., Balk E., Kausz A.T., Levin A., Steffes M.W., Hogg R.J., Perrone R.D., Lau J., Eknoyan G. National Kidney Foundation practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Ann. Intern. Med. 2003;139:137–147. doi: 10.7326/0003-4819-139-2-200307150-00013.
    1. Vaziri N.D. Dyslipidemia of chronic renal failure: The nature, mechanisms, and potential consequences. Am. J. Physiol. Physiol. 2006;290:F262–F272. doi: 10.1152/ajprenal.00099.2005.
    1. Tonelli M., Wiebe N., Culleton B., House A., Rabbat C., Fok M., McAlister F., Garg A.X. Chronic kidney disease and mortality risk: A systematic review. J. Am. Soc. Nephrol. 2006;17:2034–2047. doi: 10.1681/ASN.2005101085.
    1. Levin A., Li Y.C. Vitamin D and its analogues: Do they protect against cardiovascular disease in patients with kidney disease? Kidney Int. 2005;68:1973–1981. doi: 10.1111/j.1523-1755.2005.00651.x.
    1. Siew E.D., Ikizler T.A. Insulin resistance and protein energy metabolism in patients with advanced chronic kidney disease. Sem. Dial. 2010;23:378–382. doi: 10.1111/j.1525-139X.2010.00763.x.
    1. Slee A.D. Exploring metabolic dysfunction in chronic kidney disease. Nutr. Metab. 2012;9:36. doi: 10.1186/1743-7075-9-36.
    1. Iorember F.M. Malnutrition in Chronic Kidney Disease. Front. Pediatr. 2018;6:161. doi: 10.3389/fped.2018.00161.
    1. Lim H.-S., Kim H.-S., Kim J.K., Park M., Choi S.J. Nutritional Status and Dietary Management According to Hemodialysis Duration. Clin. Nutr. Res. 2019;8:28–35. doi: 10.7762/cnr.2019.8.1.28.
    1. Laws R.A., Tapsell L.C., Kelly J. Nutritional status and its relationship to quality of life in a sample of chronic hemodialysis patients. J. Ren. Nutr. 2000;10:139–147. doi: 10.1053/jren.2000.7412.
    1. Cohen S.D., Kimmel P.L. Nutritional status, psychological issues and survival in hemodialysis patients. Contrib. Nephrol. 2007;155:1–17. doi: 10.1159/000100952.
    1. Ikizler T.A. Optimal nutrition in hemodialysis patients. Adv. Chronic Kidney Dis. 2013;20:181–189. doi: 10.1053/j.ackd.2012.12.002.
    1. Omari A.M., Omari L.S., Dagash H.H., Sweileh W.M., Natour N., Zyoud S.H. Assessment of nutritional status in the maintenance of haemodialysis patients: A cross-sectional study from Palestine. BMC Nephrol. 2019;20:92. doi: 10.1186/s12882-019-1288-z.
    1. Keane D., Gardiner C., Lindley E., Lines S., Woodrow G., Wright M. Changes in Body Composition in the Two Years after Initiation of Haemodialysis: A Retrospective Cohort Study. Nutrients. 2016;8 doi: 10.3390/nu8110702.
    1. Painter P. Physical functioning in end-stage renal disease patients: Update. Hemodial. Int. 2005;9:218–235. doi: 10.1111/j.1492-7535.2005.01136.x.
    1. Painter P., Roshanravan B. The association of physical activity and physical function with clinical outcomes in adults with chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2013;22:615–623. doi: 10.1097/MNH.0b013e328365b43a.
    1. Roshanravan B., Robinson-Cohen C., Patel K.V., Ayers E., Littman A.J., de Boer I.H., Ikizler T.A., Himmelfarb J., Katzel L.I., Kestenbaum B., et al. Association between physical performance and all-cause mortality in CKD. J. Am. Soc. Nephrol. 2013;24:822–830. doi: 10.1681/ASN.2012070702.
    1. Johansen K.L., Chertow G.M., Ng A.V., Mulligan K., Carey S., Schoenfeld P.Y., Kent-Braun J.A. Physical activity levels in patients on hemodialysis and healthy sedentary controls. Kidney Int. 2000;57:2564–2570. doi: 10.1046/j.1523-1755.2000.00116.x.
    1. Hirai K., Ookawara S., Morishita Y. Sarcopenia and Physical Inactivity in Patients with Chronic Kidney Disease. Nephrourol. Mon. 2016;8:e37443. doi: 10.5812/numonthly.37443.
    1. Moon S.J., Kim T.H., Yoon S.Y., Chung J.H., Hwang H.J. Relationship between Stage of Chronic Kidney Disease and Sarcopenia in Korean Aged 40 Years and Older Using the Korea National Health and Nutrition Examination Surveys (KNHANES IV-2, 3, and V-1, 2), 2008–2011. PLoS ONE. 2015;10:e0130740. doi: 10.1371/journal.pone.0130740.
    1. Domanski M., Ciechanowski K. Sarcopenia: A major challenge in elderly patients with end-stage renal disease. J. Aging Res. 2012;2012:754739. doi: 10.1155/2012/754739.
    1. Tabibi H., As’habi A., Najafi I., Hedayati M. Prevalence of dynapenic obesity and sarcopenic obesity and their associations with cardiovascular disease risk factors in peritoneal dialysis patients. Kidney Res. Clin. Pract. 2018;37:404–413. doi: 10.23876/j.krcp.18.0064.
    1. Malhotra R., Deger S.M., Salat H., Bian A., Stewart T.G., Booker C., Vincz A., Pouliot B., Ikizler T.A. Sarcopenic Obesity Definitions by Body Composition and Mortality in the Hemodialysis Patients. J. Ren. Nutr. 2017;27:84–90. doi: 10.1053/j.jrn.2016.09.010.
    1. Androga L., Sharma D., Amodu A., Abramowitz M.K. Sarcopenia, obesity, and mortality in USA adults with and without chronic kidney disease. Kidney Int. Rep. 2017;2:201–211. doi: 10.1016/j.ekir.2016.10.008.
    1. Kim J.K., Kim S.G., Oh J.E., Lee Y.K., Noh J.W., Kim H.J., Song Y.R. Impact of sarcopenia on long-term mortality and cardiovascular events in patients undergoing hemodialysis. Korean J. Intern. Med. 2019;34:599–607. doi: 10.3904/kjim.2017.083.
    1. Mohammadi H.R., Khoshnam M.S., Khoshnam E. Effects of Different Modes of Exercise Training on Body Composition and Risk Factors for Cardiovascular Disease in Middle-aged Men. Int. J. Prev. Med. 2018;9:9. doi: 10.4103/ijpvm.IJPVM_209_16.
    1. Van Craenenbroeck A.H., Van Craenenbroeck E.M., Van Ackeren K., Hoymans V.Y., Verpooten G.A., Vrints C.J., Couttenye M.M. Impaired vascular function contributes to exercise intolerance in chronic kidney disease. Nephrol. Dial. Transplant. 2016;31:2064–2072. doi: 10.1093/ndt/gfw303.
    1. Kosmadakis G.C., Bevington A., Smith A.C., Clapp E.L., Viana J.L., Bishop N.C., Feehally J. Physical exercise in patients with severe kidney disease. Nephron. Clin. Pract. 2010;115:c7–c16. doi: 10.1159/000286344.
    1. Nishikawa M., Ishimori N., Takada S., Saito A., Kadoguchi T., Furihata T., Fukushima A., Matsushima S., Yokota T., Kinugawa S., et al. AST-120 ameliorates lowered exercise capacity and mitochondrial biogenesis in the skeletal muscle from mice with chronic kidney disease via reducing oxidative stress. Nephrol. Dial. Transplant. 2015;30:934–942. doi: 10.1093/ndt/gfv103.
    1. K/DOQI clinical practice guidelines for cardiovascular disease in dialysis patients. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2005;45:S1–S153.
    1. Milam R.H. Exercise Guidelines for Chronic Kidney Disease Patients. J. Ren. Nutr. 2016;26:e23–e25. doi: 10.1053/j.jrn.2016.03.001.
    1. Matsuzawa R., Roshanravan B. Management of Physical Frailty in Patients Requiring Hemodialysis Therapy. Contrib. Nephrol. 2018;196:101–109. doi: 10.1159/000485707.
    1. Cheema B.S., Singh M.A. Exercise training in patients receiving maintenance hemodialysis: A systematic review of clinical trials. Am. J. Nephrol. 2005;25:352–364. doi: 10.1159/000087184.
    1. Fuzari H.K.B., Leite J., Souza H., Rocha T., de Andrade A.D., Marinho P. Exercise effectiveness of arteriovenous fistula maturation in chronic renal patients: A systematic review with meta-analysis. Int. J. Ther. Rehabil. 2017;24:98–104. doi: 10.12968/ijtr.2017.24.3.98.
    1. Qiu Z., Zheng K., Zhang H., Feng J., Wang L., Zhou H. Physical Exercise and Patients with Chronic Renal Failure: A Meta-Analysis. BioMed Res. Int. 2017;2017:7191826. doi: 10.1155/2017/7191826.
    1. Scapini K.B., Bohlke M., Moraes O.A., Rodrigues C.G., Inacio J.F.S., Sbruzzi G., Leguisamo C.P., Sanches I.C., Tourinho H., Irigoyen M.C. Combined training is the most effective training modality to improve aerobic capacity and blood pressure control in people requiring haemodialysis for end-stage renal disease: Systematic review and network meta-analysis. J. Physiother. 2019;65:4–15. doi: 10.1016/j.jphys.2018.11.008.
    1. Wyngaert K.V., Van Craenenbroeck A.H., Van Biesen W., Dhondt A., Tanghe A., Van Ginckel A., Celie B., Calders P. The effects of aerobic exercise on eGFR, blood pressure and VO (2) peak in patients with chronic kidney disease stages 3-4: A systematic review and meta-analysis. PLoS ONE. 2018;13:e0203662. doi: 10.1371/journal.pone.0203662.
    1. Yang H., Wu X., Wang M. Exercise Affects Cardiopulmonary Function in Patients with Chronic Kidney Disease: A Meta-Analysis. BioMed Res. Int. 2017;2017:6405797. doi: 10.1155/2017/6405797.
    1. De Medeiros A.I.C., Fuzari H.K.B., Rattesa C., Brandao D.C., de Melo Marinho P.E. Inspiratory muscle training improves respiratory muscle strength, functional capacity and quality of life in patients with chronic kidney disease: A systematic review. J. Physiother. 2017;63:76–83. doi: 10.1016/j.jphys.2017.02.016.
    1. Koufaki P., Greenwood S.A., Macdougall I.C., Mercer T.H. Exercise therapy in individuals with chronic kidney disease: A systematic review and synthesis of the research evidence. Annu. Rev. Nurs. Res. 2013;31:235–275. doi: 10.1891/0739-6686.31.235.
    1. Neto M.G., de Lacerda F.F.R., Lopes A.A., Martinez B.P., Saquetto M.B. Intradialytic exercise training modalities on physical functioning and health-related quality of life in patients undergoing maintenance hemodialysis: Systematic review and meta-analysis. Clin. Rehabil. 2018;32:1189–1202. doi: 10.1177/0269215518760380.
    1. Pei G.Q., Tang Y., Tan L., Tan J.X., Ge L., Qin W. Aerobic exercise in adults with chronic kidney disease (CKD): A meta-analysis. Int. Urol. Nephrol. 2019;51:1787–1795. doi: 10.1007/s11255-019-02234-x.
    1. Pu J., Jiang Z., Wu W., Li L., Zhang L., Li Y., Liu Q., Ou S. Efficacy and safety of intradialytic exercise in haemodialysis patients: A systematic review and meta-analysis. BMJ Open. 2019;9:e020633. doi: 10.1136/bmjopen-2017-020633.
    1. Sheng K., Zhang P., Chen L., Cheng J., Wu C., Chen J. Intradialytic exercise in hemodialysis patients: A systematic review and meta-analysis. Am. J. Nephrol. 2014;40:478–490. doi: 10.1159/000368722.
    1. Young H.M.L., March D.S., Graham-Brown M.P.M., Jones A.W., Curtis F., Grantham C.S., Churchward D.R., Highton P., Smith A.C., Singh S.J., et al. Effects of intradialytic cycling exercise on exercise capacity, quality of life, physical function and cardiovascular measures in adult haemodialysis patients: A systematic review and meta-analysis. Nephrol. Dial. Transplant. 2018;33:1436–1445. doi: 10.1093/ndt/gfy045.
    1. Lu Y., Wang Y.J., Lu Q. Effects of Exercise on Muscle Fitness in Dialysis Patients: A Sys tematic Review and Meta-Analysis. Am. J. Nephrol. 2019;50:291–302. doi: 10.1159/000502635.
    1. Molsted S., Bjorkman A.S.D., Lundstrom L.H. Effects of strength training to patients undergoing dialysis: A systematic review. Dan. Med. J. 2019;66:9.
    1. Liberati A., Altman D.G., Tetzlaff J., Mulrow C., Gotzsche P.C., Ioannidis J.P., Clarke M., Devereaux P.J., Kleijnen J., Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009;6:e1000100. doi: 10.1371/journal.pmed.1000100.
    1. Abreu C.C., Cardozo L., Stockler-Pinto M.B., Esgalhado M., Barboza J.E., Frauches R., Mafra D. Does resistance exercise performed during dialysis modulate Nrf2 and NF-kappa B in patients with chronic kidney disease? Life Sci. 2017;188:192–197. doi: 10.1016/j.lfs.2017.09.007.
    1. Cheema B., Abas H., Smith B., O’Sullivan A., Chan M., Patwardhan A., Kelly J., Gillin A., Pang G., Lloyd B., et al. Progressive exercise for anabolism in kidney disease (PEAK): A randomized, controlled trial of resistance training during hemodialysis. J. Am. Soc. Nephrol. 2007;18:1594–1601. doi: 10.1681/ASN.2006121329.
    1. Chen J.L., Godfrey S., Ng T.T., Moorthi R., Liangos O., Ruthazer R., Jaber B.L., Levey A.S., Castaneda-Sceppa C. Effect of intra-dialytic, low-intensity strength training on functional capacity in adult haemodialysis patients: A randomized pilot trial. Nephrol. Dial. Transplant. 2010;25:1936–1943. doi: 10.1093/ndt/gfp739.
    1. Cheng Y.J., Zhao X.J., Zeng W., Xu M.C., Ma Y.C., Wang M. Effect of Intradialytic Exercise on Physical Performance and Cardiovascular Risk Factors in Patients Receiving Maintenance Hemodialysis: A Pilot and Feasibility Study. Blood Purif. 2019.
    1. Cooke A.B., Ta V., Iqbal S., Gomez Y.H., Mavrakanas T., Barre P., Vasilevsky M., Rahme E., Daskalopoulou S.S. The Impact of Intradialytic Pedaling Exercise on Arterial Stiffness: A Pilot Randomized Controlled Trial in a Hemodialysis Population. Am. J. Hypertens. 2018;31:458–466. doi: 10.1093/ajh/hpx191.
    1. Frih B., Jaafar H., Mkacher W., Ben Salah Z., Hammami M., Frih A. The Effect of Interdialytic Combined Resistance and Aerobic Exercise Training on Health Related Outcomes in Chronic Hemodialysis Patients: The Tunisian Randomized Controlled Study. Front. Physiol. 2017;8:288. doi: 10.3389/fphys.2017.00288.
    1. Groussard C., Rouchon-Isnard M., Coutard C., Romain F., Malarde L., Lemoine-Morel S., Martin B., Pereira B., Boisseau N. Beneficial effects of an intradialytic cycling training program in patients with end-stage kidney disease. Appl. Physiol. Nutr. Metab. 2015;40:550–556. doi: 10.1139/apnm-2014-0357.
    1. Johansen K.L., Painter P.L., Sakkas G.K., Gordon P., Doyle J., Shubert T. Effects of resistance exercise training and nandrolone decanoate on body composition and muscle function among patients who receive hemodialysis: A randomized, controlled trial. J. Am. Soc. Nephrol. JASN. 2006;17:2307–2314. doi: 10.1681/ASN.2006010034.
    1. Kopple J.D., Wang H., Casaburi R., Fournier M., Lewis M.I., Taylor W., Storer T.W. Exercise in maintenance hemodialysis patients induces transcriptional changes in genes favoring anabolic muscle. J. Am. Soc. Nephrol. JASN. 2007;18:2975–2986. doi: 10.1681/ASN.2006070794.
    1. Liao M.T., Liu W.C., Lin F.H., Huang C.F., Chen S.Y., Liu C.C., Lin S.H., Lu K.C., Wu C.C. Intradialytic aerobic cycling exercise alleviates inflammation and improves endothelial progenitor cell count and bone density in hemodialysis patients. Medicine. 2016;95:e4134. doi: 10.1097/MD.0000000000004134.
    1. Lopes L.C.C., Mota J.F., Prestes J., Schincaglia R.M., Silva D.M., Queiroz N.P., Freitas A., Lira F.S., Peixoto M.D.G. Intradialytic Resistance Training Improves Functional Capacity and Lean Mass Gain in Individuals on Hemodialysis: A Randomized Pilot Trial. Arch. Phys. Med. Rehabil. 2019;100:2151–2158. doi: 10.1016/j.apmr.2019.06.006.
    1. Marinho S.M., Mafra D., Pelletier S., Hage V., Teuma C., Laville M., Carraro Eduardo J.C., Fouque D. In Hemodialysis Patients, Intradialytic Resistance Exercise Improves Osteoblast Function: A Pilot Study. J. Ren. Nutr. 2016;26:341–345. doi: 10.1053/j.jrn.2016.03.002.
    1. Olvera-Soto M.G., Valdez-Ortiz R., Lopez Alvarenga J.C., Espinosa-Cuevas Mde L. Effect of Resistance Exercises on the Indicators of Muscle Reserves and Handgrip Strength in Adult Patients on Hemodialysis. J. Ren. Nutr. 2016;26:53–60. doi: 10.1053/j.jrn.2015.06.006.
    1. Rosa C.S.D., Nishimoto D.Y., Souza G.D.E., Ramirez A.P., Carletti C.O., Daibem C.G.L., Sakkas G.K., Monteiro H.L. Effect of continuous progressive resistance training during hemodialysis on body composition, physical function and quality of life in end-stage renal disease patients: A randomized controlled trial. Clin. Rehabil. 2018;32:899–908. doi: 10.1177/0269215518760696.
    1. Silva V., Belik F.S., Hueb J.C., Goncalves R.D., Caramori J.C.T., Vogt B.P., Barretti P., Bazan S.G.Z., De Stefano G., Martin L.C., et al. Aerobic Exercise Training and Nontraditional Cardiovascular Risk Factors in Hemodialysis Patients: Results from a Prospective Randomized Trial. Cardiorenal Med. 2019;9:391–399. doi: 10.1159/000501589.
    1. Song W.J., Sohng K.Y. Effects of progressive resistance training on body composition, physical fitness and quality of life of patients on hemodialysis. J. Korean Acad. Nurs. 2012;42:947–956. doi: 10.4040/jkan.2012.42.7.947.
    1. Suhardjono, Umami V., Tedjasukmana D., Setiati S. The effect of intradialytic exercise twice a week on the physical capacity, inflammation, and nutritional status of dialysis patients: A randomized controlled trial. Hemodial. Int. 2019;23:486–493. doi: 10.1111/hdi.12764.
    1. Wilund K.R., Tomayko E.J., Wu P.T., Ryong Chung H., Vallurupalli S., Lakshminarayanan B., Fernhall B. Intradialytic exercise training reduces oxidative stress and epicardial fat: A pilot study. Nephrol. Dial. Transplant. 2010;25:2695–2701. doi: 10.1093/ndt/gfq106.
    1. Enright P.L. The six-minute walk test. Respir. Care. 2003;48:783–785.
    1. Higgins J.P.T., Altman D.G., Gøtzsche P.C., Jüni P., Moher D., Oxman A.D., Savović J., Schulz K.F., Weeks L., Sterne J.A.C. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. doi: 10.1136/bmj.d5928.
    1. Conlon J.A., Newton R.U., Tufano J.J., Penailillo L.E., Banyard H.G., Hopper A.J., Ridge A.J., Haff G.G. The efficacy of periodised resistance training on neuromuscular adaptation in older adults. Eur. J. Appl. Physiol. 2017;117:1181–1194. doi: 10.1007/s00421-017-3605-1.
    1. Keller U. Nutritional Laboratory Markers in Malnutrition. J. Clin. Med. 2019;8 doi: 10.3390/jcm8060775.
    1. Cabrerizo S., Cuadras D., Gomez-Busto F., Artaza-Artabe I., Marin-Ciancas F., Malafarina V. Serum albumin and health in older people: Review and meta analysis. Maturitas. 2015;81:17–27. doi: 10.1016/j.maturitas.2015.02.009.
    1. Levitt D.G., Levitt M.D. Human serum albumin homeostasis: A new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements. Int. J. Gen. Med. 2016;9:229–255. doi: 10.2147/IJGM.S102819.
    1. Friedman A.N., Fadem S.Z. Reassessment of albumin as a nutritional marker in kidney disease. J. Am. Soc. Nephrol. 2010;21:223–230. doi: 10.1681/ASN.2009020213.
    1. Hanafusa N., Nitta K., Okazaki M., Komatsu M., Shiohira S., Kawaguchi H., Tsuchiya K. Serum albumin level adjusted with C-reactive protein predicts hemodialysis patient survival. Ren. Replace. Ther. 2017;3:9. doi: 10.1186/s41100-016-0085-4.
    1. Anders H.J., Andersen K., Stecher B. The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease. Kidney Int. 2013;83:1010–1016. doi: 10.1038/ki.2012.440.
    1. Girndt M., Sester M., Sester U., Kaul H., Kohler H. Molecular aspects of T—and B-cell function in uremia. Kidney Int. Suppl. 2001;78:S206–S211. doi: 10.1046/j.1523-1755.2001.59780206.x.
    1. Castaneda C., Gordon P.L., Uhlin K.L., Levey A.S., Kehayias J.J., Dwyer J.T., Fielding R.A., Roubenoff R., Singh M.F. Resistance training to counteract the catabolism of a low-protein diet in patients with chronic renal insufficiency. A randomized, controlled trial. Ann. Intern. Med. 2001;135:965–976. doi: 10.7326/0003-4819-135-11-200112040-00008.
    1. Chan D., Cheema B.S. Progressive Resistance Training in End-Stage Renal Disease: Systematic Review. Am. J. Nephrol. 2016;44:32–45. doi: 10.1159/000446847.
    1. Zhang F., Zhou W., Sun Q., Zhai Y., Zhang Y., Su H., Wang Z. Effects of intradialytic resistance exercises on physical performance, nutrient intake and quality of life among haemodialysis people: A systematic review and meta-analysis. Nurs. Open. 2019 doi: 10.1002/nop2.274.
    1. Cruz-Jentoft A.J., Bahat G., Bauer J., Boirie Y., Bruyère O., Cederholm T., Cooper C., Landi F., Rolland Y., Sayer A.A., et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2018;48:16–31. doi: 10.1093/ageing/afy169.
    1. Kemp G.J., Crowe A.V., Anijeet H.K., Gong Q.Y., Bimson W.E., Frostick S.P., Bone J.M., Bell G.M., Roberts J.N. Abnormal mitochondrial function and muscle wasting, but normal contractile efficiency, in haemodialysed patients studied non-invasively in vivo. Nephrol. Dial. Transplant. 2004;19:1520–1527. doi: 10.1093/ndt/gfh189.
    1. Tamaki M., Miyashita K., Wakino S., Mitsuishi M., Hayashi K., Itoh H. Chronic kidney disease reduces muscle mitochondria and exercise endurance and its exacerbation by dietary protein through inactivation of pyruvate dehydrogenase. Kidney Int. 2014;85:1330–1339. doi: 10.1038/ki.2013.473.
    1. Ide T., Tsutsui H., Hayashidani S., Kang D., Suematsu N., Nakamura K., Utsumi H., Hamasaki N., Takeshita A. Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ. Res. 2001;88:529–535. doi: 10.1161/01.RES.88.5.529.
    1. López-Armada M.J., Riveiro-Naveira R.R., Vaamonde-García C., Valcárcel-Ares M.N. Mitochondrial dysfunction and the inflammatory response. Mitochondrion. 2013;13:106–118. doi: 10.1016/j.mito.2013.01.003.
    1. Balakrishnan V.S., Rao M., Menon V., Gordon P.L., Pilichowska M., Castaneda F., Castaneda-Sceppa C. Resistance training increases muscle mitochondrial biogenesis in patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2010;5:996–1002. doi: 10.2215/CJN.09141209.
    1. Ferrari F., Helal L., Dipp T., Soares D., Soldatelli Â., Mills A.L., Paz C., Tenório M.C.C., Motta M.T., Barcellos F.C., et al. Intradialytic training in patients with end-stage renal disease: A systematic review and meta-analysis of randomized clinical trials assessing the effects of five different training interventions. J. Nephrol. 2020;33:251–266. doi: 10.1007/s40620-019-00687-y.
    1. Regolisti G., Sabatino A., Fiaccadori E. Exercise in patients on chronic hemodialysis: Current evidence, knowledge gaps and future perspectives. Curr. Opin. Clin. Nutr. Metab. Care. 2020;23:181–189. doi: 10.1097/MCO.0000000000000656.

Source: PubMed

3
Abonnere